
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Bit-parallel Computation for String Alignment

Yu, Yunqing
Faculty of Information Science and Electrical Engineering, Kyushu University

Baba, Kensuke
Faculty of Information Science and Electrical Engineering, Kyushu University

E, Hanmei
Faculty of Information Science and Electrical Engineering, Kyushu University

Murakami, Kazuaki
Faculty of Information Science and Electrical Engineering, Kyushu University

https://hdl.handle.net/2324/15562

出版情報：Lecture Series on Computer and Computational Sciences. 7 (A), pp.589-593, 2006-10.
Brill
バージョン：
権利関係：

Bit-parallel Computation for String Alignment∗

Yunqing Yu Kensuke Baba† Hanmei E Kazuaki Murakami

Abstract

One of the most important ideas in data mining is
alignment of two strings. This idea is based on a dis-
tance on strings and the most popular and simple one
is the edit distance. For two strings of lengths m and
n, the alignment and the edit distance is computed
in O(mn) time by dynamic programming approach.
Bit-parallelism can speed-up the computation of the
edit distance w times, where w is the word size of a
computer, however this parallelism can not be applied
straightforwardly to computing the alignment. This
paper proposes a bit-parallel algorithm to compute all
the possible alignments.
Keywords: String alignment, dynamic programming,
bit-parallelism.

1 Introduction

In an analysis of biology in terms of strings or a min-
ing on a large-scale data base, the basic and the most
important idea is similarity on strings. For example,
the base of some homology-search systems [5, 1] prac-
tically used in biology is the idea of edit distance [7]
and its generalization [6], and more specific analysis
are operated on the idea of alignment which is a cor-
respondence of the characters.

The edit distance between two strings is the mini-
mal number of edit operations which transforms one
string to the other string, where the permitted oper-
ations are “insertion”, “deletion”, and “replacement”
on a character, therefore it is the minimal value of the
number of the edit operations with respect to all the
possible correspondences between each characters of
two strings. The correspondence of the characters is
an alignment and formally represented by strings over
the alphabet {I,D, R,M}, where the characters spec-
ify the operations “insertion”, “deletion”, “replace-
ment”, and “match”, respectively [2]. For example, an
alignment from the string entry to the string empty
is represented by the string MRIMDM and the edit

∗An edited version of this report was published in: Se-
lected Papers from the International Conference of Computa-
tional Methods in Sciences and Engineering 2006 (ICCMSE
2006), Lecture Series on Computer and Computational Sci-
ences, vol.7(A), pp.589–593, VSP/Brill, Oct, 2006.

†Faculty of Information Science and Electrical Engineering,
Kyushu University, baba@i.kyushu-u.ac.jp

distance is 3 as follows.

e n t r y
e m p t y
M R I M D M

The edit distance for two strings of lengths m and
n is computed in O(mn) time by dynamic program-
ming approach [7]. In this approach, for two strings,
the cost matrix is evaluated, whose (i, j)-element is
the edit distance between the prefix of length i of a
string and the prefix of length j of the other string.
The alignment is also obtained by remembering how
each element was decided. Bit-parallelism is an ap-
proach of speed-up for string processing. The main
idea is to represent each state of the processes as a bit-
sequence, and compute plural states simultaneously by
logical operations. Myers [4] introduced an algorithm
based on this idea which computes a general case of
the edit distance for two strings of lengths m and n in
O(dm/wen) time, where w is the word size of a com-
puter (with a suitable computational model). The es-
sential idea of the algorithm by Myers is to compute a
column of a cost matrix as a bit-vector in a constant
time.

The idea of bit-parallelism could not be applied
straightforwardly to computing the alignment since
only the last line of a cost matrix is computed explic-
itly. Hyyrö [3] proposed a bit-parallel computation
method according to the edit distance and recovering
an optimal alignment. However, two or more align-
ments corresponding to an edit distance can exist and
some applications require not to restrict the candidate
of their data mining in the syntactic phase. Our aim in
this paper is to construct a bit-parallel algorithm to
compute all the alignments which correspond to the
edit distance for given two strings.

2 Pointer Matrix

Let Σ be a finite set of characters. For an integer
n > 0, Σn denotes the set of strings each of length
n over Σ, and Σ∗ denotes the set of the strings over
Σ. Let ε be the empty string and Σ+ = Σ∗ − {ε}.
Then, for s ∈ Σ+, |s| denotes the length of s and s[i]
denotes the ith character of s for 1 ≤ i ≤ |s|. The
string si = s[1]s[2] · · · s[i] for 1 ≤ i ≤ |s| is a prefix of

1

Baba Lab. Technical Report 2

s. For a ∈ Σ, an denotes the string constructed by n
a’s.

Let Sa = {sa | s ∈ S} for S ⊆ Σ∗ and a ∈ Σ.
An edit transcript from p ∈ Σ∗ to q ∈ Σ∗ is a string
on {I,D, R,M}, such that, the set T (p, q) of the edit
transcripts from p to q is

• T (p, q) = {ε} if pq = ε;

• T (p, q) = T (p, q′)I if p = ε and q = q′a for a ∈ Σ;

• T (p, q) = T (p′, q)D if p = p′a and q = ε for a ∈ Σ;

• T (p, q) = T (p, q′)I + T (p′, q)D + T (p′, q′)R if p =
p′a, q = q′b, and a 6= b for a, b ∈ Σ;

• T (p, q) = T (p, q′)I + T (p′, q)D + t(p′, q′)M if p =
p′a, q = q′b, and a = b for a, b ∈ Σ.

An optimal edit-transcript from p to q is an edit tran-
script in which the number of occurrences of I, D, and
R is minimal in T (p, q), and the number is called the
edit distance between p and q, denoted by d(p, q).

Let To(p, q) be the set of the optimal edit-transcripts
from p to q. Then, the (i, j)-element of the pointer ma-
trix P from p ∈ Σm to q ∈ Σn is the set of characters
such that P [i, j] = {ε} if i = 0 and j = 0, {I} if i = 0
and j 6= 0, and {D} if i 6= 0 and j = 0, and, for
1 ≤ i ≤ m and 1 ≤ j ≤ n,

• I ∈ P [i, j] if To(pi, qj−1)I ⊆ To(pi, qj),

• D ∈ P [i, j] if To(pi−1, qj)D ⊆ To(pi, qj),

• R ∈ P [i, j] if To(pi−1, qj−1)R ⊆ To(pi, qj),

• M ∈ P [i, j] if To(pi−1, qj−1)M ⊆ To(pi, qj).

3 Dynamic Programming Ap-
proach and Bit-parallelism

The edit distance and the optimal edit-transcripts for
two strings are evaluated by computing the cost matrix
whose (i, j)-element is the edit distance between the
prefix of length i of a string and the prefix of length
j of the other string. By the definition of the edit
distance, the (i, j)-element of the cost matrix C for
p, q ∈ Σ∗ is

C[i, j] = min{C[i− 1, j − 1] + δ(p[i], q[j]),
C[i− 1, j] + 1,

C[i, j − 1] + 1}
for 1 ≤ i ≤ |p| and 1 ≤ j ≤ |q|, where δ(a, b) is 0 if
a = b, and 1 if a 6= b for a, b ∈ Σ. The base condi-
tions are C[0, j] = j and C[i, 0] = i. Since the (m,n)-
element of the cost matrix is the edit distance between
p ∈ Σm and q ∈ Σn, the edit distance is obtained by
computing mn elements of the matrix. The optimal

edit-transcripts are evaluated by searching how each
element was decided by the min operation, and this
searching corresponds to backtracking on the pointer
matrix from the last element.

Bit-parallelism is an idea of speed-up for computing
the cost matrix. Consider the cost matrix for p ∈ Σm

and q ∈ Σn. Let

• ∆vj [i] = d(pi, qj)− d(pi−1, qj) for 1 ≤ i ≤ m and
0 ≤ j ≤ n,

• ∆hj [i] = d(pi, qj)− d(pi, qj−1) for 0 ≤ i ≤ m and
1 ≤ j ≤ n.

Since C[i, 0] = i for 1 ≤ i ≤ m and C[0, j] = j for
1 ≤ j ≤ n, C[m,n] is obtained by computing the
vectors ∆vj and ∆hj for 1 ≤ j ≤ n. If we assume that
the bit-wise operations are done simultaneously in an
unit time, computing a ∆vi takes O(dm/we) time for a
word-size w. Therefore, this idea yields w times speed-
up, however can not be applied straightforwardly to
edit-transcripts since only the last line of a cost matrix
is computed explicitly.

4 Bit-parallel Algorithm for
Pointer Matrix

We introduce a bit-parallel algorithm to compute the
optimal edit-transcripts for given two strings. First,
we prepare the following bit-vectors:

• Ej [i] is 1 if p[i] = q[j], and 0 otherwise, for 1 ≤
i ≤ m and 1 ≤ j ≤ n;

• V p
j [i] (V m

j [i]) is 1 if ∆vj [i] = 1 (resp. −1), and 0
otherwise, for 1 ≤ i ≤ m and 0 ≤ j ≤ n;

• Hp
j [i] (Hm

j [i]) is 1 if ∆hj [i] = 1 (resp. −1), and 0
otherwise, for 0 ≤ i ≤ m and 1 ≤ j ≤ n.

Then, by the definition, we have the following relations
between the pointer matrix and the bit-vectors: for
1 ≤ i ≤ m and 1 ≤ j ≤ n,

• I ∈ P [i, j] if and only if Hp
j [i] = 1;

• D ∈ P [i, j] if and only if V p
j [i] = 1;

• R ∈ P [i, j] if and only if Ej [i] = 0, Hm
j [i−1] = 0,

and V m
j−1[i] = 0;

• M ∈ P [i, j] if and only if Ej [i] = 1.

To apply the previous relations to a bit-parallel al-
gorithm, we represent the pointer matrix P by the bit-
sequences P I , PD, PR, and PM such that P a

j [i] is 1
if a ∈ P [i, j], and 0 otherwise for a ∈ {I,D, R, M}.
Then, an algorithm to compute the optimal edit-
transcripts is:

Baba Lab. Technical Report 3

1. input p ∈ Σm and q ∈ Σn;

2. for j = 1, 2, . . . , n, compute Ej and PM
j = Ej ;

3. V p = 1m and V m = 0;

4. for j = 1, 2, . . . , n

4.1. Xv = Ej ∨V m and Xh = Ej ∨ (((Ej ∧V p)+
V p)⊕ V p);

4.2. Hp = V m ∨ ¬(Xh ∨ V p), P I
j = Hp, and

Hm = V p ∧Xh;

4.3. (Hp ¿) + 1 and Hm ¿;

4.4. V p = Hm ∨ ¬(Xv ∨ Hp), PD
j = V p, and

V m = Hp ∧Xv;

4.5. PR
j = ¬(Ej ∨Hm ∨ V m);

5. output P I , PD, PR, and PM as P ,

where the notation ∨, ∧, ¬, ⊕, and ¿ represent the
bit-operations “OR”, “AND”, “NOT”, “XOR”, and
“shift to left”, respectively.

5 Conclusion

We proposed the bit-parallel algorithm to compute
all the optimal edit-transcripts for two strings as the
pointer matrix. The pointer matrix can be obtained as
the cost matrix is computed. The backtracking in [3] is
one of the methods to find an optimal edit-transcript
from the pointer matrix and the edit transcript is the
first string under a lexicographical order. Clearly, our
algorithm can find such an edit transcript by connect-
ing the corresponding elements of the pointer matrix
as the elements are computed, and the lexicographical
order depends on which matrix is considered in P I ,
PD, PR, and PM .

References

[1] S. F. Altschul, W. Gish, W. Miller, E. W. Myers,
and D. J. Lipman. Basic local alignment search
tool. J. Mol. Biol., 215(3):403–410, 1990.

[2] D. Gusfield. Algorithms on Strings, Trees, and Se-
quences. Cambridge University Press, New York,
1997.

[3] H. Hyyrö. A note on bit-parallel alignment com-
putation. In Proc. Prague Stringology Conference
’04 (PSC2004), 2004.

[4] G. Myers. A fast bit-vector algorithm for approxi-
mate string matching based on dynamic program-
ming. J. ACM, 46(3):395–415, May 1999.

[5] W. R. Pearson and D. J. Lipman. Improved
tools for biological sequence comparison. In Proc.
Natl. Acad. Sci. USA, volume 85, pages 2444–2448,
April 1988.

[6] T. F. Smith and M. S. Waterman. Identification
of common molecular subseqences. J. Mol. Biol.,
147:195–197, 1981.

[7] R. A. Wagner and M. J. Fischer. The string-to-
string correction problem. J. ACM, 21(1):168–173,
January 1974.

