
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Approximate String Matching Based on Bit
Operations

E, Hanmei
Faculty of Information Science and Electrical Engineering, Kyushu University

Yu, Yunqing
Faculty of Information Science and Electrical Engineering, Kyushu University

Baba, Kensuke
Faculty of Information Science and Electrical Engineering, Kyushu University

Murakami, Kazuaki
Faculty of Information Science and Electrical Engineering, Kyushu University

https://hdl.handle.net/2324/15561

出版情報：Lecture Series on Computer and Computational Sciences. 7 (A), pp.195-198, 2006-10.
Brill
バージョン：
権利関係：



Approximate String Matching Based on Bit Operations∗

Hanmei E Yunqing Yu Kensuke Baba† Kazuaki Murakami

Abstract

The bit-parallelism is a speedup method for solving
problems of string matching. The speedup by the bit-
parallelism depends on the performance of a computer
and it is very significant in practice. In terms of time
complexity based on a standard computational model,
however, the performance cannot be represented ex-
plicitly. This paper introduces a parameter in a com-
putational model to measure the performance of a
computer, and explicitly analyses the time complexity
of a bit-parallel algorithm for the match-count prob-
lem. The implementation of the algorithm and some
test calculations are presented.
Keywords: Approximate string matching, bit-
parallelism, match-count problem, score vector.

1 Introduction

The problem of string matching [3, 4] is to find all
occurrences of a string (called a “pattern”) in an-
other string (called a “text”). The approximate string
matching is defined as the string matching with some
errors allowed. The approximate string matching is
more useful in a wide area of applications, and its most
general form (e.g., the problem of weighted edit dis-
tance [9] and its extension [8]) is the essence of some
interesting systems [7] for homology search in biology.

One of the most active areas for the approximate
string matching is bit-parallelism [6]. The main idea
of this approach is to represent strings as numbers
(or bit sequences) and perform plural comparisons of
characters simultaneously by arithmetic (or bit opera-
tions). Therefore, a practical run-time depends on the
performance of a computer, and this idea can be found
essentially in the Rabin-Karp algorithm [2]. As for the
approximate string matching, we consider the match-
count problem [5] in this paper. For this problem, a
simple and efficient method based on bit-parallelism
is introduced by Baeza-Yate and Gonnet [1], and it
is called the “Shift-Add” method. While a naive

∗An edited version of this report was published in: Se-
lected Papers from the International Conference of Computa-
tional Methods in Sciences and Engineering 2006 (ICCMSE
2006), Lecture Series on Computer and Computational Sci-
ences, vol.7(A), pp.195–198, VSP/Brill, Oct, 2006.

†Faculty of Information Science and Electrical Engineering,
Kyushu University, baba@i.kyushu-u.ac.jp

algorithm (based on character comparison) requires
O(mn) comparisons for input strings of lengths m and
n, an algorithm based on the Shift-Add method re-
quires O(mn log m/w) bit operations, for the word size
w of a computer.

The speedup by bit-parallelism is usually signifi-
cant in practice, however, in a strict sense, it can-
not be represented explicitly in terms of time com-
plexity based on a standard computational model. In
order to solve this problem, in this paper, we intro-
duce a parameter for a computational model to mea-
sure the performance of a computer. We define a set
of bit operations running in a unit time with a pa-
rameter, which restricts the lengths of strings for the
operations. Then, we analyze an algorithm based on
the Shift-Add method in terms of our computational
model, and modify the algorithm in two aspects. One
modification is that we convert each character in a
given string into a single bit character rather than a
bit sequence. By this modification, a straightforward
parallelism can be applied to the Shift-Add algorithm.
The other modification is that we prepare a table for
the computation of the Hamming distance of two bit-
sequences. The algorithms are implemented and some
preliminary tests are presented.

2 Implementation of Algorithm

We modify the Shift-Add algorithm [1] as mentioned
in the previous subsection. For the modification, we
prepare a table for the computation of the Hamming
distance of two bit sequences.

We first convert input strings t = t1t2 · · · tn and
p = p1p2 · · · pm on an alphabet Σ respectively into the
bit-sequences T ∈ {0, 1}n and P ∈ {0, 1}m by the
functions fu for u ∈ Σ such that fu(v) is 1 if u = v,
and 0 otherwise. After the conversion, the ith element
ci of the score vector is obtained by

ci =
∑

u∈Σ

m∑

j=1

fu(ti+j−1) · fu(pj).

The outline of Shift-Add algorithm is shown in Fig-
ure 1, where x ¿ b, x À b, and x∧ y for x, y ∈ {0, 1}∗
are b shift-left operations to x, b shift-right left oper-
ations to x, and an and operation to x and y. The
main idea of our modified algorithm is to apply the

1



Baba Lab. Technical Report 2

Procedure Shift-Add
Input: t = t1t2 · · · tn, p = p1p2 · · · pm

Output: C(t, p) = (c1, c2, . . . , cn−m+1)

b := dlog (m + 1)e ;

for 1 ≤ i ≤ n do E[ti] := 0 ;
for 1 ≤ i ≤ m do {

E[pi] := 0 ;
for 1 ≤ j ≤ m do

E[pi] := (E[pi] ¿ b) + fpj (pi) ;
}

D := 0 ;
for 1 ≤ i ≤ n do {

D := (D À b) + E[ti] ;
ci−m+1 := D ∧ 1b ;

}

Figure 1: The Shift-Add algorithm for the match-
count problem, where 1b is the string constructed by
b unities.

speedup by the parallelism with respect to the word
size w of a computer into the computation of the con-
verted strings rather than the given strings. More-
over, we consider the function Match from Σm × Σm

to {0, 1, . . . ,m} such that, for u, v ∈ Σm, Match(u, v)
is the number of 1 in u ∧ v. This function cannot be
computed in a unit time by a straightforward combi-
nation of some of the operations in the computational
model.

The outline of the modified algorithm is shown in
Figure 2. The computation of the initial conversion
from strings to bit sequences needs O(σ(n+m)) com-
parisons of characters, where σ is the cardinality of
Σ. The computation of the score vector takes O(mn)
time and w elements can be computed simultaneously
if a suitable table of size O(2m) is prepared. In a same
way as the Shift-Add algorithm, we assume that the
score vector is obtained by a straightforward iteration.
Therefore, the time complexity is

(O(σ(n + m)) + O(σmn))/w = O(σmn/w).

3 Experimental Results

We have worked out a new algorithm called Parallel
Shift-Add. It is a modification of the algorithm Shift-
Add with bit-parallelism. We have implemented these
three algorithms: Comparison (the naive comparison-
based algorithm), Shift-Add, and Parallel Shift-Add
and tested for a text of length n = 100, 1, 000, and
10, 000 and a pattern of length m = 4, 8, 32, and 64

Procedure Parallel Shift-Add
Input: t = t1t2 · · · tn, p = p1p2 · · · pm

Output: C(t, p) = (c1, c2, . . . , cn−m+1)

for 1 ≤ i ≤ n−m + 1 do ci := 0 ;
for a ∈ Σ do {

ft := 0, fp := 0 ;
for 1 ≤ i ≤ m do {

ft := (ft ¿ 1) + fa(ti)) ;
fp := (fp ¿ 1) + fa(pi)) ;

}

for 1 ≤ i ≤ n−m + 1 do {
ci := ci + Match(ft, fp) ;
ft := Sl(ft) + fa(tm+i) ;

}
}

Figure 2: The Parallel Shift-Add algorithm for the
match-count problem.

over Σ = {0, 1}8. The word size of the computer which
we used is 32. In the algorithm Parallel Shift-Add, the
size of the table for the function Match is 28 = 256.
The results are shown in Table 3, where each value is
the average of 1, 000 times iteration.

4 Discussions

We introduce a parameter in a computational model in
order to measure the performance of a computer. By
the analysis of the algorithm based on the Shift-Add
method, we extend the algorithm to be adaptable to
a simple parallelism one. Moreover, we implemented
the three algorithms and presented the results.

Although the estimation of the computational time
of our modified algorithm should be less than that
of the simple Shift-Add algorithm, the practical run
time is not so as shown in Table 3. This implies that
the word size w of the computer should be more than
about 100 to receive a benefit of our algorithm. The
main reason for the unexpected result of our program
is the fact that some descriptions of the bit operations
in C-language do not perform as efficiently as we ex-
pected. The other reason is that our program is not
well optimized. As the performance also depends on
the computer processor, hence to refine the compu-
tational model by using other computer processors is
our future work.

References

[1] R. Baeza-Yates and G. H. Gonnet. A new approach
to text searching. Commun. ACM, 35(10):74–82,
1992.



Baba Lab. Technical Report 3

n 100 1,000 10,000
m 4 8 32 64 4 8 32 64 4 8 32 64

Comparison 0.02 0.04 0.13 0.24 0.07 0.13 0.49 0.96 0.67 1.31 4.87 9.59
Shift-Add 0.02 0.03 0.12 0.23 0.03 0.04 0.18 0.35 0.18 0.20 0.72 1.44

Parallel Shift-Add 0.52 0.52 2.06 4.13 4.44 4.50 18.11 35.54 - - - -

Table 1: CPU time comparison between different string matching algorithms.

[2] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.
Introduction to Algorithms, Second Edition. MIT
Press, 2001.

[3] M. Crochemore and W. Rytter. Text Algorithms.
Oxford University Press, 1994.

[4] M. Crochemore and W. Rytter. Jewels of Stringol-
ogy. World Scientific, 2003.

[5] D. Gusfield. Algorithms on Strings, Trees, and Se-
quences. Cambridge University Press, 1997.

[6] G. Navarro. A guided tuor to approximate string
matching. ACM Comput. Surv., 33(1):31–88, 2001.

[7] W. R. Pearson and D. J. Lipman. Improved
tools for biological sequence comparison. In Proc.
Natl. Acad. Sci. USA, volume 85, pages 2444–2448,
1988.

[8] T. F. Smith and M. S. Waterman. Identification
of common molecular subsequences. J. Mol. Biol.,
147:195–197, 1981.

[9] R. A. Wagner and M. J. Fischer. The string-to-
string correction problem. J. ACM, 21(1):168–173,
1974.


