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Abstract. Perturbations in a shear flow exhibit rather complex behavior – waves may grow alge-
braically even when the spectrum of disturbances is entirely neutral (no exponential instability).
A shear flow brings about non-selfadjoint property, invalidating the standard notion of dispersion
relations, and it also produces a continuous spectrum that is a characteristic entity in an infinite-
dimension phase space. This paper solves an initial value problem using the Laplace transform and
presents a new-type of algebraic instability that is caused by resonant interaction between acoustic
modes (point spectrum) and vortical continuum mode (continuous spectrum). Such a resonance is
possible when variation of velocity shear is comparable to sound speed.

Keywords. compressible fluid, shear flow, spectrum of non-selfadjoint operator, algebraic instability,

1. Introduction

Waves in shear flows exhibit a variety of complex behav-
ior that may not be decomposed into oscillating eigen-
modes. The difficulty arises from the non-orthogonality of
the eigenmodes of the non-selfadjoint (non-normal) gener-
ator. Moreover, in inviscid shear flows, there exists contin-
uous spectrum as well as point (or discrete) spectrum, and
the degeneracy of some point spectrum into the continuous
spectrum requires careful mathematical consideration.

In this paper, we present a new-type of instability in in-
viscid compressible shear flow, which glows algebraically in
time through a resonant interaction between the acoustic
mode (a point spectrum) and the continuum of the vorti-
cal modes (a continuous spectrum). We note that such a
resonant interaction of different modes is possible because
they are not orthogonal by the non-selfadjointness. And for
a resonance to occur, the phase speed of the acoustic wave
must belong to the range of the shear-flow velocity, which
requires that the shear flow must have supersonic region.

The study of instabilities in shear flow has a long history,
and is still incomplete to understand, for example, the on-
set of turbulence [1, 2]. While the normal mode analysis
(or the eigenvalue problem) has found a number of hydro-
dynamic instabilities (such as the Kelvin-Helmholtz insta-
bility, Rayleigh-Taylor instability and so on), it falls short
to explain some experiments. For example, in the plane
Couette flow, instabilities are experimentally observed for
large Reynolds numbers Re ' 350, whereas the normal
mode analyses predict stability for all Re.

The nonmodal approach has been gaining importance
recently, while it was already present since Kelvin [3]. Al-
gebraic instability of inviscid parallel shear flows was inves-
tigated by Ellingsen and Palm [4] and Landahl [5] in the
incompressible case, and by Hanifi and Henningson [6] in

the compressible case. These studies showed that three-
dimensional disturbances which are uniform in the stream-
wise direction grows linearly with time. The physical ex-
planation given by Landahl [5] (see also Ref. [2]) is so-called
the lift-up effect; since the normal velocity fluctuation ad-
vects the fluid elements across the mean shear layer, the
streamwise velocity fluctuation increases such that the mo-
mentum is conserved.

We can attribute this transient growth mathematically
to the non-selfadjoint property of the linearized fluid equa-
tion. The recent our studies [7, 8] are devoted to under-
standing various inviscid algebraic instabilities in terms of
degenerate spectra of non-selfadjoint operator. If we write
the equations for disturbances in an evolutionary form like
i∂tφ = Lφ (φ: disturbance), the operator L is generally
non-selfadjoint and, moreover, it is sometimes similar to
Jordan’s block as was pointed out by Arnold [9]. Recall
that the spectral theory for matrices is established by the
Jordan canonical form, where multiply-degenerated eigen-
values of a non-selfadjoint matrix may have nilpotent parts
called Jordan’s blocks (see, for example, Ref. [10]). If the
operator L has Jordan’s blocks, the resonance between
eigenmodes leads to algebraic growth of their amplitudes.
However, the fluid system has an infinite degree of free-
dom, and the disturbances in inviscid shear flow come with
difficulty of the continuous spectrum. While the spectral
theory for non-selfadjoint operators is still under develop-
ment in mathematics, its progress serves to the accurate
prediction of various hydrodynamic instabilities and will
be fruitful for an industrial purpose.

In this work, a considerable attention is paid to the ex-
istence of the continuous spectrum in disturbances. The
asymptotic behavior of the continuum mode was studied by
Eliassen et al. [11] and Case [12] for incompressible shear
flows. While the compressibility does not change their re-
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sults basically, it will be shown that some point spectra of
the acoustic modes can enter the range of the continuous
spectrum when the shear flow is supersonic. They consti-
tute another Jordan’s block, and the lift-up effect by the
acoustic mode elicits the linear growth of the continuum
modes locally at the resonant point (which coincides with
the so-called critical layer).

In the next section, we will present the evolution equa-
tion for three-dimensional disturbances in compressible shear
flow. Some preliminary consideration will be made in ref-
erence to the earlier works.

In Sec. 3, the spectrum of the evolution equation will
be investigated by the Laplace transform. Our analysis
reproduces the result of the normal mode analysis by Lees
and Lin [13] and Mack [14]. The existence of the continuous
spectrum, as well as the discrete acoustic modes, and the
possibility of their degeneracies will be highlighted. The
asymptotic behavior will be estimated in Sec. 4 by means
of the inverse Laplace transform. The algebraic instability
of the continuum modes occurs due to the resonance at the
degeneracy.

The degeneracy of point and continuous spectra is pos-
sible when the resonant point of the acoustic mode is a
generalized inflection point of the shear flow [13] (which
will be confirmed also in Sec. 3). The linear shear flow is
therefore a simplest example that seems to be algebraically
unstable. The stability of the plane Couette flow will be
considered in Sec. 5, where the algebraic growth of dis-
turbances indeed shows up due to the resonance between
acoustic modes and continuum mode.

2. Spectrum of disturbances in bounded
shear flow

The inviscid compressible fluids are governed by

∂tρ + ∇ · (ρv) = 0,(1)

∂tv + (v · ∇)v = −1
ρ
∇p,(2)

where ρ and v respectively denote mass density and flow
velocity. The pressure p is a given function of only ρ by as-
suming the isentropic fluid. We consider the linear stability
of a shear flow v = (0, vy(x), vz(x)) with an uniform density
ρ ≡ 1. Let the domain be infinite in the y and z directions
and bounded in the x direction by two walls at x = x0

and x = x1. To simplify the analysis, the shear profile is
assumed to be smooth and strictly increasing function;

v′y(x) > 0 and v′z(x) > 0 for all x ∈ [x0, x1].(3)

In this paper, the prime (′) always denotes the derivative of
the basic flow with respect to x. The linearization about
this basic flow gives an evolution equation for perturba-
tions ṽ and p̃. Due to the uniformity in the y and z direc-
tions, it is sufficient to consider a single Fourier component
ṽ, p̃ ∝ eikyy+ikzz, where the wavenumbers ky and kz are ar-
bitrary real numbers. Moreover, we perform the change of
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Figure 1: Spectrum of disturbances without shear flow

variables, ṽ = ṽx, ũ = iky ṽy + ikz ṽz and w̃ = iky ṽz − ikz ṽy,
which is so-called Squire’s transformation [15]. The lin-
earized fluid equations for functions w̃, ṽ, ũ, p̃ of (x, t) are
written in an evolutionary form

i∂t


w̃
ṽ
ũ
p̃

 =(4)


k · v (k × v′)x 0 0

0 k · v 0 −i∂x

0 k · v′ k · v ik2

0 −ic2
s∂x −ic2

s k · v




w̃
ṽ
ũ
p̃

 ,

where we have used the wavenumber vector k = (0, ky, kz)
in the y-z plane, the sound speed c2

s = ∂p/∂ρ|ρ=1 = const.,
k = (k2

y + k2
z)1/2 and (k × v′)x = kyv′

z(x) − kzv
′
y(x). The

boundary condition is given by

ṽ = 0 and ∂xp̃ = 0 at x = x0, x1.(5)

When the shear is absent everywhere v′(x) ≡ 0, the gen-
erator of the system is clearly selfadjoint. It is straightfor-
ward to show that infinite number of discrete eigenvalues
are determined by the dispersion relation (ω−k ·v)[(ω−k ·
v)2−(n2π2/(x1−x0)2+k2)c2

s] = 0 where n(= 0, 1, 2, . . . ) is
the quantum number labeling the structure in the x direc-
tion. The acoustic modes appear as an infinite number of
real point spectra σp = {ωn} ⊂ R as illustrated in Figure 1,
where {ωn}’s are distributed in the intervals [−∞,k·v−kcs]
and [k · v + kcs,∞]. There is also an infinite multiplicity
at ω = k · v.

In the presence of velocity shear, the generator becomes
non-selfadjoint and, moreover, the infinite multiplicity con-
verts into the continuous spectrum. From (4), we can see
that the interaction among ṽ, ũ and p̃ makes a closed sys-
tem, whereas the normal component of the vorticity fluc-
tuation w̃ is forced by ṽ alone. We will refer to the closed
system (ṽ, ũ, p̃) as Rayleigh part of (4), since it is essen-
tially equivalent to the problem of two-dimensional distur-
bances, namely, the compressible version of the Rayleigh
equation [12, 13]. As will be shown in the next section,
this Rayleigh part possesses a real continuous spectrum

σc := {k · v(x) ∈ R; x ∈ [x0, x1]},(6)

and also point spectra corresponding to the acoustic modes
and the vortical (Kelvin-Helmholtz) mode in the complex
frequency plane. The latter global eigenmodes may be ex-
ponentially unstable, Im(ωn) > 0, as shown by the normal
mode analysis [14, 16].
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The equation for w̃, called the (inviscid) Squire equa-
tion, has another continuous spectrum σc that is exactly
overlapping with the Rayleigh’s one. Since this continuum
mode represents the stretching of the normal component
of vorticity and its frequency is always neutral (σc ⊂ R),
Squire claimed that it is sufficient to study only the stabil-
ity of two-dimensional disturbances, i.e., the Rayleigh part.
This Squire’s theorem is correct within the framework of
the normal mode analysis.

However, Arnold [9] pointed out the resemblance of the
formal structure of the Rayleigh-Squire equation to the
Jordan’s block. He inferred the possibility of the linear
increase of vortex fluctuation w̃ with time even in the ab-
sence of exponential instability. For inviscid incompress-
ible shear flows, this algebraic instability was confirmed
by Ellingsen and Palm [4], who considered an unidirec-
tional shear flow, say v = (0, vy(x), 0), and a special class
of disturbances that are uniform in the streamwise direc-
tion, ky = 0, kz ̸= 0. Since k · v ≡ 0 and (k × v)x ̸= 0
in this special case, it is easily verified that a purely linear
growth of w̃ occurs at the zero eigenfrequency σc = {0}
(the lift-up effect [5]).

The difficulty of the continuous spectrum arises when
general disturbances are taken into account. The result of
the initial value problem, given by Eliassen et al. [11] and
Case [12], indicates that the normal component of the ve-
locity fluctuation ṽ damps at least as fast as t−2 for t → ∞
due to the phase mixing effect of the continuous spectrum.
This short-lived ṽ cannot fully elicit the linear growth of
the Squire part. Landahl [5] considered a localized initial
disturbance and showed that its energy grows linearly with
time, where the disturbed region increases linearly in time
while the amplitude of w̃ saturates.

Now, let us turn to the compressible case (4). Hanifi and
Henningson [6] showed that the algebraically unstable so-
lution still exists for the same incompressible disturbances
as Ref. [4]. In this work, we propose another possibility of
algebraic instability that occurs in general disturbances. It
will be shown that the point spectra of the acoustic modes
may overlap the continuous spectrum when the variation
of the shear flow exceeds the sound speed cs (the width of
σc reaches the fundamental mode ω0 = kcs). The acoustic
mode is, then, expected to drive new algebraic instabil-
ity of the continuum modes in the Squire part w̃ unless
(k × v′)x = 0.

A naive picture of wave propagation may deny the ex-
istence of such an eigenmode, because an eigenmode, rep-
resenting a standing wave created by the interference of
acoustic waves reflected by the walls, must persist against
the supersonic flow. Indeed, the eikonal analysis (see Ap-
pendix A) cannot explain the creation of such standing
waves. However, if the corresponding critical point occurs
at a generalized inflection point of the shear flow (as dis-
cussed by Lees and Lin [13]), the tunneling effect allows
propagation of acoustic waves across the supersonic flow,
and creates eigenmodes in the range of the continuous spec-
trum. In particular, such eigenmodes are abundant in lin-

ear shear flow, that is, the plane Couette flow. This fact
will be confirmed in the next section.

3. Existence of neutral acoustic modes
in continuous spectrum

The stability of the inviscid compressible shear flow was
studied by Lees and Lin [13], Mack [14] and the subse-
quent works (see Ref. [16]). They investigated exponential
instabilities of the acoustic modes by solving the eigenvalue
problem of (4). In this section, we will take the nonmodal
approach by exploiting the Laplace transform analysis in
order to deal with the continuous spectrum and possible
algebraic (or non-exponential) behavior.

The Laplace transform of p̃(x, t) is given by

P (x,Ω) =
∫ ∞

0

p̃(x, t)eiΩtdt,(7)

for Ω ∈ C with sufficiently large Im(Ω). Similarly, we trans-
form ṽ(x, t), ũ(x, t), w̃(x, t) into V (x,Ω), U(x, Ω),W (x,Ω).
The evolution equation (4) is then transformed into

(Ω − k · v)P + c2
si(∂xV + U) = i p̃|t=0 ,(8)

(Ω − k · v)V + i∂xP = i ṽ|t=0 ,(9)
(Ω − k · v)U − k · v′V − ik2P = i ũ|t=0 ,(10)

(Ω − k · v)W − (k × v′)xV = i w̃|t=0 ,(11)

where the right hand sides represent the initial values,
p̃|t=0 = p̃(x, 0).

The Rayleigh part, (8) - (10), should be solved simulta-
neously, and afterward W will be obtained from (11). By
eliminating V and U from (8) - (10), we get

∂2
xP + 2

M ′

Ω̂ − M
∂xP + k2[(Ω̂ − M)2 − 1]P(12)

= i
k

cs
(Ω̂ − M) p̃|t=0 + (∂xṽ + ũ)|t=0 + 2

M ′

Ω̂ − M
ṽ|t=0 ,

where Ω̂ = Ω/kcs and M(x) = k · v(x)/kcs respectively
represent the Mach numbers of the phase speed and the
basic flow (in the direction parallel to k). This inhomo-
geneous ordinary differential equation for P (x,Ω) is solved
under the Neumann boundary condition at x = x0, x1.

For fixed Ω ∈ C, the solution of (12) is generally repre-
sented by

P (x,Ω) = C†(Ω)P †(x,Ω) + C‡(Ω)P ‡(x,Ω)(13)
+P ♯(x,Ω),

where P †(x,Ω) and P ‡(x,Ω) denote the two linearly inde-
pendent homogeneous solutions and the last term P ♯(x,Ω)
denotes a particular solution to the inhomogeneous terms
in the right hand side of (12). The coefficients C†(Ω) and
C‡(Ω) must be determined such that the boundary con-
dition ∂xP (x0, Ω) = ∂xP (x1, Ω) = 0 holds, which results
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in (
C†(Ω)
C‡(Ω)

)
=

1
D(Ω)

(14)

×
(
−∂xP ‡(x1, Ω) ∂xP ‡(x0, Ω)
∂xP †(x1, Ω) −∂xP †(x0,Ω)

)(
∂xP ♯(x0,Ω)
∂xP ♯(x1,Ω)

)
,

with

D(Ω) := ∂xP †(x0, Ω)∂xP ‡(x1, Ω)(15)
−∂xP ‡(x0,Ω)∂xP †(x1, Ω).

The set of Ω at which P (x,Ω) is not regular is the spec-
trum. If D(Ω) becomes zero at, say, Ω = ω0 ∈ C, P (x,Ω)
has an isolated pole at Ω = ω0. Such ω0 is classified into
point spectra, and hence D(Ω) = 0 plays the role of the
dispersion relation. The acoustic modes and the Kelvin-
Helmholtz modes belong to this class.

The Rayleigh part (ṽ, ũ, p̃) has the continuous spectrum
σc, defined in (6), associated with the singularity 1/(Ω̂−M)
in (12). For each ω ∈ σc, there exists a resonant point
xc(ω) ∈ [x0, x1] that satisfies ω−k ·v(xc) = 0. Indeed, the
solution P (x,Ω) has a logarithmic singularity at x = xc(ω)
when Ω → ω ∈ σc.

The well-known Frobenius’ method [17] constructs the
homogeneous solutions in series near the singularity. Let us
define the reciprocal function of Ω = k · v(Xc) as Xc(Ω) ∈
C. Note that Xc(Ω) is the analytic continuation of xc(ω)
and Xc → xc as Ω → ω. We write the Taylor expansion of
M(x) around Xc as

M(x) = Ω̂ + M ′
cξ + M ′′

c

ξ2

2
+ M ′′′

c

ξ3

6
+ . . . ,(16)

where ξ = x−Xc and the derivatives are evaluated at Xc,
i.e., M ′

c = M ′(Xc). Substituting this expression, one of the
homogeneous solutions is found to be

P †(x, Ω) = ξ3 +
3
4

M ′′
c

M ′
c

ξ4(17)

+
1
10

(
3
2

M ′′2
c

M ′2
c

+ 2
M ′′′

c

M ′
c

+ k2

)
ξ5 + O(|ξ|6).

The other homogeneous solution includes a logarithmic sin-
gularity,

P ‡(x,Ω) = P̆ ‡(x,Ω) + A†(Ω)P †(x,Ω)Log ξ,(18)

where

P̆ ‡(x, Ω) = 1 − k2

2
ξ2 + O(|ξ|3),(19)

A†(Ω) = −k2M ′′
c

3M ′
c

.(20)

Notice that, if A†(Ω) = 0 (or M ′′
c = 0), the logarithmic

term in P ‡(x,Ω) vanishes and Xc is the apparent singular-
ity [17].

The inhomogeneous terms on the right hand side of (12)
requires careful consideration since they also depend on

Ω in a complicated manner. By expanding the inhomoge-
neous terms in series and applying Frobenius’s method, the
particular solution is solved as

P ♯(x,Ω) = P̆ ♯(x,Ω) + B†(Ω)P †(x,Ω)Log ξ,(21)

where

P̆ ♯(x,Ω) = ṽ| t=0
x=Xc

ξ +
1
2

(∂xṽ − ũ)| t=0
x=Xc

ξ2(22)

+O(|ξ|3),

B†(Ω) =
1
3

(
− i

kM ′
c

cs
p̃ + ∂xũ − M ′′

c

M ′
c

ũ(23)

+k2ṽ

)∣∣∣∣
t=0

x=Xc

.

The logarithmic function Log (x − Xc) has a branch cut
on a Riemannian surface. By assuming k · v′(xc) > 0, it
follows from Ω = k ·v(Xc) that, when Ω approaches ω ∈ σc

from above or below Ω → ω ± i0, then Xc → xc ± i0 and

Log (x − Xc) → log |x − xc| ∓ iπY (xc − x),(24)

where Y (x) denotes the Heaviside function.
This branch cut of the solution P (x, Ω) proves the ex-

istence of the continuous spectrum σc. The inverse Laplace
transform whose integral path encircles the continuous spec-
trum in the counterclockwise direction can be identified as
the inverse Fourier transform [8],

− 1
2π

∮
P (x,Ω)e−iΩtdΩ =

∫
σc

ˆ̃p(x, ω)e−iωtdω.(25)

Therefore, the continuum mode is represented by the Fourier
integral of the singular eigenfunctions

ˆ̃p(x, ω) :=
1
2π

[P (x, ω + i0) − P (x, ω − i0)],(26)

= c†(ω)P †(x, ω) + c‡(ω)
[
P̆ ‡(x, ω)

+A†(ω)P †(x, ω) log |x − xc|
]

+c♯(ω)P †(x, ω)Y (xc − x),

where

c†(ω) :=
1
2π

[C†(ω + i0) − C†(ω − i0)],(27)

c‡(ω) :=
1
2π

[C‡(ω + i0) − C‡(ω − i0)],(28)

c♯(ω) := −1
2
[C‡(ω + i0) + C‡(ω − i0)]iA†(ω)(29)

−iB†(ω).

It is important to note that the Heaviside function yields
the third independent solution in (26). Due to this addi-
tional degree of freedom at the singularity, one can com-
pute the singular eigenfunction for every ω ∈ σc by adjust-
ing three coefficients, c‡(ω), c‡(ω) and c♯(ω), so that the
boundary condition holds.
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The existence of point spectra (neutral waves) degener-
ated in the continuous spectrum is checked by observing
D(Ω) on σc. The dispersion relation, D(Ω) = 0, has also
branch cut on ω ∈ σc,

D(ω ± i0) =(30)
Dr(ω) ± iπA†(ω)∂xP †(x1, ω)∂xP †(x0, ω),

where Dr(ω) is a real function of ω. Since the second term
is a pure imaginary function of ω due to the imaginary
unit i, both D(ω + i0) and D(ω − i0) cannot vanish for
real ω unless A†(ω) = 0 (The special case occurs if the
regular solution P †(x, ω) happens to satisfy both boundary
conditions; ∂xP †(x1, ω) = 0 and ∂xP †(x0, ω) = 0. But, it
seems to be very rare). For a point spectrum, say ω0, to
occur in the continuous spectrum, the condition A†(ω0) = 0
must be satisfied, namely, the corresponding resonant point
xc must be an inflection point of the basic flow along the
wavevector k (so-called generalized inflection point);

k · v′′(xc) = 0.(31)

4. Asymptotic behavior

Once we get the solution P (x, Ω) in the form of (13), the
other dependent variables are derived immediately by

V (x,Ω) = −i
∂xP − ṽ|t=0

Ω − k · v
,(32)

U(x,Ω) =
k · v′V + ik2P + i ũ|t=0

Ω − k · v
,(33)

W (x,Ω) =
(k × v′)xV + i w̃|t=0

Ω − k · v
.(34)

If there is a point spectrum ω0 ∈ σp which appears as a
pole 1/(Ω − ω0) in C†(Ω) and C‡(Ω), the inverse Laplace
transform gives the exponential behavior (e−iω0t) of the
corresponding eigenfunction as usual.

The initial value problem is completed by taking account
of the continuous spectrum. Let us focus on the behavior
(25) stemming from the continuous spectrum. The asymp-
totic behavior is roughly estimated by the highest order of
singularity in P (x,Ω). We have seen that the singularity of
P (x,Ω) on σc is not so strong and the phase mixing results
in damping of the continuum mode;

P (x, Ω) ∼ ξ3Log ξ ⇒ p̃(x, t) ∼ t−4e−ik·v(x)t.(35)

By substituting (13) into (32) and (33), some eliminations
of terms occur in the lowest order of ξ and the division by
Ω − k · v does not create the singularity of 1/ξ in V (x,Ω)
and U(x, Ω). The asymptotic behavior is estimated as

V (x, Ω) ∼ ξLog ξ ⇒ ṽ(x, t) ∼ t−2e−ik·v(x)t,(36)
U(x, Ω) ∼ Log ξ ⇒ ũ(x, t) ∼ t−1e−ik·v(x)t.(37)

The algebraic power of the damping (36) is same as the
incompressible case studied by Eliassen et al. [11]. On the
other hand, W (x,Ω) of (34) includes the singularity of 1/ξ,

which is associated with another continuous spectrum re-
siding in the Squire part. This singularity yields the vorti-
cal continuum mode that never damps;

W (x,Ω) ∼ 1
ξ

⇒ w̃(x, t) ∼ w̃(x, 0)e−ik·v(x)t,(38)

where we have also indicated the amplitude since it is easily
obtained from the inverse Laplace transform of i w̃|t=0 /(Ω−
k · v). Although there are two kinds of continuous spectra
that are completely overlapping with each other, no alge-
braic growth occurs due to the phase mixing damping of
ṽ(x, t).

However, the estimation of the asymptotic behavior will
be modified when some point spectra exist inside the con-
tinuous spectrum. As was shown in the previous section,
such a degenerated point spectrum ω0 ∈ σc can occur if the
condition (31) is satisfied at xc(ω0) and both P †(x, ω0) and
P ‡(x, ω0) are regular (the apparent singularity). While the
logarithmic singularity still exists in P ♯(x, ω0±i0), the pole
C†(Ω), C‡(Ω) ∝ 1/(Ω − ω0) brings about a neutral oscilla-
tion e−iω0t in the Rayleigh part (ṽ, ũ, p̃). The continuum
mode in the Squire part is now forced by this eigenmode.
Indeed, W (x,Ω) in (34) includes the following strong sin-
gularity,

W (x,Ω) ∼ 1
(Ω − ω0)(Ω − k · v)

(39)

⇒ w̃(x, t) ∼ e−iω0t − e−ik·v(x)t

ω0 − k · v(x)
,

unless (k×v′)x(xc) = 0 at the resonant point xc(ω0). This
shows that w̃(x, t) grows linearly only at xc(ω0), where the
continuum mode is locally forced by the neutral wave in
analogy with the Jordan block.

5. Stability of plane Couette flow
(Linear shear flow)

In order to demonstrate the algebraic instability caused by
neutral acoustic modes, the plane Couette flow is a simplest
example, where the shear profile is linear vy(x), vz(x) ∝ x
and hence the condition (31) is satisfied everywhere.

In this section, we regard the domain as [x0, x1] = [−1, 1]
and introduce a parameter α ∈ R by

M(x) =
k · v(x)

kcs
= αx,(40)

where the Galilei transformation of the coordinates allows
us to assume M(0) = 0 without loss of generality. The
parameter α basically measures the shear of the flow along
k. In this case, the continuous spectrum extends over

σc = {ω ∈ R;−α ≤ ω̂ ≤ α},(41)

where ω̂ = ω/kcs, and the resonant point is simply xc =
ω̂/α. The calculations in the previous sections are greatly
simplified by the fact that A†(Ω) ≡ 0. The two homoge-
neous solutions, P †(x,Ω) and P ‡(x,Ω), then turn out to
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Figure 2: Spectrum of disturbances in shear flow.

be regular, whereas the logarithmic singularity still exists
in the particular solution P ♯(x,Ω).

Let us investigate the existence of point spectra on the
real axis ω = Re(Ω). Recall that P †(x, ω) and P ‡(x, ω) are
the solutions of the homogeneous part of the equation (12),
which is now written in the Sturm-Liouville type,

∂x

[
1

(ω̂ − αx)2
∂xP

]
− k2

[
1

(ω̂ − αx)2
− 1

]
P(42)

= 0,

where the resonant point xc = ω̂/α is the apparent singu-
larity. If some linear combination of P †(x, ω) and P ‡(x, ω)
satisfies the boundary condition for a certain value ω0 ∈ R,
then it is an eigenvalue D(ωn) = 0.

We can apply the Sturm’s oscillation theorem [17] to
(42). For ω ∈ R being sufficiently apart from the continu-
ous spectrum, the point xc does not appear in the domain
[−1, 1] and the spatial structures of P † and P ‡ are oscil-
latory. The Sturm theorem prove the existence of infinite
number of point spectra σp = {±ωn} accumulating to the
infinity |ωn| → ∞ (see Figure 2a). In the case of α = 0,
these ωn’s are given by

ω̂n =
ωn

kcs
=

√
n2π2

4k2
+ 1 (n = 0, 1, 2, . . . ),(43)

representing the acoustic modes.
Some of these point spectra may degenerate into the the

continuous spectrum when the shear gradient is sufficiently
steep. When α increases and exceeds 1, the continuous
spectrum expands and eventually overlaps the point spec-
tra, ω0, ω1, . . . , as illustrated in Figure 2b. The acous-
tic modes corresponding to such degenerated point spectra
have the resonant point xc in the domain. The schematic
view of such a mode P (x, ωn) is illustrated in Figure 3.
The two positions x±

s = xc ± 1/α are called sonic points.
The mode structure becomes evanescent (non-oscillatory)
in the interval [x−

s , x+
s ], in which the phase speed of the

wave is subsonic in comparison with the basic flow.
One might think that this degeneracy of the point-continuous

spectra contradicts the physical picture of the eikonal ap-
proximation (k → ∞), in which the ray of any acous-
tic wave must be reflected at the sonic points (see Ap-
pendix A). However, if k is finite, the wave can penetrate
the evanescent region like the tunneling effect.

oscillatory oscillatoryexponential

−1 1

x

xc x
+

s
x
−

s

1/α 1/α

Figure 3: Schematic view of the acoustic mode P (x, ωn)
with the eigenvalue ωn degenerated into the continuous
spectrum σc.

We can show this degeneracy by making use of the Sturm
theorem again. If the two linearly independent solutions,
P † and P ‡, are given for some α and k, they have a scaling
symmetry

P †,‡(x, ω;α, k) = P †,‡(x/s, ω; sα, sk),(44)

for arbitrary number s ∈ R, which follows from the same
symmetry of the equation (42). Let us fix ω ∈ σc such
that the point xc appears in the domain. By increasing α
and k simultaneously (s ↗ ∞), the spatial structures of
the solutions will uniformly shrink. Since the solutions are
oscillatory in the outside of [x−

s , x+
s ], the numbers of their

nodes in the domain will monotonically increase. Thus, in
the same manner as the Sturm’s oscillation theorem, we get
an infinite number of characteristic values of (α, k) at which
a linear combination of the solutions satisfies the boundary
condition and the prescribed ω becomes the eigenvalue of
(42).

We solved the eigenvalue problem (42) by the numerical
integration. In Figure 4, the real and imaginary parts of
the (normalized) eigenvalues ω̂n are shown with respect to
the flow shear α for fixed k = 1. There are some exponen-
tial instabilities for large α, which are essentially variants
of the unstable acoustic modes found by Mack [14] in the
boundary layer. It is remarkable that these unstable modes
remain present in the plane Couette flow where the Kelvin-
Helmholtz instability (or the first mode called by Mack) is
definitely absent. Our result shows that the linear shear
flow can destabilize the neutrally stable eigenmodes by in-
ducing the modal coupling among them.

We have drawn a dotted line Re(ω̂) = α in Figure 4 to
indicate that the right side of this line is covered by the
continuous spectrum σc. The eigenvalues {ω̂n} of the neu-
tral acoustic modes indeed enter the continuous spectrum
one by one as α increases. We have shown that these neu-
tral eigenmodes respectively excite the vortical continuum
modes in the Squire part locally at their resonant points
xc(ωn).

The exponential instability first emerges at a critical
Mach number αe (αe ≃ 4.2 for k = 1 as shown in Fig-
ure 4). Below the critical value αe, the degeneracy of ω0
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Figure 4: Eigenvalue diagram ω̂n −α of acoustic modes for
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Figure 5: Critical values of α [defined by (40)] with respect
to wavenumber k; the algebraic and exponential instabili-
ties emerge respectively at αa and αe.

into the continuous spectrum triggers the algebraic insta-
bility for α greater than αa (αa ≃ 1.17 for k = 1). We
numerically calculated αa and αe for various k, which are
plotted in Figure 5. This result shows that the values of
αa and αe respectively approach 0.5 and 1 as k → ∞. It
follows that the algebraic instability is dominant in plane
Couette flows for 0.5 < α < 1.

6. Summary

The spectrum of disturbances in a bounded shear flow
is composed of two continuous spectra (vortical contin-
uum modes) and infinite number of point spectra (acoustic
modes). The acoustic modes can interact with the con-
tinuum modes when the shear flow is supersonic and the
point spectra of the acoustic modes are degenerated into
the continuous spectrum. The resonant interaction among
these spectra is due to the non-selfadjoint property of the
linearized system. We have found an algebraic instabil-
ity arising from this resonant interaction by means of the
Laplace transform approach.

This degeneracy occurs only when the second derivative
of the flow profile along the wavenumber vector is zero,
k·v′′(xc) = 0, at the resonant point xc (or the critical layer)
of the acoustic mode, as was already proven by Lees and
Lin [13]. We showed that the degeneracy between point
and continuous spectra is analogous to the Jordan block
and the resonance between them causes algebraic growth
of the continuum mode (which corresponds to the normal
vorticity w̃ in the Squire part) that is spatially localized to
xc and temporally in proportion to time.

The plane Couette flow is a simplest example, where
the condition k · v′′(xc) = 0 is satisfied everywhere for
any k. The existence of the degenerated point spectra is
confirmed both analytically and numerically. While some
exponentially unstable modes arise from the coupling be-
tween point spectra, the algebraic instability occurs even in
the subcritical cases of the exponential instability. In par-
ticular, the algebraic instability is dominant in a bounded
channel [−1, 1] when the variation of velocity shear nor-
malized by the sound speed, i.e., α in (40), is between 0.5
and 1.
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A. Ray tracing of acoustic waves

We consider the propagation of the acoustic waves in a
shear flow v(x) = (0, vy(x), vz(x)). Suppose the wavenum-
ber k = (kz, ky, kz) is sufficiently large compared to the
gradient of the ambient shear (|k| ≫ |v′(x)|). We may as-
sume, due to the eikonal approximation, that the acous-
tic waves locally obey the dispersion relation ω(x,k) =
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Figure 6: Rays of acoustic waves.

k ·v(x)± kcs, where k = |k|, at each position x = (x, y, z).
The rays of the acoustic waves are governed by the eikonal
equations for x(t) and k(t),

∂tx =
∂ω

∂k
=

 0
vy(x)
vz(x)

 ±

 kx

ky

kz

 cs

k
,(45)

∂tk = −∂ω

∂x
=

 −k · v′(x)
0
0

 .(46)

For simplicity, let us assume linear shear flow. Since
the latter equation gives ky = const. and kz = const., we
may introduce a constant α by k · v(x)/k0cs = αx where
k0 = (k2

y + k2
z)1/2. Then, the equations are solved as

kx(t) = kx(0) − k0csαt,(47)

x(t) = ±k(0) − k(t)
k0α

+ x(0) = ∓k(t)
k0α

+ xc,(48)

where k(t) =
√

kx(t)2 + k2
y + k2

z and xc = ω/k0csα. Note
that ω = αx(0) ± k(0)cs is a conserved quantity along the
ray. When t = kx(0)/k0csα, the wavenumber k(t) takes a
minimum k0. For fixed ky, kz and ω, one can locate three
points

xc −
1
α

, xc, xc +
1
α

,(49)

on the x axis. Some orbits of x(t) with different initial data
x(0) and kx(0) are illustrated in Figure 6. One can see that
all rays of acoustic waves are reflected at x = xc ± α−1

and cannot propagate the interval [xc − α−1, xc + α−1],
that is, cutoff or evanescent region. The eikonal approach,
therefore, cannot construct any global eigenmode beyond
this interval.
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