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Abstract. Lagrangian invariants of hydrodynamic, magnetohydrodynamic (MHD) and Hall MHD
fluids are reviewed in a general viewpoint of differential topology. It is shown that, introducing
the particle trajectory map (PTM) and its inverse (back-to-labels map, BLM) and utilizing their
spatial derivatives, one can easily derive the conservation laws along the Lagrangian trajectories.
All the invariants are derived as composite of such elementary invariants as entropy per unit mass,
impulse, mass density, and electromagnetic vector potential and their derivatives. Treating the
spatial derivatives of PTM and BLM as kinds of Lagrangian invariants formally, one can understand
the following conservation laws as Lagrangian invariants: Cauchy’s formula, Weber’s transformation,
Ertel’s theorem, Ertel-Rossby’s theorem (i.e. helicity density), magnetic-helicity and cross-helicity
in a MHD fluid, hybrid-helicity in a Hall MHD fluid.
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1. Introduction

Direct numerical simulation (DNS) is nowadays the most
basic tool for understanding the nature of fluid motions.
Recently Constantin developed such a numerical scheme
that is a kind of hybrid of the Lagrangian and the Eule-
rian specifications of flow[1], and numarical studies with
this scheme were carried out for an incompressible neutral
fluid by Ohkitani and Constantin[2] and an incompress-
ible MHD fluid[3]. By the way, particle methods, for ex-
ample, moving-particle semi-implicit method (MPS) [4] or
smoothed particle hydrodynamics (SPH) [5], are mainly
based on the Lagrangian specification.

For the check of accuracy of DNS, the conservation laws
that the model equation satisfies in the disspationless limit
provide important benchmarks. It may be very useful if
there is a list of the Lagrangian invariants, the quanti-
ties that is conserved on each fluid element for the accu-
racy check of the Lagrangian specification based numerical
schemes.

Recently, Fukumoto has discussed the nature of “topo-
logical invariants” from a general analytical mechanical
viewpoint[6]. In this paper we focus our discussion on
the more formal and mathematical aspects of these La-
grangian invariants. One of such formal discussions has
been given by Tur and Yanovsky[7]. They showed a general
way to construct Lagrangian invariants though their nota-
tions and presentating way of invariants seem to be slightly
confusing. In this paper we extend their methodology in
somewhat systematic way. It is shown that introduction of
the maps for tracking the Lagrangian trajectories of fluid

motion into the construction of Lagrangian invariants en-
ables us to simplify some mathematical calculations and to
discuss wider classes of invariants, which includes the well-
known hydrodynamic formulae such as Cauchy’s formula
and Weber’s transformation.

2. Lagrangian description of fluid
motion

Let M be a “container of a fluid”, a three dimensional
Riemannian manifold with metric g = (gij). It is assumed
that a global coordinate system q⃗ = (qi) = (q1, q2, q3) is
defined on it.

2.1. Remarks on mathematical notations

It should be remarked here about the mathematical expres-
sions used in the present work.

In this article we use the notation with arrow on top
to denote point on M. It should be emphasized that the
point on M is not a vector in its strict sense unless M is
the Euclidean space M = E3. For example, the addition of
components of two points p⃗+ q⃗ = (p1 + q1, p2 + q2, p3 + q3)
may indicate outside of M unless one of them has suffi-
ciently small magnitude. The subtraction of components
of two points p⃗− q⃗ = (p1 − q1, p2 − q2, p3 − q3) makes sense
when these two positions are sufficiently close to each other.

On the other hand, we will use boldface fonts, for exam-
ple u, A, etc., to denote vector or tensor fields on M, each
of which constitutes a genuine vector space.
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In many literatures of hydrodynamics, the letters a⃗ and
x⃗ are often used to denote the Lagrangian label of a fluid
particle and the Eulerian coordinate, respectively. How-
ever, this distinction has only physical implication, since
mathematically a unique coordinate system (qi) is assigned
on the fluid container M and specific values of a⃗ and x⃗ are
measured in the unit of (qi). Thus, the independent vari-
ables of a function on M (say F ) are qi’s so that only the
notation ∂F/∂qi appears to denote the partial derivatives
of F . Notations such as ∂F/∂ai, ∂F/∂xi, ∇aF , ∇xF , etc.
do not appear in the following.

It should be emphasized that, when a function is writ-
ten with its arguments, it denotes its value at an assigned
position and a time which are given in the arguments. For
example, the notation X⃗ (⃗a, t), which appears in the follow-
ing, does not imply that X⃗ is a function of variable a⃗, but
denotes the value of function X⃗ at the position a⃗ where a⃗
physically implies the label of a fluid particle. Similarly, the
notation ∂f

∂qi (X⃗ (⃗a, t), t) does not imply that f is a function

of X⃗, but denotes the value of derivative ∂f
∂qi at the po-

sition given by X⃗ (⃗a, t). On the other hand, the notation
without argument indicate function itself, whose variables
are obviously qi and t.

In this notation convention, one should be careful about
the treatment of partial derivatives when the arguments
of functions are different. For example, when f (⃗a, 0) =
f(X⃗ (⃗a, t), t), the values of their partial derivatives satisfy
the following relation:

∂f

∂qi
(⃗a, 0)

:= lim
ϵ→0

f(..., ai + ϵ, ..., 0) − f(..., ai, ..., 0)
ϵ

= lim
ϵ→0

f(X⃗(..., ai + ϵ, ..., t), t) − f(X⃗(..., ai, ..., t), t)
ϵ

=
∂

∂ai
f(X⃗ (⃗a, t), t) =

∂f

∂qj
(X⃗ (⃗a, t), t)

∂Xj

∂qi
(⃗a, t).

In such cases we will partly use partial differentiation op-
erator notation with respect to ai for convenience.

2.2. Particle trajectory map and back-to-labels
map

In order to describe fluid motion which may be a solution of
the Euler or the Navier-Stokes equation or be a prescribed
flow, we introduce here particle trajectory map (PTM)

X⃗ = X⃗(q⃗, t)

= (X1(q1, q2, q3, t), X2(q1, q2, q3, t), X3(q1, q2, q3, t))

which is such a triplet of functions that maps the initial
position or the “label” of a fluid particle a⃗ to the position
X⃗ (⃗a, t) at the time t1.

1Only the mathematical expressions in the explanations of PTM
and BLM are the exceptions of the argument writing rule discussed
in §2.1.

The velocity of a fluid particle labeled by a⃗ is given by
the tangent vector of its trajectory2

∂X⃗

∂t
(⃗a, t) := lim

τ→0

X⃗ (⃗a, t+ τ) − X⃗ (⃗a, t)
τ

=
∂Xi

∂t
(⃗a, t)

(
∂

∂qi

)
X⃗(a⃗,t)

(1)

where subindex of the vector field basis ∂/∂qi is the po-
sition where the velocity vector stems. This is the exact
explicit expression of the Lagrangian velocity in conven-
tional notation of differential geometry. It should be em-
phasized that, since the argument of component functions
a⃗ and that of basis X⃗ (⃗a, t) do not agree with each other, the
Lagrangian velocity is not any contravariant or covariant
vector field in its strict sense and is inconvenient to calcu-
late some properties in terms of differential topology3. In
order to match the argument of components and basis, we
introduce, therefore, such a contravariant vector field (say
u = ui∂/∂qi) whose components satisfy

ui
(
X⃗ (⃗a, t), t

)
:=

∂Xi

∂t
(⃗a, t).(2)

The vector field u is the Eulerian velocity associated with
the PTM X⃗.

Let us introduce here “back-to-labels” map (BLM, cf.
Ref.[1])

Λ⃗ = Λ⃗(q⃗, t)

= (Λ1(q1, q2, q3, t),Λ2(q1, q2, q3, t),Λ3(q1, q2, q3, t))

which is the inverse of the PTM X⃗:

X⃗(Λ⃗(q⃗, t), t) = q⃗, Λ⃗(X⃗(q⃗, t), t) = q⃗.(3)

Differentiating the second equation in Eq.(3) with respect
to t and substituting Eq.(2), we obtain the following partial
differential equation (PDE) that each component of BLM
obeys:

∂Λi

∂t
+ uj ∂Λi

∂qj
= 0.(4)

Differentiating Eqs.(3) and substituting the Eulerian posi-
tion x⃗ and the Lagrangian label a⃗, respectively, one obtains
the following inverse matrix relations:

∂Xi

∂qk
(Λ⃗(x⃗, t), t)

∂Λk

∂qj
(x⃗, t) = δi

j ,

∂Λk

∂qj
(X⃗ (⃗a, t), t)

∂Xi

∂qk
(⃗a, t) = δi

j .(5)

In terms of the cofactor and the determinant the inverse
matrix relations can be written as

cof
(

∂Xi

∂qj (⃗a, t)
)

det
(

∂Xi

∂qj (⃗a, t)
) =

∂Λj

∂qi
(X⃗ (⃗a, t), t),(6)

2In this paper Einstein’s summation convention is used.
3It seems somewhat misleading to use ∂X/∂t = v(a, t) to de-

note the Lagrangian velocity because v is not a proper object of the
differential topology.
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where cof(M j
i ) and det(M j

i ) stand for the cofactor of the
component M j

i and the determinant of matrix (M j
i ), re-

spectively.
In the next section we will see that the derivatives of

PTM and BLM act as “transformation matrices” for the
frozen-in fields.

3. Frozen-in fields

In this section we summarize “frozen-in” scalar, vector and
tensor fields generally. By X̃t we denote the transformation
of functions, vectors and tensors induced by the PTM X⃗.
The condition that a field (say At = A(q⃗, t)) is frozen-in is
defined by At = X̃tA0. Differentiating this equation with
respect to t, one obtains ∂A/∂tt = −LuAt, where L is
the Lie derivative[8]. It should be remarked that, as we
will see in the following, the specific expressions of the Lie
derivatives vary depending on the tensor type.

Our consideration starts with the “frozen-in” function
or, in the terminology of hydrodynamics, dissipationless
passive scalar. Then the advection of a contravariant vec-
tor field is discussed. Finally we derive the formulae for
differential n-forms.

3.1. Advection of a function and a contravari-
ant vector field

The advection of a function and a vector field constitute
building blocks for Lagrangian invariants. The advection
of a function (say f) is defined by

f(X⃗ (⃗a, t), t) = f (⃗a, 0).(7)

Physically this equation implies that the value of function
is conveyed by the fluid motion without diffusion. Differen-
tiating this equation with respect to t and substituting the
relation Eq.(2), we obtain the following PDE of Eulerian
fields4:

∂f

∂t
+ uj ∂f

∂qj
= 0.(8)

It should be remarked that each component of BLM is for-
mally a “frozen-in” function.

Advection of a “frozen-in” vector field (say ξ = ξi∂/∂qi)
is defined by the difference between two very close particles
that are conveyed by the flow X⃗. That is, the value of a
“frozen-in” vector field at X⃗ (⃗a, t) is given by the following
differentiation:

ξi(X⃗ (⃗a, t), t)
(
∂

∂qi

)
X⃗(a⃗,t)

:= lim
ϵ→0

X⃗ (⃗b, t) − X⃗ (⃗a, t)
ϵ

(9)

where b⃗ is the position of a fluid particle given in terms of
initial vector field as

bi := ai + ϵξi(⃗a, 0) + o(ϵ).(10)
4This equation gives the expression of the Lie derivative for a

function as Luf = ui∂f/∂qi.

Substituting Eq.(10) into the RHS of Eq.(9), one can derive
the following relation between the components at the initial
time and the time t:

ξi(X⃗ (⃗a, t), t) = ξk (⃗a, 0)
∂Xi

∂qk
(⃗a, t).(11)

Multiplying (∂Λk/∂qi)(X⃗ (⃗a, t), t) on both sides of Eq.(11),
one obtain

ξi(X⃗ (⃗a, t), t)
∂Λk

∂qi
(X⃗ (⃗a, t), t) = ξk (⃗a, 0).(12)

Differentiating this equation with respect to t and substi-
tuting Eqs.(2) and (4), we obtain the following well-known
PDE for each component of a frozen-in vector field5:

∂ξi

∂t
+ uj ∂ξ

i

∂qj
− ξj ∂u

i

∂qj
= 0.(13)

In other words Eq.(12) is the integral of Eq.(13) over time
interval [0,t] for the flow history given by X⃗.

3.2. Advection of differential n-forms

The advection of differential n-form is obtained by compo-
sition of the basic mathematical building blocks. Discus-
sion on the frozen-in tensors begins with the commutativity
of the following basic operations with the transformation
X̃t [8]:

1. product of a function and a tensor and tensor prod-
uct ⊗ of the tensors of arbitrary order: X̃t(fA) =
X̃tf X̃tA, X̃t(A ⊗ B) = X̃tA ⊗ X̃tB,

2. contraction between contravariant and covariant com-
ponents, symmetrization and skew-symmetrization of
tensors: X̃t(Tr(A ⊗ B)) = Tr(X̃tA ⊗ X̃tB), etc.,

3. exterior differentiation d on the differential forms (skew-
symmetric covariant tensors): X̃t(dA) = d(X̃tA).

Combination of the operations 1 and 2 leads to the com-
mutativity of the wedge product: X̃t(A ∧ B) = X̃tA ∧
X̃tB. These relations hold a key to understand the general
method to construct Lagrangian invariants given by Tur
and Yanovsky[7].

3.2.1. Commutativity of tensor operations and
transformation

The first example of application of the commutative rela-
tions is the advection of a differential 1-form (or a covariant
vector field). It is defined through the fact that differen-
tial 1-form is a linear functional of a vector field. That
is, the inner product between a vector field and a 1-form
(say η = ηidq

i) is a function (0-form) on M so that it is
advected by the rule Eq.(7):

ηj(X⃗ (⃗a, t), t) ξj(X⃗ (⃗a, t), t) = ηi(⃗a, 0) ξi(⃗a, 0).(14)
5This equation gives the expression of the Lie derivative for a

contravariant vector field as Luξ = (uj∂ξi/∂qj − ξj∂ui/∂qj)∂/∂qi.
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Substituting the transformation rule for a contravariant
vector field Eq.(11), one obtains the transformation rela-
tion of the covariant components

ηj(X⃗ (⃗a, t), t)
∂Xj

∂qi
(⃗a, t) = ηi(⃗a, 0)(15)

Differentiating this equation with respect to t and substi-
tuting Eq.(2), we obtain the PDE for the “frozen-in” 1-
form6:

∂ηj

∂t
+ uk ∂ηj

∂qk
+ ηk

∂uk

∂qj
= 0.(16)

As a consequence of the commutativity, the components
of “frozen-in” differential 2- and 3-forms (say ω = ωijdq

i ∧
dqj and ρ = ρijkdq

i ∧ dqj ∧ dqk, respectively) are found to
obey the following transformation rules:

ωkl(X⃗ (⃗a, t), t)
∂Xk

∂qi
(⃗a, t)

∂X l

∂qj
(⃗a, t) = ωij (⃗a, 0),(17)

ρlmn(X⃗ (⃗a, t), t)
∂X l

∂qi
(⃗a, t)

∂Xm

∂qj
(⃗a, t)

∂Xn

∂qk
(⃗a, t)(18)

= ρijk (⃗a, 0).

For three dimensional case these transformation rules can
be rewritten as

3

Σ
i=1

ωi(X⃗ (⃗a, t), t) cof
(
∂Xi

∂qj
(⃗a, t)

)
= ωj (⃗a, 0),(19)

ρ(X⃗ (⃗a, t), t) det
(
∂Xi

∂qj
(⃗a, t)

)
= ρ(⃗a, 0),(20)

where ωj := 1
2ϵ

jklωkl, ρ := 1
6ϵ

lmnρlmn and ϵijk is the Levi-
Civita density7.

It should be remarked that, taking into account Eq.(6),
we found that the quotient of these coefficients obeys the
following transformation rule, which is well known as
Cauchy’s formula when ω and ρ are the vorticity and the
mass density, respectively:

ωj (⃗a, 0)
ρ(⃗a, 0)

=

3

Σ
i=1
ωi(X⃗ (⃗a, t), t) cof

(
∂Xi

∂qj (⃗a, t)
)

ρ(X⃗ (⃗a, t), t) det
(

∂Xi

∂qj (⃗a, t)
)

=
ωi(X⃗ (⃗a, t), t)

ρ(X⃗ (⃗a, t), t)

∂Λj

∂qi
(X⃗ (⃗a, t), t).(21)

Comparing this relation with Eq.(12), we observe that the
quotients of frozen-in 2-forms coefficient to the 3-forms one
work as components of a frozen-in vector field.

6This equation gives the expression of the Lie derivative for a
covariant vector field as Luη = (uk∂ηj/∂qk + ηk∂uk/∂qj)dqj .

7Differentiating the equations (19) and (20) with respect to the
time t, one obtains the PDE’s for 2- and 3-forms as

∂ωi

∂t
+ uj ∂ωi

∂qj
− ωj ∂ui

∂qj
+ ωi ∂uj

∂qj
= 0,

∂ρ

∂t
+ uj

∂ρ

∂qj
+ ρ

∂uj

∂qj
= 0.

3.2.2. Commutativity of exterior differentiation
and transformation

Another important way to obtain a frozen-in differential
form is to operate the exterior differentiation d on a given
frozen-in differential form. We comment here the corre-
spondence between exterior differentiation d and grad, curl
and div operations and check the commutativity of d and
X̃ in terms of components of fields.

Exterior differentiation of 0-form is the gradient of a
function. The gradient of frozen-in 0-form is given by

∂f

∂qi
(⃗a, 0) =

∂

∂ai
f(X⃗ (⃗a, t), t)

=
∂f

∂qj
(X⃗ (⃗a, t), t)

∂Xj

∂qi
(⃗a, t)(22)

and it is easy to see this relation is the same as the trans-
formation rule Eq.(15).

When the spatial dimension is three, exterior diffenti-
ation of 1-form coincides with the operation of curl. So
taking the curl of the frozen-in covariant vector field, one
obtains the frozen-in relation for the derivatives of compo-
nents, which agree with the Eq.(19):

ϵijk ∂ηk

∂qj
(⃗a, 0)

= ϵijk ∂

∂aj

(
ηn(X⃗ (⃗a, t), t)

∂Xn

∂qk
(⃗a, t)

)
= ϵijk ∂ηn

∂qm
(X⃗ (⃗a, t), t)

∂Xm

∂qj
(⃗a, t)

∂Xn

∂qk
(⃗a, t).(23)

It is known that divergence of a vector field (say (ωi)) is
given by the exterior differentiation of the 2-form whose
components are given by ωjk := 1

2ϵijkω
i. So the frozen-

in 2-form induces the following relation that agrees with
Eq.(18):

ϵijk ∂ωjk

∂qi
(⃗a, 0)(24)

= ϵijk ∂

∂ai

(
ωmn(X⃗ (⃗a, t), t)

∂Xm

∂qj
(⃗a, t)

∂Xn

∂qk
(⃗a, t)

)
= ϵijk ∂ωmn

∂ql
(X⃗ (⃗a, t), t)

∂X l

∂qi
(⃗a, t)

∂Xm

∂qj
(⃗a, t)

∂Xn

∂qk
(⃗a, t).

4. Construction of Lagrangian
invariants

In the previous section we observed that the wedge product
and the exterior differentiation of “frozen-in” differential
forms are also “frozen-in”. Therefore, if we have a list of
basic conservation laws, we can construct a wide variety of
Lagrangian invariants from these basic ones. In this section
we will firstly list up the basic conservation laws. Then the
combinations of basic frozen-in fields are considered.
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4.1. Basic kinematic and dynamic building blocks
for Lagrangian invariants

In this subsection we list up the basic frozen-in fields. Firstly,
we list such frozen-in fields with which neutral, MHD and
Hall MHD fluids have in common. Then we discuss the
frozen-in fields that are specific to each kind of fluid, all of
which are given by differential 1-forms.

4.1.1. Common frozen-in 0- and 3-form

There are three kinds of frozen-in fields with which neutral,
MHD and Hall MHD fluids have in common. From Eq.(4)
one can see that each component of BLM Λi for i =1,2,3 is
0-form invariant. Since we treat the dissipationless systems
throughout this paper, entropy per unit mass of a fluid s is
one of the 0-form Lagrangian invariant[9]: (∂/∂t+Lu)s =
0. The gradient of Λi and s are the frozen-in 1-forms that
are used as building blocks for 3-form invariants.

The mass M := ρ
√

|g| dq1 ∧ dq2 ∧ dq3 is an another
basic frozen-in field which is a 3-form, i.e. ( ∂

∂t + Lu)M =
0, where ρ and |g| are the mass density distribution and
the determinant of the Riemannian metric tensor. The
coefficient ρ

√
|g| is used as the denominator of the 3-form

quotient type Lagrangian invariants.

4.1.2. Frozen-in 1-form of a perfect barotropic fluid

In terms of the Lie derivative and exterior derivatives the
Euler equation is written as

(
∂

∂t
+ Lu)u = −dp

ρ
− d|u|2

2

where u = ui∂/∂qi, u = uidq
i = giju

idqi and |u|2 = uiui.
If the fluid is barotropic ρ = ρ(p), the equation of motion
can be rewritten as

(
∂

∂t
+ Lu)ũ = 0,(25)

where the variable ũ is the impulse defined by ũ = ũjdq
j =

(uj + ∂ψ/∂qj)dqj and ψ is such a function that is defined
by the integral

ψ(X⃗ (⃗a, t), t) =
∫ t

0

(∫
dp

ρ(p)
− |u|2

2

)
(q⃗,t)=(X⃗(a⃗,τ),τ)

dτ

(26)

(see Ref.[10]). Applying Eq.(15), we formally obtain the
integral of this equation that is known as Weber’s trans-
formation [11]:

ũj(X⃗ (⃗a, t), t)
∂Xj

∂qi
(⃗a, t) = ũi(⃗a, 0).(27)

The impulse 1-form ũ and its exterior differentiation dũ =
du, i.e., the vorticity 2-form constitute the building blocks
for the Lagrangian invariants of an ideal barotropic fluid.

4.1.3. Frozen-in 1-form of an ideal MHD fluid

The ideal MHD imposes an assumption that the conduc-
tivity of a plasma is approximately infinite so that Ohm’s
law has the following simple form (Ref.[12] §8.4);

E + u × B = 0

where E, B and u are the electric and magnetic fields
of plasma and the mean velocity of macroscopic ion and
electron flow, respectively.

Substituting Ohm’s law into Faraday’s law of induction
in potential form E = −∇ϕ − ∂A/∂t where ϕ and A are
the scalar and vector potentials of electromagnetic fields
and B = ∇ × A, we obtain the ideal MHD equation for
the vector potential 1-form A = Aidq

i as

(
∂

∂t
+ Lu)A = −dϕ+ d(A · u).(28)

where A · u = Aiu
i. This equation can be written in a

frozen-in form as

(
∂

∂t
+ Lu)Ã = 0.(29)

where Ã = (Ai +∂ϕ̃/∂qi)dqi and ϕ̃ is such a function given
by

ϕ̃(X⃗ (⃗a, t), t) =
∫ t

0

(ϕ− A · u)(q⃗,t)=(X⃗(a⃗,τ),τ)dτ.(30)

The integral of Eq.(29) is obtained in an analogous way as
for the impulse of the barotropic fluid:

Ãj(X⃗ (⃗a, t), t)
∂Xj

∂qi
(⃗a, t) = Ãi(⃗a, 0).(31)

It should be remarked here that the impulse is no longer a
frozen-in 1-form since the equation of an ideal MHD fluid
motion has the Lorentz force term:

(
∂

∂t
+ Lu)ũ =

j × B

ρ
(32)

where j is the current density of the MHD plasma j =
µ−1∇× B.

4.1.4. Frozen-in 1-form of a Hall MHD fluid

Recently Shivamoggi has shown that both the incompress-
ible and the compressible Hall MHD systems can be written
in the impulse form[13]. Hall MHD is such an approxima-
tion that Ohm’s law has the Hall current term:

E + u × B =
1
en

j × B

where e, n are the elementary charge and number density
of ions and electrons, respectively. The evolution equation
of vector potential is given by

(
∂

∂t
+ Lu)Ã = − 1

en
j × B.(33)
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It is easy to see that the Lorentz force term in Eq.(32)
and the Hall term in Eq.(33) cancel each other if the mass
density is approximated by ρ = mn where m is the ion
mass. Thus we obtain the following conservation law for
the sum of impulse and vector potential 1-forms:

(
∂

∂t
+ Lu)

(
ũ +

e

m
Ã

)
= 0.(34)

The bluiding blocks for a Hall MHD fluid, therefore, are
w := ũ + (e/m)Ã and its exterior derivative dw := ω +
(e/m)B.

4.2. Tables of Lagrangian invariants

Now we construct Lagrangian invariants, i.e., frozen-in 0-
forms as combinations of basic frozen-in fields. In the first
four subsections we list such Lagrangian invariants each of
which is given by a quotient of the frozen-in 3-form coeffi-
cients. For simplicity the denominator of quotients is fixed
to the coeffcient of mass 3-form ρ̃ := ρ

√
|g|.

When the building blocks are, for example, ds, dΛi and
dΛj , the numerator 3-form of corresponding Lagrangian
invariant is given by

ds ∧ dΛi ∧ dΛj =
(
∂s

∂ql
dql

)
∧

(
∂Λi

∂qm
dqm

)
∧

(
∂Λj

∂qn
dqn

)
= ϵlmn ∂s

∂ql

∂Λi

∂qm

∂Λj

∂qn
dq1 ∧ dq2 ∧ dq3.

Thus one obtains the Lagrangian invariant, i.e. the frozen-

in 0-form8:
ϵlmn

ρ̃

∂s

∂ql

∂Λi

∂qm

∂Λj

∂qn
=

∇s · (∇Λi ×∇Λj)
ρ̃

.

Then we disscuss Weber’s transformation type invariants
and its relation to Kelvin’s circulation theorem. Finally,
the exponential map type invariants is presented as an ex-
ample of recursive use of invariants formula.

4.2.1. Kinematic type Lagrangian invariants

We list in Table 1 such a type of invariants which the neu-
tral, the MHD and the Hall MHD fluids have in common.
The invariants are given by combinations of BLM, entropy
per unit mass and mass density.

Table 1: Lagrangian invariants with which neutral, MHD
and Hall MHD fluids have in common.

blocks invariant comments

ds dΛi dΛj ∇s · (∇Λi ×∇Λj)
ρ̃

i, j = 1, 2, 3,
i ̸= j

dΛi dΛj dΛk ∇Λi · (∇Λj ×∇Λk)
ρ̃

conservation
of mass

8In the following tables, we use the ordinary notation of vector

analysis. For example, ∇s =

(
∂s

∂q1
,

∂s

∂q2
,

∂s

∂q3

)
.

4.2.2. Lagrangian invariants of a perfect barotropic
fluid

For a barotropic perfect fluid the building blocks for La-
grangian invariants are the impulse ũ, the exterior differ-
entiation of entropy and each component BLM ds, dΛi for
i = 1, 2, 3 and the vorticity ω := dũ = du. The invari-
ants that are given by combinations of 1-forms are listed in
Table 2 and those of 1- and 2-forms are listed in Table 3.

Table 2: Lagrangian invariants of a barotropic fluid. Com-
binations of 1-forms are listed.

blocks invariant comments

ũ ds dΛi ũ · (∇s×∇Λi)
ρ̃

i = 1, 2, 3

ũ dΛi dΛj ũ · (∇Λi ×∇Λj)
ρ̃

i, j = 1, 2, 3, i ̸= j

Table 3: Lagrangian invariants of a barotropic fluid. Com-
binations of a 1-form and a 2-form are listed.

blocks invariant comments

ũ du
ũ · ω
ρ̃

Ertel-Rossby theorem ([14], [15])

ds du
∇s · ω
ρ̃

Ertel’s theorem ([16], [11])

dΛi du
∇Λi · ω

ρ̃
Cauchy’s formula ([17], [11])

As is listed in Table 3, well known three theorems are
obtained as combinations of frozen-in 1- and 2-forms. It
should be remarked that in many literatures the equation

ωi(X⃗ (⃗a, t), t)

ρ̃(X⃗ (⃗a, t), t)
=
ωj (⃗a, t)
ρ̃(⃗a, t)

∂Xi

∂qj
(⃗a, t)

is usually referred to as Cauchy’s formula. By muliplying
(∂Λj/∂qi)(X⃗ (⃗a, t), t) on both sides, one obtains the formula
appears in Table 3. The formula given in Table 3 clealy
shows that Cauchy’s formula is able to be regarded as one
of the more general Lagrangian invariants.

4.2.3. Lagrangian invariants of ideal MHD

For an ideal barotropic MHD fluid, instead of the impulse
ũ and the vorticity du, the vector potential Ã and the
magnetic field B = dA are the basic building blocks for
Lagrangian invariants. The impulse is not a frozen-in 1-
form because of the Lorentz force term: (∂/∂t + Lu)ũ =
ρ̃−1j × B. Since the other blocks are the same as those
of a neutral fluid, the obtained Lagrangian invariants are
almost quite analogous to those of a neutral fluid except
for the cross helicity. The invariants that are given by the
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Table 4: Lagrangian invariants specific to an MHD fluid.
Combinations of 1-forms are listed.

blocks invariant comments

A ds dΛi A · (∇s×∇Λi)
ρ̃

i = 1, 2, 3

A dΛi dΛj A · (∇Λi ×∇Λj)
ρ̃

i, j = 1, 2, 3, i ̸= j

Table 5: Lagrangian invariants of an MHD fluid. Combi-
nations of a 1-form and a 2-form are listed.

blocks invariant comments

Ã B
Ã · B
ρ̃

magnetic helicity

ds B
∇s · B
ρ̃

counterpart of Ertel’s theorem

dΛi B
∇Λi · B

ρ̃
counterpart of Cauchy’s formula

ũ B
u · B
ρ̃

cross helicity

combinations of 1-forms are listed in Table 4 and those of
1- and 2-forms are listed in Table 5.

The reason for the invariance of the cross helicity is
different from other invariants. While the other invari-
ants are obtained by the wedge product of conservation
laws, conservation of the cross helicity stems from the fact
that the Lorentz force term and the magnetic field are al-
ways perpendicular to each other: (∂/∂t + Lu)(ũ ∧ B) =
ρ̃−1(j × B) · B = 0.

4.2.4. Lagrangian invariants of Hall MHD

For a barotropic ideal Hall MHD fluid the 1-form type
building block for Lagrangian invariants is the linear com-
bination of the impulse and the vector potential w :=
ũ + e

mÃ. The invariants that are given by the combina-
tions of 1-forms are listed in Table 6 and those of 1- and
2-forms are listed in Table 7.

Table 6: Lagrangian invariants of a Hall MHD fluid. Com-
binations of 1-forms are listed.

blocks invariant comments

w ds dΛi ρ̃−1(ũ+
e

m
Ã)

·(∇s×∇Λi)
i = 1, 2, 3

w dΛi dΛj ρ̃−1(ũ+
e

m
Ã)

·(∇Λi×∇Λj)
i, j = 1, 2, 3, i ̸= j

Table 7: Lagrangian invariants of a Hall MHD fluid. Com-
binations of a 1-form and a 2-form are listed.

blocks invariant counterpart

w dw
ρ̃−1(ω+

e

m
B)

·(ũ + e
mÃ)

Ertel-Rossby theorem

ds dw
(ω +

e

m
B)

·∇s
/
ρ̃

Ertel’s theorem

dΛi dw
(ω +

e

m
B)

·∇Λi
/
ρ̃

Cauchy’s formula

4.3. Lagrangian invariants of Weber’s transfor-
mation type and their relation to Kelvin’s
circulation

In this subsection we discuss such Lagrangian invariants
that are given by Weber’s transformation and its physical
implication. Invariants of Weber’s transformation type are
listed in Table 8. Keivin’s circulation theorem is discussed
as well as an application of this type of Lagrangian invari-
ance.

Table 8: Lagrangian invariants of Weber’s transformation
type

1-form invariant comments

ds ∇s · ∂X

∂qi
unknown invariant

dΛi ∇Λi · ∂X

∂qj
Eq.(6)

ũ u · ∂X

∂qi
Weber transformation

A A · ∂X

∂qj
ideal MHD counterpart

w (ũ +
e

m
A) · ∂X

∂qj
Hall MHD counterpart

All the Lagrangian invariants given above are quotients
of frozen-in 3-forms. Weber’s transformation type invari-
ants, on the other hand, are regarded as the inner prod-
uct of a frozen-in 1-form and a frozen-in vector field (see
Eqs.(14) and (15)) by the following reason. The spatial
derivatives of PTM themselves are not the components of
any proper vector field or 1-form, but have corresponding
frozen-in vector fields (say ξ(i) = ξj

(i)∂/∂q
j , i=1,2,3) whose

components are defined by

ξj
(i)(X⃗ (⃗a, t), t) =

∂Xj

∂qi
(⃗a, t).(35)

Differentiating this equation with respect to t, one can eas-
ily check that the induced vector fields ξ(i) satisfy the PDE
Eq.(13). Using the relations at the initial time

ξj
(i)(X⃗ (⃗a, 0), 0) = ξj

(i)(⃗a, 0) = (∂Xj/∂qi)(⃗a, 0) = δj
i ,
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we can rewrite Weber’s transformation in an inner product
form as

ũj(X⃗ (⃗a, t), t) ξj
(i)(X⃗ (⃗a, t), t) = ũk (⃗a, 0) ξk

(i)(⃗a, 0).(36)

Physical implication of the triplet of fields (ξ(1), ξ(2), ξ(3))
is that they constitute such a coordinate frame on M that
is initially given by the frame associated with the coordi-
nate system (q1, q2, q3) and then advected and deformed
by the fluid flow given by X⃗ (see Figure 1). The physi-
cal implication of Weber’s transformation is, therfore, that
each projection of the impulse ũ on the advected frames
ξ(i) is conserved along the fluid flow.

Figure 1: physical implication of the field ξ(i).

From the mathematical viewpoint, Kelvin’s circulation
theorem and Weber’s transformation are both based on the
inner product type Lagrangian invariant. The circulation
theorem is a composite of the following three facts:

1. The integral contour is a frozen-in material line so
that tangential vectors of the contour are frozen-in
contravariant vectors;

2. The impulse 1-form of a barotropic fluid is frozen-
in so that the inner product of impulse and path’s
tangent vector is a Lagrangian invariant;

3. The integral contour is a loop, i.e., has no boundary
so that, by virtue of Stokes’ theorem[18], only the
solenoidal part of impulse 1-form is relevant to the
integral value.

The third condition is specific to the circulation theorem.
Since there are frozen-in 1-forms for the ideal MHD and the
Hall MHD, they have counterparts of Kelvin’s theorem:

(37)
∮

x⃗∈c

A(x⃗) · dl(x⃗)

for the ideal MHD and

(38)
∮

x⃗∈c

(
u(x⃗) +

e

m
A(x⃗)

)
· dl(x⃗)

for the Hall MHD where c, dl(x⃗) are the integral loop and
its tangential vector at x⃗, respectively.

4.4. Recursive use of Lagrangian invariant for-
mula

It seems to be an interesting attempt to use the obtained

formula recursively. Since Ertel’s invariant
ωi

ρ̃

∂s

∂qi
, for ex-

ample, is a frozen-in 0-form of a barotropic fluid, one can
substitute it into s recursively. The resulting function
ωi

ρ̃

∂

∂qi

(
ωi

ρ̃

∂s

∂qi

)
is also a Lagrangian invariant[7]. Thus

the derivatives
(
ωi

ρ̃

∂

∂qi

)n

s are conserved. Furthermore

one can formally construct the exponential map type La-
grangian invariant given by

exp
(
τ

ω

ρ̃

)
s :=

∞∑
n=0

τn

n!

(
ωi

ρ̃

∂

∂qi

)n

s.

The implication of this invariant is quite natural. Mathe-
matically the exponential map is a diffeomorphism on M
generated by the vector field ω

/
ρ̃. In other words, this

operation implies the advection of s for a finite “time” τ
by the “flow” ω

/
ρ̃. Since ω

/
ρ̃ is a frozen-in vector field,

the modified function exp(ω
/
ρ̃)s is advected by X⃗ with

retaining its value for each fluid particle.
Proof of the conservation law is straightforward. Since

the transformation of the exponential map is given by

exp
(
τ

ωt

ρ̃t

)
= X̃t exp

(
τ

ω0

ρ̃0

)
X̃−1

t ,

where the subindex stands for the time (cf. Proposition
1.7 in Ref.[8]), the transformation of the modified function
exp(ω

/
ρ̃)s is given by

X̃t exp
(
τ

ω0

ρ̃0

)
s0 = X̃t exp

(
τ

ω0

ρ̃0

)
X̃−1

t X̃ts0

= exp
(
τ

ωt

ρ̃t

)
st.

In place of ω
/
ρ̃, analogous conservation laws are gener-

ated by B
/
ρ̃ for the MHD, (ω + e

mB)
/
ρ̃ for the Hall MHD

and for each of the advected coordinate frame fields ξ(i) for
all cases.
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Strömungsmechanik I, Springer, Berlin, 1959, 1–124.

[16] Ertel, H., Meteor. Z., Vol.59, pp.277-281 (1942).

[17] A.-L. Cauchy, Mem. Divers Savants (2) 1, (Oeuvres
(1) 1, pp.5 to 318), especially 1st part, §4.

[18] Flanders, H.: Differential forms with applications to
the physical sciences, Dover, New York, 1989.

Keisuke Araki
Faculty of Engineering, Okayama University of Science,
Ridaicho 1-1, Okayama, Okayama 700-0005, Japan.
E-mail: araki(at)are.ous.ac.jp


