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Abstract. Compound distributions appear in applications to queueing theory and to risk theory.
A local property of those distributions on the real line is discussed. The result helps to derive
equivalnce conditions to be local subexponential for infinitely divisible distributions on the real line.
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1. Introduction and results

Let ζ, ζ1, ζ2 be distributions on R. We write ζn∗ for the nth-
convolution of ζ with itself, and ζ1 ∗ ζ2 for the convolution
of ζ1 and ζ2. Furthermore, we denote by ζ(x) = ζ((x,∞))
the right-tail of ζ. The class S of distributions on R is
defined by the requirements

lim
x→∞

ζ(x + s)
ζ(x)

= 1 for s ∈ R,(1)

lim
x→∞

ζ2∗(x)
ζ(x)

= 2.(2)

Then ζ is called subexponential. The condition (1) is not
needed in the case of subexponential distributions on [0,∞).
Here we mention that the class S plays an important role in
many applications (for instance, see [3, 4, 8, 9, 10, 14, 15]).
Nowadays the study of subexponentiality has a trend to-
ward more detailed properties. Any subexponential distri-
bution η satisfies

ζn∗(x) ∼ nζ(x)

and thereby we have

ζn∗((x, x + T ]) = o(ζ(x))

for any T with 0 < T < ∞. More detailed properties
of ηn∗((x, x + T ]) have really been investigated in some
papers [1, 2, 5, 16, 17]. Although the theory was scattered,
Asmussen, Foss and Korshunov have recently developed
the systematic theory. They introduced the notion of local
subexponentiality in [1]: Fix 0 < T < ∞ and write ∆ :=
(0, T ] and x + ∆ := {x + y : y ∈ ∆} = (x, x + T ].

Definition 1.1. We say that a distribution ζ on R belongs
to the class L∆ if ζ(x + ∆) > 0 for all sufficiently large x
and

ζ(x + s + ∆)
ζ(x + ∆)

→ 1 as x → ∞,(3)

uniformly in s ∈ [0, T ].

Remark 1.1. We can choose a function h(x) → ∞ that
(3) holds uniformly in |s| ≤ h(x). Furthermore, we always
take a function h(x) such that h(x) < x/2.

Definition 1.2. Let ζ be a distribution on R. We say that
ζ is ∆-subexponential if ζ ∈ L∆ and

ζ2∗(x + ∆) ∼ 2ζ(x + ∆).(4)

Then we write ζ ∈ S∆.

Remark 1.2. It follows from the definition that the class
S∆ is included among the class S.

Our aim of the present paper is to investigate local subex-
ponentiality of infinitely divisible distributions. The reason
why we focus on those distributions is that they appear in
some probabilistic model. An infinitely divisible distribu-
tion µ on R with Lévy measure ν is characterized by its
characteristic function

φ(z) :=
∫

R
eizxµ(dx)(5)

= exp
[
− 2−1az2 + iγz

+
∫

R
(eizx − 1 − izx1{|x|≤1}(x))ν(dx)

]
,

where ν({0}) = 0 and
∫

R(1∧x2)ν(dx) < ∞, and a ≥ 0 and
γ ∈ R. If µ is an infinitely divisible distribution on [0,∞),
the characteristic function φ(z) is represented as

φ(z) = exp

[∫
[0,∞)

(eizx − 1)ν(dx) + iγ0z

]
,

where ν({0}) = 0,
∫
[0,∞)

(1∧x)ν(dx) < ∞ and γ0 ≥ 0. The
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normalized Lévy measure ν(1) is defined by

ν(1)(dx) :=
1

ν((1,∞))
1{x>1}(x)ν(dx).

In probability models, we often find a fact of the follow-
ing type: Let ρ and η are distributions on R. Then ρ ∈ S
if and only if η ∈ S. Moreover, if ρ ∈ S, then

lim
x→∞

η(x)
ρ(x)

= c ∈ (0,∞).

The distribution ρ and η is what is called an “input”and an
“output”. The Cramér-Lundberg model, which is a basic
insurance risk model, is such a model. In this case, η is
an infinitely divisible distribution and ρ is its normalized
Lévy measure. Then Theorem A below is useful. We in-
troduce the early important work by Embrechts et al. as
Theorem A. See [7] for details: Let functions f(x) and g(x)
be nonnegative but positive for all sufficiently large x. If
the functions f(x) and g(x) satisfy

lim
x→∞

f(x)
g(x)

= 1,

then we write
f(x) ∼ g(x).

Theorem A (Embrechts et al. (1979)) Let µ be an
infinitely divisible distribution on [0,∞) with Lévy measure
ν. Then the following assertions are equivalent:
(i) µ ∈ S; (ii) ν(1) ∈ S; (iii) µ(x) ∼ ν(x).

This result is extended to infinitely divisible distributions
on R by Pakes. See [11, 12]. Now we examine the Cramér-
Lundberg model in detail: The model is as follows. The
claim sizes {Xk}k∈N are positive i.i.d. random variables
having non-lattice distribution ρ with finite mean. The
claims occur at the random instants of time

0 < T1 < T2 < · · · a.s.

Then the inter-arrival times

Y1 = T1, Yk = Tk − Tk−1, k = 2, 3, · · ·

are i.i.d. exponentially distributed with finite mean λ−1.
In addition, {Xk} and {Yk} are independent of each other.
The number of claims in the interval [0, t] is denoted by

N(t) = sup{n ≥ 1 : Tn ≤ t},

where we understand sup ∅ = 0. The total claim amount
distribution η up to time t is defined by

η(x) = P

N(t)∑
k=1

Xk > x


= e−λt

∞∑
n=0

(λt)n

n!
ρn∗(x),

where ρ0∗ is interpreted as the delta measure at 0. Then ρ
is an input, and η is an output whose distribution is com-
pound Poisson, that is, infinitely divisible on [0,∞). Let
ρ be subexponential. Theorem A yields that η is subexpo-
nential and

η(x) ∼ λt ρ(x).

As seen above, a compound distribution is important from
the viewpoint of applications. First, we consider local
subexponentiality of the distribution. A compound dis-
tribution η on R is defined by

η :=
∞∑

k=0

pkρk∗,(6)

where ρ is a distribution on R and {pk}∞k=0 is a discrete
probability such that

p0 + p1 < 1 and
∞∑

k=0

pk = 1.

Our result is as follows:

Theorem 1.1. Let η be a compound distribution satis-
fying (6). Suppose that ρ ∈ L∆ and∫

R
e−ϵyρ(dy) < ∞ for some ϵ > 0,(7)

∞∑
k=0

pk(1 + δ)k < ∞ for some δ > 0.(8)

Then the following assertions are equivalent:

(i) η ∈ S∆; (ii) ρ ∈ S∆; (iii) η(x+∆) ∼ ρ(x + ∆)
∞∑

k=1

kpk.

Theorem 1.1 immediately yields the following corollaries.
The proofs are omitted. In [16], the corollaries are already
delt with but need the assumption corresponding to The-
orem B below. If ρ is a distributions on [0,∞), Corollary
1.2 below is also found in [1].

Corollary 1.1. Let pk = (1 − c)ck, where 0 < c < 1.
Suppose that ρ is in L∆ and satisfies (7). The following
assertions are equivalent:
(i) η ∈ S∆; (ii) ρ ∈ S∆; (iii) η(x + ∆) ∼ c

1 − c
ρ(x + ∆).

Corollary 1.2. Let pk = e−cck/k!, where c > 0. Sup-
pose that ρ is in L∆ and satisfies (7). The following asser-
tions are equivalent:
(i) η ∈ S∆; (ii) ρ ∈ S∆; (iii) η(x + ∆) ∼ cρ(x + ∆).

Example 1.1. Consider the Cramér-Lundberg model
again. By virtue of Corollary 1.2, if the claim size distri-
bution ρ is ∆-subexponential, then so is the total claim
amount distribution η and we have

η(x + ∆) ∼ λtρ(x + ∆).(9)
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The equivalence of (ii) and (iii) in Corollary 1.2 is already
proved in Theorem 6 of [1]. So (9) is also shown by the
theorem.

The distribution η in Corollary 1.2 is called compound
Poisson, and is a typical infinitely divisible distribution.
Theorem 1.1 is helpful to obtain the result concerned with
local subexponentiality of infinitely divisible distributions.
Here we state the fact that have been known. One is
pointed out by Asmussen et al. To be precise, it is Theo-
rem 7 of [1]. The assertion is correct, but the proof that (ii)
implies (i) (see Theorem B) is lacking. We give the proof
as Proposition 3.1 in Sect.3. In what follows, we denote by
ID∆ the class of all infinitely divisible distributoins µ on
R such that ν(x + ∆) > 0 for all sufficiently large x.

Theorem B (Asmussen et al. (2003)) Let µ be an in-
finitely divisible distribution on [0,∞) with Lévy measure
ν and let µ ∈ ID∆. Furthermore, let 0 < T < ∞, and as-
sume ν(1) ∈ L∆. Then the following assertions are equiva-
lent:
(i) ν(1) ∈ S∆; (ii) ν(x + ∆) ∼ µ(x + ∆).

Let µ be an infinitely divisible distribution with Lévy
measure ν. Through this paper, we decompose µ as µ =
µ1 ∗µ2 , where we put c = ν((1,∞)) and µ1 is a compound
Poisson distribution with Lévy measure cν(1). Then the
characteristic function φ1(z) of µ1 is represented as

φ1(z) = exp

[∫
(1,∞)

(eizx − 1)ν(dx)

]
.

Another is due to Wang et al. See Theorem 4.2 of [16].
They showed that the equivalence condition µ ∈ S∆ is
added to Theorem B under a certain condition ((10) be-
low):

Theorem C (Wang et al. (2005)) Let µ be an infinitely
divisible distribution on [0,∞) with Lévy measure ν and let
µ ∈ ID∆. Furthermore, let 0 < T < ∞, and assume that
there exists an integer k = k(c) > 0 such that

ck−1 < log 2 and µk−1∗
1 ∈ L∆.(10)

Then assertions (i) and (ii) of Theorem B and the following
assertion are equivalent:
(iii) µ ∈ S∆

Here, for t > 0, µt∗
1 is defined by the distribution having

the characteristic function

(φ1(z))t = exp

[
t

∫
(1,∞)

(eizx − 1)ν(dx)

]
.

We have succeeded in eliminating the condition (10) of
Theorem C, and have obtained a result in the case of in-
finitely divisible distributions on R. We find the necessity

of the condition (11) below on the left-tails. Our result is
as follows:

Theorem 1.2. Let µ be an infinitely divisible dis-
tribution satisfying (5) and let µ ∈ ID∆. Suppose that
ν(1) ∈ L∆. Furthermore, we suppose that∫

R
e−ϵyµ(dy) < ∞ for some ϵ > 0.(11)

Then the following assertions are equivalent:
(i) µ ∈ S∆; (ii) ν(1) ∈ S∆; (iii) ν(x + ∆) ∼ µ(x + ∆).

Remark 1.3. For any ϵ > 0,
∫

R e−ϵyµ(dy) < ∞ if and
only if

∫ −1

−∞ e−ϵyν(dy) < ∞.

At the end of this section, we introduce two notations
which we use in the remaining sections. If the functions
f(x) and g(x) satisfy that

0 < lim inf
x→∞

f(x)
g(x)

≤ lim sup
x→∞

f(x)
g(x)

< ∞,

we write
f(x) ≍ g(x).

For a distribution ζ and a measurable function f(x), we
write ∫ b

a

f(x)ζ(dx) :=
∫

(a,b]

f(x)ζ(dx)

for −∞ ≤ a < b < ∞.

2. Proof of Theorem 1.1

First of all, we mention a fundamental lemma to character-
ize local subexponentiality. It is analogous to Proposition
2 of [1].

Lemma 2.1 Let ρ be a distribution on R. Furthermore, let
X1 and X2 be independent random variables with common
distribution ρ. Then the following assertions are equiva-
lent:
(i) ρ ∈ S∆

(ii) There exists a function h(x) such that h(x) → ∞,
h(x) < x/2 and ρ(x − y + ∆) ∼ ρ(x + ∆) as x → ∞
uniformly in |y| ≤ h(x), and

P (X1 + X2 ∈ x + ∆, |X1| > h(x), |X2| > h(x))(12)
= o(ρ(x + ∆)).

Proof. Let h(x) be a function satisfying that h(x) → ∞,
h(x) < x/2 and ρ(x − y + ∆) ∼ ρ(x + ∆) as x → ∞
uniformly in |y| ≤ h(x). Put B := {X1 + X2 ∈ x + ∆}.
Now we have

ρ2∗(x + ∆) = P (B) = P (B, |X1| ≤ h(x))
+P (B, |X2| ≤ h(x)) + P (B, |X1| > h(x), |X2| > h(x)).
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Here we have

P (B, |X1| ≤ h(x))

=
∫
|y|≤h(x)

ρ(x − y + ∆)ρ(dy) ∼ ρ(x + ∆).

In the same way as above, we have

P (B, |X2| ≤ h(x)) ∼ ρ(x + ∆).

These imply the equivalence of (i) and (ii).

The lemma corresponding to Lemma 1 of [1] is as follows:

Lemma 2.2. Let η and ρ be distributions on R. Suppose
that ρ is in L∆ and satisfies (7). If η ∈ S∆ and

ρ(x + ∆) ≍ η(x + ∆),(13)

then ρ ∈ S∆.

Proof. Let X1 and X2 be independent random variables
with common distribution ρ. Furthermore, let Y1 and Y2 be
independent random variables with common distribution η.
By virtue of Lemma 2.1, it suffices to show that

P (X1 + X2 ∈ x + ∆, |X1| > h(x), |X2| > h(x))
= o(ρ(x + ∆)),

where h(x) is a common function associated with ρ and η.
Put B := {X1 + X2 ∈ x + ∆} for x > 0. Since

P (B,X1 < −h(x), X2 < −h(x)) = 0,

we consider only three cases: Let x be sufficiently large.
Take ϵ > 0 satisfying (7). Since ρ ∈ L∆, there is M > 0
such that

ρ(x − y + ∆)
ρ(x + ∆)

≤ Me−ϵy

for all y < −h(x) (see Theorem 1.3.1 of [6]). Hence we have

P (B,X1 < −h(x), X2 > h(x))
ρ(x + ∆)

=
∫

(−∞,−h(x))

P (X2 ∈ x − y + ∆, X2 > h(x))
ρ(x + ∆)

ρ(dy)

≤
∫

(−∞,−h(x))

ρ(x − y + ∆)
ρ(x + ∆)

ρ(dy)

→ 0

as x → ∞. In the same way as above, we have

P (B,X1 > h(x), X2 < −h(x))
ρ(x + ∆)

→ 0 as x → ∞.

Lastly, we have

P (B, X1 > h(x), X2 > h(x))

=
∫ x−h(x)

h(x)

ρ(x − y + ∆)ρ(dy)

+
∫ x−h(x)+T

x−h(x)

P (X1 ∈ x − y + ∆, X1 > h(x))ρ(dy)

≡ J1 + J2.

Here we see

J2 ≤ ρ(x − h(x) + ∆)P (X1 > h(x)) = o(ρ(x + ∆)).

Let x be sufficiently large. There is c1 > 0 such that

ρ(x − y + ∆) ≤ c1η(x − y + ∆)

for all y ≤ x − h(x). We see that, for sufficiently large x,

J1 ≤ c1

∫ x−h(x)

h(x)

η(x − y + ∆)ρ(dy)

≤ c1P (X1 + Y1 ∈ x + ∆, X1 > h(x), Y1 > h(x))

= c1

∫ x−h(x)

h(x)

ρ(x − y + ∆)η(dy)

+ c1

∫ x−h(x)+T

x−h(x)

P (X1 ∈ x − y + ∆, X1 > h(x))η(dy)

≤ c2
1

∫ x−h(x)

h(x)

η(x − y + ∆)η(dy)

+c1P (X1 > h(x))η(x − h(x) + ∆)
≤ c2

1P (Y1 + Y2 ∈ x + ∆, Y1 > h(x), Y2 > h(x))
+o(η(x + ∆))

= o(η(x + ∆)).

We used Lemma 2.1 in the last equality, because η ∈ S∆.
As we have (13), the lemma has been proved.

Let {Xn}∞n=1 be i.i.d. random variables with a common
distribution ρ. Put

Sn :=
n∑

k=1

Xk for n ≥ 1.

The lemma corresponding to Proposition 4 of [1] is as fol-
lows:

Lemma 2.3. Let η and ρ be distributions on R. Suppose
that ρ is in L∆ and satisfies (7). Furthermore, let η be in
S∆ and satisfy that∫

R
e−ϵyη(dy) < ∞(14)

for some ϵ > 0 and

lim sup
x→∞

ρ(x + ∆)
η(x + ∆)

< ∞.(15)

Then, for any δ > 0, there exist x0 = x0(δ) > 0 and
V (δ) > 0 such that

ρn∗(x + ∆) ≤ V (δ)(1 + δ)nη(x + ∆)(16)

for any x > x0 and any n ≥ 1.

Proof. Let Y1 be an independent random variable of X1

with distribution η. For x0 ≥ 0 and k ≥ 1, we put

Ak := sup
x>x0

ρk∗(x + ∆)
η(x + ∆)

.
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By virtue of the conditions (7) and (14), following the ar-
guments of Lemma 2.2, we have

P (Y1 + X1 ∈ x + ∆, |Y1| > h(x), |X1| > h(x))
= o(η(x + ∆)).

Take ϵ > 0 satisfying (14). As η ∈ L∆, there is M1 > 0
such that

η(x − y + ∆)
η(x + ∆)

≤ M1e
−ϵy

for y ≤ 0 and sufficiently large x. Let b > 0 and take
sufficiently large x. Then we have

P (Y1 + X1 ∈ x + ∆, X1 ≤ x − h(x))

=

(∫ h(x)

−∞
+
∫ x−h(x)

h(x)

)
P (Y1 ∈ x − y + ∆)ρ(dy)

≤ M1η(x + ∆)
∫ −b

−∞
e−ϵyρ(dy)

+
∫ h(x)

−b

η(x − y + ∆)ρ(dy)

+P (Y1 + X1 ∈ x + ∆, Y1 > h(x), X1 > h(x)).

Let δ1 > 0. Take sufficiently large b. Then there is x0 > 0
such that

P (Y1 + X1 ∈ x + ∆, X1 ≤ x − h(x)) ≤ (1 + δ1)η(x + ∆)

for x > x0. Let n ≥ 2 and x > x0. Then we have

P (Sn ∈ x + ∆) = P (Sn ∈ x + ∆, Xn ≤ x − h(x))
+P (Sn ∈ x + ∆, Xn > x − h(x))

≡ J1 + J2.

In addition, we take x1 > 0 such that x1 > x0 and h(x) >
x0 for x > x1. For x > x1,

J1 =
∫ x−h(x)

−∞
P (Sn−1 ∈ x − y + ∆)P (Xn ∈ dy)

≤ An−1

∫ x−h(x)

−∞
η(x − y + ∆)P (Xn ∈ dy)

= An−1P (Y1 + Xn ∈ x + ∆, Xn ≤ x − h(x))
≤ (1 + δ1)An−1η(x + ∆).

Here, if necessary, we take x0 and x1 such that

L1 := sup
x0<x≤x1

(η(x + ∆))−1 < ∞.

Then, for any x with x0 < x ≤ x1, we have

J1 ≤ 1 ≤ L1η(x + ∆).

Let b > 0. We have

J2 = P (Sn−1 + Xn ∈ x + ∆, Sn−1 ≤ h(x) + T,

Xn > x − h(x))

≤
∫ −b

−∞
P (Xn ∈ x − y + ∆)P (Sn−1 ∈ dy)

+
∫ h(x)+T

−b

P (Xn ∈ x − y + ∆,

Xn > x − h(x))P (Sn−1 ∈ dy)
≡ J21 + J22.

Let δ1 > 0. Here we can take sufficiently small ϵ1 > 0 such
that ∫

R
e−ϵ1yρ(dy) < 1 + δ1.

There is M2 > 0 such that

ρ(x − y + ∆)
η(x + ∆)

=
ρ(x − y + ∆)
η(x − y + ∆)

· η(x − y + ∆)
η(x + ∆)

≤ M2e
−ϵ1y

for y ≤ 0 and sufficiently large x. Hence we obtain that,
for sufficiently large b,

J21 ≤ M2η(x + ∆)
∫ −b

−∞
e−ϵ1yP (Sn−1 ∈ dy)

≤ M2η(x + ∆)
(∫

R
e−ϵ1yρ(dy)

)n−1

≤ M2η(x + ∆)(1 + δ1)n−1.

Here, if necessary, we take x0 > 0 such that

L2 := sup
−b<y≤h(x)+T

x>x0

ρ(x − y + ∆)
η(x + ∆)

= sup
−b<y≤h(x)+T

x>x0

ρ(x − y + ∆)
η(x − y + ∆)

· η(x − y + ∆)
η(x + ∆)

< ∞.

Hence,

J22 ≤ sup
−b<y≤h(x)+T

P (Xn ∈ x − y + ∆)

≤ L2η(x + ∆)

for x > x0. We consequently obtain that

An ≤ (1 + δ1)An−1 + (L1 + L2) + M2(1 + δ1)n−1

for x > x0. By induction, there is V1 > A1 such that

An ≤ V1n(1 + δ1)n−1 for x > x0 and n ≥ 2.

Here there is a positive integer n0 ≥ 2 such that n < (1 +
δ1)n+1 for n > n0. Taking δ = 2δ1 + δ2

1 and V (δ) = n0V1,
we obtain (16).
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The lemma corresponding to Proposition 3 of [1] is as
follows:

Lemma 2.4. Suppose that ρ is a distribution on R in
S∆. Let ρj for j = 1, 2 be a distribution on R such that

ρj(x + ∆)
ρ(x + ∆)

→ cj as x → ∞,(17)

for some constant cj ≥ 0. Furthermore, we suppose that
for j = 1, 2, ρj satisfies∫

R
e−ϵjyρj(dy) < ∞ for some ϵj > 0.(18)

Then

ρ1 ∗ ρ2(x + ∆)
ρ(x + ∆)

→ c1 + c2 as x → ∞.(19)

Proof. Let h(x) be a function satisfying Lemma 2.1 (ii).
Furthermore, let X1 and X2 be independent random vari-
ables with distributions ρ1 and ρ2, respectively. Put B :=
{X1 + X2 ∈ x + ∆}. Then we have

ρ1 ∗ ρ2(x + ∆)
= P (B, |X1| ≤ h(x)) + P (B, |X2| ≤ h(x))

+P (B, |X1| > h(x), |X2| > h(x)).

Here we have that

P (B, |X1| ≤ h(x))
ρ(x + ∆)

=
∫
|y|≤h(x)

P (X2 ∈ x − y + ∆)
ρ(x − y + ∆)

×ρ(x − y + ∆)
ρ(x + ∆)

ρ1(dy)

→ c2

as x → ∞. In the same way as above, we have

P (B, |X2| ≤ h(x))
ρ(x + ∆)

→ c1 as x → ∞.

Let x be sufficiently large. As ρ ∈ L∆, there is M > 0 such
that

ρ(x − y + ∆)
ρ(x + ∆)

≤ Me−ϵ1y

for all y < −h(x). Let δ > 0. This yields that

P (X1 + X2 ∈ x + ∆, X1 < −h(x), X2 > h(x))
ρ(x + ∆)

≤
∫

(−∞,−h(x))

ρ2(x − y + ∆)
ρ(x − y + ∆)

· ρ(x − y + ∆)
ρ(x + ∆)

ρ1(dy)

≤ M(c2 + δ)
∫

(−∞,−h(x))

e−ϵ1yρ1(dy)

for sufficiently large x > 0. Hence,

P (X1 + X2 ∈ x + ∆, X1 < −h(x), X2 > h(x))
ρ(x + ∆)

→ 0

as x → ∞. In the same way as above, we have

P (X1 + X2 ∈ x + ∆, X1 > h(x), X2 < −h(x))
ρ(x + ∆)

→ 0

as x → ∞. The remaining part follows from the arguments
of Lemma 2.2. We conclude that

P (B, |X1| > h(x), |X2| > h(x)) = o(ρ(x + ∆)).

The lemma has been proved.

In the case where ρ is a distribution on [0,∞), the fol-
lowing lemma is showed in [16]. Hence we prove it in the
case where ρ is a distiburion on R but not on [0,∞).

Lemma 2.5. Let ρ be a distribution on R satisfying (7).
Let N be a positive integer. If ρ ∈ L∆ and ρN∗ ∈ S∆, then
ρ ∈ S∆.

Proof. Suppose that N ≥ 2 and ρ((−∞, 0)) > 0. Put

ρ+ := c−1
1 1{x≥0}(x)ρ and ρ− := c−1

2 1{x<0}(x)ρ.

Here c1 = ρ([0,∞)) and c2 = ρ((−∞, 0)). Then

ρ = c1ρ+ + c2ρ−.

It is obvious that ρN∗ ≥ cN
1 ρN∗

+ and, by Proposition 1 of
[1], that ρn∗

+ ∈ L∆ for n ≥ 1. Suppose that there is a
sequence {xn} such that lim

n→∞
xn = ∞ and

lim
n→∞

ρN∗
+ (xn + ∆)

ρN∗(xn + ∆)
= 0.

Let 1 ≤ k ≤ N − 1 and let n be sufficiently large. Take
ϵ > 0 satisfying (7). As ρk∗

+ ∈ L∆, there is M > 0 such
that

ρk∗
+ (xn − y + ∆)
ρk∗
+ (xn + ∆)

≤ Me−ϵy

for y ≤ 0. Hence,

ρk∗
+ ∗ ρ

(N−k)∗
− (xn + ∆)

ρN∗(xn + ∆)
(20)

=
ρk∗
+ (xn + ∆)

ρN∗(xn + ∆)

∫ 0

−∞

ρk∗
+ (xn − y + ∆)
ρk∗
+ (xn + ∆)

ρ
(N−k)∗
− (dy)

≤
ρk∗
+ (xn + ∆)

ρN∗(xn + ∆)

∫ 0

−∞
Me−ϵyρ

(N−k)∗
− (dy)

≤ M
ρk∗
+ (xn + ∆)

ρN∗
+ (xn + ∆)

×
ρN∗
+ (xn + ∆)

ρN∗(xn + ∆)

(∫
R

e−ϵyρ−(dy)
)N−k

.

Here, by Fatou’s lemma, we have

lim inf
x→∞

ρN∗
+ (x + ∆)

ρk∗
+ (x + ∆)

≥ 1.
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The right-hand side of the last inequality in (20) goes to 0
as n → ∞. Hence we obtain that

1 = lim
n→∞

ρN∗(xn + ∆)
ρN∗(xn + ∆)

≤ cN
1 lim sup

n→∞

ρN∗
+ (xn + ∆)

ρN∗(xn + ∆)

+
N−1∑
k=1

(
N

k

)
ck
1cN−k

2 lim sup
n→∞

ρk∗
+ ∗ ρ

(N−k)∗
− (xn + ∆)

ρN∗(xn + ∆)

= 0.

This is a contradiction. Hence

lim inf
x→∞

ρN∗
+ (x + ∆)

ρN∗(x + ∆)
> 0

and thereby

ρN∗
+ (x + ∆) ≍ ρN∗(x + ∆).

As ρN∗
+ ∈ L∆ and ρN∗ ∈ S∆, it follows from Lemma 2.2

that ρN∗
+ ∈ S∆. By virtue of Corollary 2.1 of [16], we have

ρ+ ∈ S∆. By using Lemma 2.2 again, we have ρ ∈ S∆.

We have prepared for the proof of the theorem. Now we
prove Theorem 1.1.

Proof of Theorem 1.1. Suppose that η ∈ S∆. Let N be
a positive integer such that N ≥ 2 and pN > 0. Then we
have

p−1
N ≥ ρN∗(x + ∆)

η(x + ∆)
.

Suppose that there is a sequence {xn} such that lim
n→∞

xn = ∞
and

lim
n→∞

ρN∗(xn + ∆)
η(xn + ∆)

= 0.

By virtue of Fatou’s lemma, we have

lim inf
x→∞

ρN∗(x + ∆)
ρk∗(x + ∆)

≥ 1

for 1 ≤ k ≤ N − 1. Here,

lim sup
x→∞

ρ(x + ∆)
η(x + ∆)

= lim sup
x→∞

ρN∗(x + ∆)
η(x + ∆)

· ρ(x + ∆)
ρN∗(x + ∆)

≤ p−1
N < ∞.

Hence it follows from Lemma 2.3 that for δ > 0,

1 = lim
n→∞

η(xn + ∆)
η(xn + ∆)

≤ lim sup
n→∞

N∑
k=1

pk
ρk∗(xn + ∆)
ρN∗(xn + ∆)

· ρN∗(xn + ∆)
η(xn + ∆)

+ lim sup
n→∞

∞∑
k=N+1

pk
ρk∗(xn + ∆)
η(xn + ∆)

≤
∞∑

k=N+1

pkV (δ)(1 + δ)k.

Here, from (8), we can take sufficiently large N such that

∞∑
k=N+1

pkV (δ)(1 + δ)k < 1.

This is a contradiction. Thus

lim inf
x→∞

ρN∗(x + ∆)
η(x + ∆)

> 0

and thereby
ρN∗(x + ∆) ≍ η(x + ∆).

Here ρ ∈ L∆ implies that ρN∗ ∈ L∆. As ρN∗ ∈ L∆ and
η ∈ S∆, it follows from Lemma 2.2 that ρN∗ ∈ S∆. By
Lemma 2.5, we have ρ ∈ S∆.

Suppose that ρ ∈ S∆. By virtue of Lemma 2.3, we can
use the dominated convergence theorem. Hence it follows
from Lemma 2.4 that

lim
x→∞

η(x + ∆)
ρ(x + ∆)

=
∞∑

k=1

pk lim
x→∞

ρk∗(x + ∆)
ρ(x + ∆)

=
∞∑

k=1

pkk.

Then ρ ∈ L∆ implies that η ∈ L∆. As η ∈ L∆ and ρ ∈ S∆,
we see from Lemma 2.2 that η ∈ S∆, too.

Suppose that (iii) holds. Put

ρ+(dx) := c−1
1 1[0,∞)(x)ρ(dx),

where c1 = ρ([0,∞)). Then we have

η(x + ∆)
ρ+(x + ∆)

→ c1

∞∑
k=1

kpk as x → ∞.

Theorem 2 (ii) of [1] holds for any ditribution G on R. Here
G appears in the statetment of the theorem. We can use
Theorem 2 (ii) of [1] and thereby ρ+ ∈ S∆. By Lemma 2.2,
we have ρ ∈ S∆.

3. Proof of Theorem 1.2

Put c := ν((1,∞)). We decompose µ as µ = µ1 ∗µ2, where
µ1 is a compound Poisson distribution with Lévy measure
cν(1).

Proposition 3.1. Let µ be an infinitely divisible dis-
tribution satisfying (5) and let µ ∈ ID∆. Suppose that
ν(1) ∈ L∆. If µ(x + ∆) ∼ ν(x + ∆), then ν(1) ∈ S∆.

Proof. Notice that

µ1 = e−c
∞∑

k=1

ck

k!
(ν(1))k∗.

Let A > 0. Hence we have

c = lim
x→∞

µ(x + ∆)
ν(1)(x + ∆)
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≥ e−c lim sup
x→∞

c2

2!

∫
R

(ν(1))2∗(x − y + ∆)
ν(1)(x + ∆)

µ2(dy)

+e−c lim inf
x→∞

∑
k ̸=2
k≥1

ck

k!

∫
R

(ν(1))k∗(x − y + ∆)
ν(1)(x + ∆)

µ2(dy)

≥ e−c c2

2!
lim sup

x→∞

(ν(1))2∗(x + ∆)
ν(1)(x + ∆)

×
∫ A

−A

(ν(1))2∗(x − y + ∆)
(ν(1))2∗(x + ∆)

µ2(dy)

+e−c
∑
k ̸=2
k≥1

ck

k!

∫
R

lim inf
x→∞

(ν(1))k∗(x − y + ∆)
ν(1)(x + ∆)

µ2(dy)

≡ I.

By Proposition 1 of [1], if ν(1) ∈ L∆, then (ν(1))2∗ ∈ L∆.
Hence we obtain from Corollary 1 of [1] that

I ≥ e−c c2

2!
lim sup

x→∞

(ν(1))2∗(x + ∆)
ν(1)(x + ∆)

µ2((−A,A])

+e−c
∑
k ̸=2
k≥1

ck

k!
k.

This implies that

c − e−c(cec − c2)

≥ e−c c2

2!
lim sup

x→∞

(ν(1))2∗(x + ∆)
ν(1)(x + ∆)

µ2((−A,A]).

As A → ∞, we have

2 ≥ lim sup
x→∞

(ν(1))2∗(x + ∆)
ν(1)(x + ∆)

.

Recall that ν(1) ∈ L∆. Using Corollary 1 of [1] again, we
have ν(1) ∈ S∆.

Proposition 3.2 Let µ be an infinitely divisible distribu-
tion satisfying (5) and let µ ∈ ID∆. Suppose that ν(1) ∈
L∆ and µ satisfies (11). If µ ∈ S∆, then ν(1) ∈ S∆.

Proof. Recall that

µ1 = e−c
∞∑

k=0

ck

k!
(ν(1))k∗.

Take a positive integer N such that e−c2N > 1. As we
have (ν(1))N∗ ∈ L∆, it follows that

lim inf
x→∞

µ(x + ∆)
(ν(1))N∗(x + ∆)

(21)

≥
∫

R
lim inf
x→∞

e−c cN

N !
·
(ν(1))N∗(x − y + ∆)

(ν(1))N∗(x + ∆)
µ2(dy)

≥ e−c cN

N !
.

Suppose that there is a sequence {xn} such that lim
n→∞

xn = ∞
and

lim
n→∞

(ν(1))N∗(xn + ∆)
µ(xn + ∆)

= 0.

By Fatou’s lemma, we have

lim inf
x→∞

µ ∗ µ2(x + ∆)
µ2∗(x + ∆)

(22)

≥
∫

R
lim inf
x→∞

µ(x − y + ∆)
µ(x + ∆)

· µ(x + ∆)
µ2∗(x + ∆)

µ2(dy)

= 2−1.

Let 1 ≤ k ≤ N . By Fatou’s lemma again, we have

lim inf
n→∞

µ(xn + ∆)
(ν(1))k∗(xn + ∆)

≥ lim
n→∞

µ(xn + ∆)
(ν(1))N∗(xn + ∆)

×
∫

R
lim inf
n→∞

(ν(1))k∗(xn − y + ∆)
(ν(1))k∗(xn + ∆)

(ν(1))(N−k)∗(dy)

= ∞.

Here we used (ν(1))k∗ ∈ L∆. Hence,

lim
n→∞

(ν(1))k∗(xn + ∆)
µ(xn + ∆)

= 0.

Take ϵ > 0 satisfying (11). As (ν(1))k∗ ∈ L∆, there is
M > 0 such that

(ν(1))k∗(xn − y + ∆)
(ν(1))k∗(xn + ∆)

≤ Meϵ|y|

for y ∈ R and all sufficiently large xn. Notice that (11)
yields ∫ 0

−∞
e−ϵyµ2(dy) < ∞.

Hence, using Theorem 26.8 of [13], we see∫
R

eϵ|y|µ2∗
2 (dy) ≤

(∫
R

eϵ|y|µ2(dy)
)2

< ∞.

For 1 ≤ k ≤ N ,

lim sup
n→∞

(ν(1))k∗ ∗ µ2∗
2 (xn + ∆)

µ(xn + ∆)

≤ lim sup
n→∞

(ν(1))k∗(xn + ∆)
µ(xn + ∆)

×
∫

R

(ν(1))k∗(xn − y + ∆)
(ν(1))k∗(xn + ∆)

µ2∗
2 (dy)

≤ lim sup
n→∞

(ν(1))k∗(xn + ∆)
µ(xn + ∆)

× M

∫
R

eϵ|y|µ2∗
2 (dy)

= 0.

Now we see from Theorem 26.8 of [13] that

µ2∗
2 (x) = o(exp(−αx log x))
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for some α > 0. Furthermore, µ ∈ L∆ yields

lim
x→∞

eαx log xµ(x + ∆) = ∞.

Thus, for k = 0,

lim
n→∞

(ν(1))k∗ ∗ µ2∗
2 (xn + ∆)

µ(xn + ∆)
= lim

n→∞

µ2∗
2 (xn + ∆)
µ(xn + ∆)

= 0.

Notice that

µ2∗
1 = e−2c

∞∑
k=0

(2c)k

k!
(ν(1))k∗

and recall that e−c2N > 1. Here we have

2 = lim
n→∞

µ2∗(xn + ∆)
µ(xn + ∆)

(23)

= lim
n→∞

e−2c
∞∑

k=N+1

(2c)k

k!
(ν(1))k∗ ∗ µ2∗

2 (xn + ∆)

µ(xn + ∆)
.

Furthermore, we have

µ ∗ µ2(xn + ∆)
µ(xn + ∆)

≤ e−c
N∑

k=0

ck

k!
(ν(1))k∗ ∗ µ2∗

2 (xn + ∆)
µ(xn + ∆)

+ec2−(N+1)

e−2c
∞∑

k=N+1

(2c)k

k!
(ν(1))k∗ ∗ µ2∗

2 (xn + ∆)

µ(xn + ∆)
.

Hence it follows that

lim sup
n→∞

µ ∗ µ2(xn + ∆)
µ(xn + ∆)

≤ ec2−N .(24)

Therefore we obtain from (22), (23) and (24) that

1 = lim
n→∞

µ2∗(xn + ∆)
µ2∗(xn + ∆)

≥ 2−1 lim inf
n→∞

µ2∗(xn + ∆)/µ(xn + ∆)
µ ∗ µ2(xn + ∆)/µ(xn + ∆)

≥ 2−1 · 2
ec2−N

> 1.

This is a contradiction. Thus,

lim inf
x→∞

(ν(1))N∗(x + ∆)
µ(x + ∆)

> 0

and thereby we see from (21) that

(ν(1))N∗(x + ∆) ≍ µ(x + ∆).

As (ν(1))N∗ ∈ L∆ and µ ∈ S∆, it follows from Lemma 2.2
that (ν(1))N∗ ∈ S∆. Furthermore, we have ν(1) ∈ S∆ by
Lemma 2.5.

Remark 3.1. If we can show that ν(1) ∈ L∆ implies µ ∈
L∆, the proof of this proposition becomes simple. We could
not do it, but find the way to avoid using it. Here we pose
an open problem:
Problem. If ν(1) ∈ L∆, then does it hold that µ ∈ L∆?

We have prepared for the proof of the theorem. Now we
prove Theorem 1.2.

Proof of Theorem 1.2. We see from Propositions 3.1 and
3.2 that (iii) implies (ii), and that (i) implies (ii). Suppose
that (ii) holds. It follows from Corollary 1.2 that µ1 ∈ S∆

and
µ1(x + ∆) ∼ ν(x + ∆).

By virtue of Theorem 26.8 of [13], we have

µ2(x + ∆) = o(exp(−αx log x)) for some α > 0.

Furthermore, as ν(1) ∈ L∆, we have

lim
x→∞

eαxν(1)(x + ∆) = ∞.

These yield that

lim
x→∞

µ2(x + ∆)
ν(1)(x + ∆)

= 0.

Here (11) implies that∫
R

e−ϵyµj(dy) < ∞ for j = 1, 2.

Hence it follows from Lemma 2.4 that

lim
x→∞

µ1 ∗ µ2(x + ∆)
ν(x + ∆)

= 1.

This is assertion (iii) and thereby, we see that µ ∈ L∆. We
obtain from Lemma 2.2 that µ ∈ S∆ too. Assertion (i) also
has been proved.
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