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Abstract. In this paper, a problem of integrating density functions is considered. First, the Breg-
man divergence in the space of positive finite measures is introduced, and properties of consistent
subspaces and well-behaved parametric models associated with the Bregman divergence is inves-
tigated. Based on those results, a natural method for integration of estimates from the Bregman
divergence is derived.
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1. Introduction

In recent years, the Bregman divergence receives a consid-
erable attention in machine learning and statistics [4, 6, 8,
10, 12, 13]. In the machine learning community, the Breg-
man divergence is widely noticed as a class of well-behaved
surrogate loss functions, and various effective algorithms
are proposed based on it. In the statistical community, its
robust properties are intensively investigated, and various
probability estimation methods under heavy contamination
are proposed. Thus we have a number of methods for find-
ing a single estimate based on the Bregman divergence.

When we have various estimates from different data sets,
we sometimes need to integrate them appropriately. For
example, if we have too many data to train our probability
models, we take a “divide and conquer” strategy in order
to reduce computational burden and time. We partition
data into small portions, train multiple models with dif-
ferent portions of data, and concatenate trained models in
some way. Another example is a case of aggregating mul-
tiple opinions of experts. Assume that experts are trained
by their individual experiences and express their opinions
in the form of probability distributions. To make the fi-
nal decision, we have to aggregate the experts’ distribu-
tions in some way. Thus, integration of probabilities is not
a strange or unusual situation in statistical inference and
machine learning [2, 7, 9, 11].

In this paper, we discuss integration of multiple den-
sity functions of positive finite measures estimated from
the Bregman divergence. We consider the case that each
density function is estimated based on a different and inde-
pendent data set. By investigating properties of the Breg-
man divergence and associated models, we try to derive a
natural way of integrating multiple density functions. The
rest of paper is organized as follows. In section 2, we give
a definition of the Bregman divergence in a space of pos-
itive finite measures in two different ways, and in section

3, we define three subspaces in which consistent estimation
is guaranteed based on the property of the Bregman diver-
gence. In section 4, a parametric model associated with
the Bregman divergence is introduced, and its property is
investigated in terms of so-called Pythagorean relation. In
section 5, two mixtures of density functions are considered
and their characterization is discussed. Our main results
for integrating density functions are given in section 6, and
section 7 is devoted for concluding remarks.

2. Bregman divergence

We start from a formal definition of the Bregman diver-
gence. Let U be a monotonically increasing convex func-
tion on R, and the derivative of U is denoted by u. Let Ξ
be the Legendre transform of U ,

(1) Ξ(ζ) = sup
z∈R

zζ − U(z),

and the derivative of Ξ is denoted by ξ.
In this paper, a transformation of f by T is called T -

representation of f , and we mainly consider following two
representations,

m-representation: f = id(f),(2)

u-representation: f̆ = ξ(f),(3)

where id is the identity function. Using both representa-
tions, f is written in two different forms as

f = id(f) = u(f̆).

Note that the m-representation is a trivial transformation,
however, a pair of the m- and u-representations plays an
important role in order to understand dualistic properties
of the Bregman divergence as shown in later.

Now we give a definition of the Bregman divergence.
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Definition 1. A quadruplet (U,Ξ, u, ξ) defines the Breg-
man divergence between points f and g as

(4) dU (f, g) = Ξ(f) + U(ğ) − fğ.

Observing
ξ(ζ) = u−1(ζ)

from its definition and

U(z′) − U(z) ≥ u(z)(z′ − z)

from the convexity of U , the positivity of the Bregman
divergence

dU (f, g) = U(ξ(g)) − U(ξ(f)) − f (ξ(g) − ξ(f)) ≥ 0

is easily confirmed.
In the rest of the paper, we consider a space of density

functions of positive finite measures on X ⊂ Rm under a
carrier measure µ, that is defined as

(5) M =
{

m(x)
∣∣∣ m : X → R+,

∫
X

m(x)dµ(x) < ∞
}

.

For descriptive simplicity, we introduce a notation for the
inner product of f and g under µ as

(6)
∫

f(x)g(x) dµ(x) = ⟨f, g⟩ ,

and also we abusively use it as

(7)
∫

f(x) dµ(x) = ⟨f, 1⟩ = ⟨f⟩ .

For example, M is simply written as

(8) M =
{

m(x)
∣∣∣ m : X → R+, ⟨m⟩ < ∞

}
.

Let P and Q be positive measures on X , and let p and q
be density functions of P and Q, respectively. To measure
the discrepancy between P and Q, we define the Bregman
divergence on M×M as follows.
Definition 2 (Bregman divergence). For p, q ∈ M, the
Bregman divergence is defined by

DU (p, q) =
∫

dU (p(x), q(x)) dµ(x)(9)

= ⟨dU (p, q)⟩ .

From a viewpoint of information theory, we can give an-
other definition of the Bregman divergence. First, we in-
troduce an extended entropy measure as follows [10].
Definition 3 (Bregman entropy). For p, q ∈ M, U -cross-
entropy is defined by

HU (p, q) = ⟨U (q̆)⟩ − ⟨p, q̆⟩(10)
= ⟨U (ξ(q))⟩ − ⟨p, ξ(q)⟩ .

Also U -entropy (U -auto-entropy) is defined by

HU (p) = HU (p, p) = ⟨U (p̆)⟩ − ⟨p, p̆⟩ .(11)

Using the above extended entropies, the Bregman diver-
gence is written as the difference between those entropies.

Definition 4 (Bregman divergence). The Bregman diver-
gence between p and q in M is defined by

(12) DU (p, q) = HU (p, q) − HU (p).

Both of Eqs. (9) and (12) give the same definition

(13) DU (p, q) = ⟨U(q̆)⟩ − ⟨U(p̆)⟩ − ⟨p, q̆ − p̆⟩ ,

and it is easily observed that

DU (p, q) = 0

holds if and only if p(x) = q(x) a.s.

Example 1. The followings are important examples of the
convex function U .

• exponential (Kullback-Leibler divergence)

U(z) = exp(z), Ξ(ζ) = ζ (log(ζ) − 1) ,

u(z) = exp(z), ξ(ζ) = log(ζ).

• β-type (β-divergence)

U(z) =
1

β + 1
(βz + 1)

β+1
β , Ξ(ζ) =

ζβ+1

β(β + 1)
− ζ

β
,

u(z) = (βz + 1)
1
β , ξ(ζ) =

ζβ − 1
β

.

• η-type (η-divergence)

U(z) = (1 − η) exp(z) + ηz,

Ξ(ζ) = (ζ − η)
(

log
ζ − η

1 − η
− 1

)
,

u(z) = (1 − η) exp(z) + η,

ξ(ζ) = log
ζ − η

1 − η
.

3. Consistent Subspaces

So far, the Bregman divergence is defined in the space of
the positive measures, however, we sometimes need to con-
sider certain constrained subspaces of the positive measures
in the context of statistical inference or machine learning.
This is because an appropriate constraint helps us to con-
struct a simple and effective algorithm. A typical example
is the AdaBoost algorithm [5, 10], in which a combined
classifier is searched in a specific subspace described with a
moment matching condition under empirical distribution,
which will be introduced later.

A fundamental subspace of M is a space of probability
densities defined as

(14) P =
{

p(x)
∣∣∣ p ∈ M, ⟨p⟩ = 1

}
,
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where the total mass of the measure is constrained to unity.
This subspace is referred as a normalized subspace or a
statistical subspace.

In addition, we consider the following two different con-
strained subspaces. One is called a moment matching sub-
space [10, 13], in which the inner product between the u-
representation of the measure and a certain fixed measure
p0 is constant,

(15) Q =
{

p(x)
∣∣∣ p ∈ M, ⟨p0, p̆⟩ = const.

}
,

where const. is typically set to 0, and the reference point
p0 is indicated as Q(p0) if necessary. The other is called a
constant volume subspace [13], in which the volume of the
u-representation measured with respect to U is constant,

(16) R =
{

p(x)
∣∣∣ p ∈ M, ⟨U(p̆)⟩ = const.

}
.

In the following, the closest point from a point p in terms
of DU (p, ·) is called U -estimate of p. The U -estimate in the
subspace Q or R has the following good property [13].
Lemma 1. Let p be in M and q be the U -estimate of p in
Q(p) or R, that is, the minimizer of the Bregman diver-
gence,

(17) q = arg min
r∈Q(p)

DU (p, r) or q = arg min
r∈R

DU (p, r).

Then q satisfies

(18)
q

⟨q⟩
=

p

⟨p⟩
.

Proof. For q ∈ Q(p), the variation in DU (p, q) with respect
to q under the constraint

⟨p, q̆⟩ = const.

is given by

δDU (p, q) − λδ ⟨p, q̆⟩ = ⟨u(q̆), δq̆⟩ − ⟨p, δq̆⟩ − λ⟨p, δq̆⟩
= ⟨q − (1 + λ)p, δq̆⟩
= 0,

that means
q = (1 + λ)p.

For q ∈ R, the variation in DU (p, q) with respect to q
under the constraint

⟨U(q̆)⟩ = const.

is given by

δDU (p, q) − λδ ⟨U(q̆)⟩ = ⟨u(q̆), δq̆⟩ − ⟨p, δq̆⟩ − λ⟨u(q̆), δq̆⟩
= ⟨(1 − λ)q − p, δq̆⟩
= 0,

that means
q = p/(1 − λ).

Due to the consistency of the Bregman divergence, the
U -estimate of p ∈ P in P is p itself, that is,

(19) p = arg min
r∈P

DU (p, r),

and this is a suitable property of the U -estimate in P for
the statistical inference. The above lemma claims a kind of
consistency of the U -estimate in Q and R up to constant
factor, and supports for constructing algorithms in those
restricted subspaces.

4. Pythagorean Relation and u-Model

By considering the relationship between the m- and u-
representations, we can construct an important model for
U -estimation. First, we show an essential theorem obtained
from duality of m- and u-representations [4, 10].
Theorem 1 (Pythagorean relation). Let p, q and r be in
M. If p − q and r̆ − q̆ (i.e. ξ(r) − ξ(q)) are orthogonal

(20) ⟨p − q, r̆ − q̆⟩ = 0,

then the Pythagorean relation

(21) DU (p, r) = DU (p, q) + DU (q, r)

holds.
The statement is easily obtained by calculating DU (p, r)−

DU (p, q) − DU (q, r) with Eq. (13), and the complete proof
can be found in [4, 10].

This theorem shows two important observations. One is
that flat subspaces in terms of the m- and u-representations
play an key role in geometry associated with the Bregman
divergence. The flat subspaces are defined by
m-flat subspace: Mm

(22) p, q ∈ Mm ⇒ αp + (1 − α)q ∈ Mm, 0 < ∀α < 1,

u-flat subspace: Mu

(23) p, q ∈ Mu ⇒ u(αp̆ + (1 − α)q̆) ∈ Mu, 0 < ∀α < 1.

The other is that the U -estimate q is regarded as an
orthogonal projection with the m-representation from p to
the u-flat subspace. Geometrical structures of estimation
with the Bregman divergence are intensively discussed in
[4, 10].

We can also introduce a parametric model which suits
for statistical inference as follows [4, 8].
Theorem 2 (u-model). Let t(x) be a d-dimensional vector-
valued function on X , and consider an equal mean subspace
in P

(24) Γτ =
{

r(x)
∣∣∣ r ∈ P, Er[t] = ⟨r, t⟩ = τ

}
.

Let p be the maximum U -entropy function in Γτ , which is
defined by

(25) p = arg max
r∈Γτ

HU (r),
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then p is found in the u-model defined by

(26) p(x) = u(θT t(x) − b(θ)),

where θ is a parameter vector in Rd and b is a normaliza-
tion constant to impose p ∈ P.

Note that if f is a probability density function, ⟨f, g⟩
becomes the expectation of g, which is denoted by Ef [g] in
some cases.

Proof. The variation in HU (p) under the constraint

⟨p, t⟩ = τ and ⟨p⟩ = 1

is given by

δHU (p) + θT δ ⟨p, t⟩ + λδ ⟨p⟩
= ⟨u(p̆), δp̆⟩ − ⟨p, δp̆⟩ − ⟨δp, p̆⟩ + θT ⟨δp, t⟩ + λ⟨δp⟩

=
⟨
δp,−p̆ + θT t + λ

⟩
= 0,

where θ ∈ Rd and λ ∈ R, and we know p has the form of

(27) p̆ = θT t(x) + λ.

Depending on θ, λ is chosen so as to satisfy the normalized
condition of p ∈ P, and we obtain the u-model by rewriting
λ = −b(θ).

While this normalized u-model is suitable for conven-
tional statistical inference, we can additionally consider dif-
ferent conditions for the bias function b(θ) of the u-model

(28) U =
{

q(x) = u(θT t(x) − b(θ)), θ ∈ Rd
}

based on consistent subspaces Q and R.
For q ∈ U , the derivative of b has to satisfy following

conditions depending on constraints, respectively.
normalized u-model: U ∩ P

(29)
∂b(θ)
∂θ

=
⟨u′(q̆), t⟩
⟨u′(q̆)⟩

,

where u′ is the derivative of u.
moment matching u-model: U ∩ Q(p0)

(30)
∂b(θ)
∂θ

= ⟨p0, t⟩ = Ep0 [t] = const.

constant volume u-model: U ∩R

(31)
∂b(θ)
∂θ

=
⟨q, t⟩
⟨q⟩

.

Note that each restricted model is not simply flat, how-
ever we can prove modified Pythagorean relations as fol-
lows.

Corollary 1 (normalized model). Let p be in P, and q, r
be in U ∩ P. If q is the U -estimate of p, that is,

(32) q = arg min
q′∈U∩P

DU (p, q′),

then

(33) DU (p, r) = DU (p, q) + DU (q, r)

holds.

Proof. Since DU is minimized at q, we see

∂

∂θ
DU (p, q) =

∂

∂θ
{⟨U(q̆)⟩ − ⟨p, q̆⟩}

=
⟨
u(q̆), t − b′⟩ − ⟨

p, t − b′⟩
=

⟨
q − p, t − b′

⟩
= 0,

where b′ = ∂b(θ)
∂θ . Using the fact that ⟨p⟩ = ⟨q⟩ = 1, we

have ⟨
q − p, t − b′⟩ = ⟨q − p, t⟩ − b′ ⟨q − p⟩

= ⟨q − p, t⟩
= 0.

Writing the u-representations of q and r with θ and η as

q̆ = θT t(x) − b(θ), r̆ = ηT t(x) − b(η),

we see that p − q and r̆ − q̆ are orthogonal as

⟨p − q, r̆ − q̆⟩
=

⟨
p − q, (η − θ)T t − (b(η) − b(θ))

⟩
= (η − θ)T ⟨p − q, t⟩ − (b(η) − b(θ)) ⟨p − q⟩
= 0.

Corollary 2 (moment matching model). Let p be in P,
and q, r be in U ∩ Q. If q is the U -estimate of p, that is,

(34) q = arg min
q′∈U∩Q

DU (p, q′),

then

(35) DU (p, r) = DU (p, q) + DU (q, r)

holds.

Proof. Let us define

τ = ⟨p0, t⟩ = Ep0 [t],

then, from the moment matching condition (30), b is writ-
ten as

b(θ) = θT τ + const.

Knowing that

∂

∂θ
DU (p, q) =

⟨
q − p, t − b′⟩ = ⟨q − p, t − τ ⟩ = 0,
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we conclude

⟨p − q, r̆ − q̆⟩
=

⟨
p − q, (η − θ)T t − (η − θ)T τ

⟩
= (η − θ)T ⟨p − q, t − τ ⟩
= 0.

Corollary 3 (constant volume model). Let p be in P, and
q, r be in U ∩R, and let us define an auxiliary measure of
p scaled by q with

p̃ = ⟨q⟩p.

If q is the U -estimate of p, that is,

(36) q = arg min
q′∈U∩R

DU (p, q′),

then among p̃, q and r, the Pythagorean relation

(37) DU (p̃, r) = DU (p̃, q) + DU (q, r)

holds.

Proof. According to the constant volume condition (31)
and ⟨p⟩ = 1,

∂

∂θ
DU (p, q) =

⟨
q − p, t − b′⟩

= ⟨q − p, t⟩ − ⟨q, t⟩
⟨q⟩

⟨q − p⟩

=
⟨q, t⟩
⟨q⟩

− ⟨p, t⟩

= 0,

therefore we obtain

⟨p̃ − q, r̆ − q̆⟩ =
⟨
⟨q⟩p − q, (η − θ)T t − (b(η) − b(θ))

⟩
= (η − θ)T (⟨q⟩ ⟨p, t⟩ − ⟨q, t⟩)

− (b(η) − b(θ)) (⟨q⟩ ⟨p⟩ − ⟨q⟩)
= 0.

5. Characterization of Mixture

Aside from parametric models, we can consider mixtures
of density functions in m- and u-representations, which
are regarded as flat subspaces spanned by finite density
functions. The following two theorems characterize the m-
mixture and u-mixture of density functions respectively.
Theorem 3. Let pi, i = 1, . . . , n be probability density
functions and wi, i = 1, . . . , n be associated weights which
satisfy

wi ≥ 0,

n∑
i=1

wi = 1.

We define the m-mixture of pi with

(38) pm(x) =
n∑

i=1

wipi(x),

then the minimizer of the weighted Bregman divergence∑n
i=1 wiDU (pi, q) in P is given by the m-mixture of pi’s

as

(39) arg min
q∈P

n∑
i=1

wiDU (pi, q) = pm.

Proof. From the definition of the Bregman divergence, we
can rewrite the weighted Bregman divergence as

n∑
i=1

wiDU (pi, q)

=
n∑

i=1

wi {⟨U (q̆)⟩ − ⟨U (p̆i)⟩ − ⟨pi, q̆ − p̆i⟩}

= ⟨U (q̆)⟩ − ⟨
∑n

i=1 wipi, q̆⟩
−

∑n
i=1 wi ⟨U (p̆i)⟩ +

∑n
i=1 wi ⟨pi, p̆i⟩

= HU (pm, q) −
n∑

i=1

wiHU (pi).

Therefore, the optimization objective becomes

arg min
q

n∑
i=1

wiDU (pi, q) = arg min
q

HU (pm, q)

= arg min
q

DU (pm, q) ,

because of

arg min
q

DU (p, q) = arg min
q

HU (p, q) − HU (p)

= arg min
q

HU (p, q).

From the consistency of the Bregman divergence in P, we
conclude

arg min
q∈P

n∑
i=1

wiDU (pi, q) = arg min
q∈P

DU (pm, q) = pm.

Since the Bregman divergence DU (p, q) is not symmetric
with respect to p and q, the reversal usage of the Bregman
divergence gives a slightly different result.
Theorem 4. Let pi, i = 1, . . . , n be probability density
functions and wi, i = 1, . . . , n be associated weights which
satisfy

wi ≥ 0,
n∑

i=1

wi = 1.

We define the u-mixture of pi with

(40) pu(x) = u (
∑n

i=1 wip̆i(x) − b) ,
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where b is a normalization constant for imposing pu ∈ P,
then the minimizer of the weighted Bregman divergence∑n

i=1 wiDU (q, pi) in P is given by the u-mixture of qi’s
as

(41) arg min
q∈P

n∑
i=1

wiDU (q, pi) = pu.

Proof. From the definition of the Bregman divergence, we
see that

n∑
i=1

wiDU (q, pi)

=
n∑

i=1

wi {⟨U (p̆i)⟩ − ⟨U (q̆)⟩ − ⟨q, p̆i − q̆⟩}

=
∑n

i=1 wi ⟨U (p̆i)⟩ − ⟨U (q̆)⟩ − ⟨q,
∑n

i=1 wip̆i − q̆⟩
= ⟨U (p̆u)⟩ − ⟨U (q̆)⟩ − ⟨q, p̆u − q̆⟩

− ⟨U (p̆u)⟩ +
∑n

i=1 wi ⟨U (p̆i)⟩ − b ⟨q⟩
= DU (q, pu) − b ⟨q⟩− ⟨U (p̆u)⟩ +

∑n
i=1 wi ⟨U (p̆i)⟩︸ ︷︷ ︸

not depend on q

.

Using the fact that ⟨q⟩ = 1 because q ∈ P and the consis-
tency of the Bregman divergence, we conclude

arg min
q∈P

n∑
i=1

wiDU (q, pi) = arg min
q∈P

DU (q, pu) = pu.

These mixtures are employed in various methods of ma-
chine learning and statistics, and provide important appli-
cations. For example, the m-mixture is used in the bagging
algorithm [3], and the u-mixture is implicitly used in the
boosting algorithm [5,10].

6. Density Integration

Now we are ready for stating our main theorem for inte-
grating the probabilities estimated from different data sets.
Theorem 5. Let pi, i = 1, . . . , n be probability density
functions and wi, i = 1, . . . , n be associated weights which
satisfy

wi ≥ 0,
n∑

i=1

wi = 1.

Let qi, i = 1, . . . , n be the U -estimates of pi in the normal-
ized u-model U ∩ P,

(42) qi = arg min
q∈U∩P

DU (pi, q).

For the m-mixture of pi’s, the U -estimate in U ∩P is given
by the U -estimate of the m-mixture of qi’s as

(43) arg min
q∈U∩P

DU (
∑n

i=1wipi, q)

= arg min
q∈U∩P

DU (
∑n

i=1 wiqi, q).

Proof. Following the same discussion with the m-mixture
and using the Pythagorean relation, we see that

arg min
q∈U∩P

DU (
∑n

i=1 wipi, q)

= arg min
q∈U∩P

HU (
∑n

i=1 wipi, q)

= arg min
q∈U∩P

⟨U (q̆)⟩ − ⟨
∑n

i=1 wipi, q̆⟩

= arg min
q∈U∩P

∑n
i=1 wi {⟨U (q̆)⟩ − ⟨pi, q̆⟩}

= arg min
q∈U∩P

∑n
i=1 wiHU (pi, q)

= arg min
q∈U∩P

∑n
i=1 wiDU (pi, q)

= arg min
q∈U∩P

∑n
i=1 wi {DU (pi, qi) + DU (qi, q)}

= arg min
q∈U∩P

∑n
i=1 wiDU (qi, q)

= arg min
q∈U∩P

DU (
∑n

i=1 wiqi, q).

We should note that althought qi’s are in the u-model,
the optimal q with respect to DU (

∑n
i=1 wiqi, q) is not al-

ways found in the u-mixture of qi’s, that is,

q(x) = u(
∑n

i=1 w′
iq̆i(x) − b).

This is easily understood, for example, by considering mix-
tures of two distributions under the Kullback-Leibler diver-
gence where U(z) = exp(z). Suppose q1 and q2 are densi-
ties of normal distributions with the same variance and dif-
ferent means, then u-mixtures (exponential mixtures) of q1

and q2 have the same variance, while m-mixtures of q1 and
q2 have different variances. This means that the projection
of m-mixtures onto normal distributions, which is the u-
model in this case, can not be included in the u-mixtures.
Even though q is restricted in the u-mixture of qi’s, the
relationship between weights of the m- and u-mixtures, wi

and w′
i, is not explicitly written in general.

For q in the moment matching u-model U ∩ Q, we can
make the exactly same argument with q in the normalized
u-model, that is,

(44) arg min
q∈U∩Q

DU (
∑n

i=1wipi, q)

= arg min
q∈U∩Q

DU (
∑n

i=1 wiqi, q).

A similar statement also holds for the constant volume
u-model U ∩ R with a slight modification of the mixture
weights as follows.

Theorem 6. The U -estimate of the m-mixture of pi’s in
U ∩R is given by

(45) arg min
q∈U∩R

DU (
∑n

i=1wipi, q)

= arg min
q∈U∩R

DU (
∑n

i=1 wiqi/⟨qi⟩, q).
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Proof. Let us define

w′
i =

wi

⟨qi⟩
and p̃i = ⟨qi⟩pi.

Because of the constant volume condition, ⟨U(q̆)⟩ can be
neglected in minimization, therefore

arg min
q∈U∩R

DU (
∑n

i=1 wipi, q)

= arg min
q∈U∩R

HU (
∑n

i=1 wipi, q)

= arg min
q∈U∩R

⟨
∑n

i=1 wipi, q̆⟩

= arg min
q∈U∩R

⟨
∑n

i=1 w′
ip̃i, q̆⟩

= arg min
q∈U∩R

∑n
i=1 w′

iHU (p̃i, q)

= arg min
q∈U∩R

∑n
i=1 w′

iDU (p̃i, q)

= arg min
q∈U∩R

∑n
i=1 w′

i {DU (p̃i, qi) + DU (qi, q)}

= arg min
q∈U∩R

∑n
i=1 w′

iDU (qi, q)

= arg min
q∈U∩R

DU (
∑n

i=1 wiqi/⟨qi⟩, q).

The following two examples show applications of the the-
orems.
Example 2. Let Di, i = 1, . . . , n be independent data sets
and qi, i = 1, . . . , n be the U -estimates in U ∩ P based on
Di. That is, we construct an empirical distribution from
a data set Di = {x(i)

j , j = 1, . . . , |Di|}, where |Di| denotes
the cardinality of Di, as

(46) pi(x) =
1

|Di|
∑

j

δ(x − x
(i)
j ),

and obtain the U -estimates by solving

(47) qi = arg min
r∈U∩P

DU (pi, r) = arg min
r∈U∩P

HU (pi, r).

Let D be a combined data set of Di, i = 1, . . . , n

(48) D =
n∪

i=1

Di.

Then its empirical distribution is written in the form of the
m-mixture of pi’s as

(49) pm(x) =
∑n

i=1 |Di|pi(x)∑n
i=1 |Di|

.

Also we define the m-mixture of qi’s as

(50) qm(x) =
∑n

i=1 |Di|qi(x)∑n
i=1 |Di|

.

From the theorem, the U -estimate of pm for the combined
data set D is given by

(51) q = arg min
r∈U∩P

DU (qm, r),

instead of solving

(52) q = arg min
r∈U∩P

DU (pm, r).

This means that to estimate an integrated model from a
combined data set, we simply keep estimated qi’s as rep-
resentatives of Di’s and do not have to keep all the data
sets.
Example 3. Let D̃i, i = 1, . . . , n be data sets with missing
values. For example, x = (x1, x2, x3) is the 3-dimensional
variable and D̃1 consists of {(x1, x2)j , j = 1, . . . , |D̃1|} where
x3’s are missing, D̃2 consists of {(x2, x3)k, k = 1, . . . , |D̃2|}
where x1’s are missing, and so on. Let qi, i = 1, . . . , n
be the U -estimates from incomplete data sets D̃i. When
data include missing values, we can apply, for example, an
extended EM algorithm [6] to obtain an estimate for each
data set.

To integrate qi’s, we need to calibrate weights, because
each element of the parameter vector θ is not equally influ-
enced by missing elements of x and the number of partially
observed data is not a good weight in this case. Here we
consider the effective number of incomplete data with a
similar argument found in the AIC (Akaike’s Information
Criterion) literature [1, 10].

Let q be the U -estimate in U ∩ P based on data D gen-
erated from a distribution p, then the expected difference
of the following divergences is asymptotically given by

(53) E[DU (p, q) − DU (p, p∗)] =
trGQ−1

2|D|
,

where E is the expectation with respect to data D, p∗ is
the optimal U -estimate of p in U ∩ P, and the ij-elements
of matrices G and Q are defined by

Gij =
⟨

p,
∂

∂θi
q̆

∂

∂θj
q̆

⟩
= Ep

[
∂

∂θi
q̆

∂

∂θj
q̆

]
,(54)

Qij =
⟨

p,
∂2

∂θi∂θj
q̆

⟩
= Ep

[
∂2

∂θi∂θj
q̆

]
.(55)

Note that estimates of G and Q are calculated by replacing
the true distribution p with the empirical distribution in
practice.

Let y be the visible or observable part of x, and z be
the hidden part of x. The marginal distribution of y is
obtained by integrating q(x) = q(y, z) with respect to z

(56) q̃(y) =
∫

q(y, z)dz.

Let G̃ and Q̃ be the above defined two matrices calculated
from the marginalized density function q̃. Then Eq. (53)
for the estimate from incomplete data set D̃ is given by

(57) E[DU (p, q) − DU (p, p∗)] =
tr G̃Q̃−1

2|D̃|
.

Suppose we have a data set D without missing values,
and a data set D̃ with missing values. If two estimates from
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D and D̃ satisfy

(58)
trGQ−1

|D|
=

tr G̃Q̃−1

|D̃|
,

we can expect those two estimates have the same effective-
ness in estimation. Therefore,

(59) |D| =
tr GQ−1

tr G̃Q̃−1
|D̃|

can be regarded as the effective number of data D̃, which
corresponds to the number of the complete data giving the
same accuracy with the estimate from the incomplete data.
Using the effective number of data |D| instead of the orig-
inal number of data |D̃|, we define the m-mixture of qi’s
as

(60) qm(x) =
∑n

i=1 |Di|qi(x)∑n
i=1 |Di|

,

a probability integration considering information loss of
partial observation is given by

(61) q = arg min
r∈U∩P

DU (qm, r).

In this example, an effective number of incomplete data
is discussed along the lines of AIC, however, there are many
possibilities for estimating efficiency of data. Basically, ef-
ficiency is determined by accuracy of estimates, therefore
any confidence assessments of estimates can be applied,
such as cross-validation and bootstrap methods. Moreover,
those methods are applicable to evaluate accuracy of mo-
ment matching model and the constant volume model, and
hence enable us to integrate those models also.

7. Conclusion

In this paper, we have investigated properties of consis-
tent subspaces and well-behaved parametric models asso-
ciated with the Bregman divergence, and derived a natural
method for integration of multiple density functions. While
we have mainly focused on joint density functions, theories
can be easily extended to conditional density functions in
straight-forward manner, and can be applied to problems of
aggregating multiple estimates in regression and classifica-
tion. Also, in this paper, only simple parametric models are
considered, but it would be interesting to extend to more
complicated models and situations such as non-parametric
models, estimates from multiple divergences, and depen-
dent data sets.
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