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A Generalization of FFT Algorithms for String Matching∗

Kensuke Baba† Yoshihito Tanaka Tetsuya Nakatoh Ayumi Shinohara

Abstract

There exists an algorithm which solves string match-
ing problem with mismatches by computing a vector
by the fast Fourier transformation (FFT), however,
the time complexity depends on the size of the alpha-
bet. Atallah et al. introduced a randomized algorithm
in which the time complexity has a trade-off with the
accuracy of the estimates for the vector and it was
improved by Baba et al. This paper generalize these
three algorithms in terms of the functions which con-
vert characters into numbers. The generalization pro-
vides that the exact vector is obtained by repeating
the FFT computation at least σ− 1 times, where σ is
the size of the alphabet. Moreover, it gives the exact
variance of the estimates for the vector.

1 Introduction

String matching is to find all occurrences of a pattern
string in a text string. It is important for many kinds
of processes of strings in biology, web-mining, and so
on. The problem which allows substitution to intro-
duce the variations of a pattern is called string match-
ing with mismatches. Refer the textbooks [3, 4, 6] to
know the history and various results. String matching
with mismatches is generally solved by computing the
vector such that for given a text T = t1 · · · tn and a
pattern P = p1 · · · pm, its i-th element is the number
of matches between the substring ti · · · ti+m−1 of the
text T and the pattern P .

The vector can be computed in O(n log m) time by
the fast Fourier transformation (FFT) while a naive
algorithm takes O(mn) time. This approach was es-
sentially developed by Fischer and Paterson [5] and
a generalized algorithm on this approach is described
simply in [6]. In the generalized algorithm, two strings
are converted into binary strings with respect to each
character in the alphabet for the computation of FFT.
Hence, practically, the time complexity of the algo-
rithm depends on the size of the alphabet.
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Atallah et al. [1] introduced a randomized algorithm
of which time complexity is O(kn log m), where k is
the number of samples. In this algorithm, a text and
a pattern are converted into two sequences of complex
numbers by a function from the alphabet to a set of
complex numbers. The expectation of the estimates
for the vector is equal to the exact value and the vari-
ance is independent of the size of the alphabet. Baba
et al. [2] improved the algorithm by simplifying the
function which converts characters into numbers. The
range of the function is the set {−1, 1} instead of the
set of complex numbers, and the variance of the esti-
mates is still independent of the size of the alphabet.

In this paper, we generalize the algorithms for string
matching with mismatches which use FFT and an-
alyze its deterministic version and randomized ver-
sion. Each algorithm is distinguished by correspond-
ing functions which convert characters into numbers.
By this generalization, we show that, in the deter-
ministic version, at least σ − 1 times repetition of
the O(n log m) computation of the FFT is necessary,
where σ is the size of the alphabet. As to the random-
ized version, we analyze the variance of the estimates
generally, which implies that the two randomized al-
gorithms in [1] and [2] give the same variance.

2 Preliminaries

Let Σ be an alphabet. An element of Σ∗ is called
a string. We denote the size of a set S by |S|. Let
σ = |Σ|. The i-th character of a string w is denoted
by wi and i is called its position on w.

The score vector between a text string and a pattern
string is the vector whose i-th element is the number
of matches between the text and the pattern when the
first character of the pattern is positioned at the i-th
character of the text. Let δ be the Kronecker function
from Σ×Σ to {0, 1}, that is, for a, b ∈ Σ, δ(a, b) is 1 if
a = b, and 0 otherwise. For a text string T = t1 · · · tn
and a pattern string P = p1 · · · pm, the score vector
C(T, P ) between T and P is (c1, . . . , ci, . . . , cn−m+1),
where ci =

∑m
j=1 δ(ti+j−1, pj).

The convolution f(i) =
∑m

j=1 g(j) · h(i − j) for
1 ≤ i ≤ m of two functions g and h can be computed in
O(m log m) time by FFT. Therefore, the score vector
between T and P each of length m can be computed in
O(m log m) time if the Kronecker function is expressed
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by (a linear function of) a product of two functions
from Σ to a set of numbers. We additionally apply
the standard technique [3] of partitioning the text,
then the previous argument is extended for T of length
n > m. We part T into overlapping chunks each of size
(1 + α)m and process each chunk separately. Process-
ing one chunk gives αm components of C. Since we
have n/αm chunks and each chunk can be computed
in O((1 + α)m log((1 + α)m)) by FFT, the total time
complexity is (n/αm) · O((1 + α)m log((1 + α)m)) =
O(n log m) by choosing α = O(m).

In the rest of this section, we describe briefly the
three algorithms, that is, a deterministic algorithm
generalized by Gusfield and two randomized algo-
rithms by Atallah et al. and by Baba et al.

Standard Algorithm A standard algorithm which
computes the exact score vector by FFT is summa-
rized in [6]. In the algorithm, a text string and a
pattern string are converted into binary strings with
respect to each character and the score vector is the
sum of all results of convolutions. For example, when
Σ = {a, b, c}, the functions φ1, φ2, φ3 which convert
the characters into {1, 0} are the following:

φ1 φ2 φ3

a 1 0 0
b 0 1 0
c 0 0 1

Then, δ(a, b) =
∑3

`=1 φ`(a) ·φ`(b). Therefore, the i-th
element ci of the score vector between T = t1 · · · tn and
P = p1 · · · pm is ci =

∑3
`=1

∑m
j=1 φ`(ti+j−1) · φ`(pj).

Thus, the score vector is obtained by computing the
convolution

∑m
j=1 φ`(ti+j−1) · φ`(pj) for 1 ≤ i ≤ n

three times. In general, the i-th element is

ci =
|Φ|∑

`=1

m∑

j=1

φ`(ti+j−1) · φ`(pj) (1)

and the time complexity is O(σn log m) since |Φ| = σ.
Algorithm by Atallah et al. Atallah et al. intro-

duced a randomized algorithm to compute the score
vector. A function φ` which converts characters into
numbers is defined to be φ`(a) = ωϕ`(a) for a ∈ Σ,
where ϕ` is a functions from Σ to the set {0, . . . , σ−1}
and ω is the primitive σ-th root of unity. Then, the
exact score vector is the average of the results for all
possible ϕ`, that is,

ci =
1
|Φ|

|Φ|∑

`=1

m∑

j=1

φ`(ti+j−1) · φ`(pj), (2)

where Φ is the set of all functions φ` and ωx = ω−x.
Since |Φ| = σσ, the exact score vector is computed
in O(σσn log m). An estimate for the score vector is
the average with respect to some functions chosen in-
dependently and uniformly from Φ. Therefore, the

expectation of the estimates is equal to the score vec-
tor and the variance is independent of the size of an
alphabet.

Theorem 1 ([1]) An estimate for the score vector
between a text of length n and a pattern of length m
can be computed in time O(kn log m), where k is the
number of iterations in the algorithm. The mean of the
estimation equals to the score vector, and the variance
of each entry is bounded by (m− ci)2/k.

Algorithm by Baba et al. Another randomized
algorithm is given in [2]. This algorithm can be re-
garded as a simplification of the previous one. The
codomain of the function φ` is simply the set {−1, 1}
and |Φ| = 2σ. The score vector is

ci =
1
|Φ|

|Φ|∑

`=1

m∑

j=1

φ`(ti+j−1) · φ`(pj). (3)

Hence, the deterministic version runs in O(2σn log m)
time. The randomized version is obtained in the same
way and the variance of the estimations is bounded by
(m − ci)2/k. Therefore, Theorem 1 is also shown by
this algorithm.

3 Generalization of the Algo-
rithms

We define a function ψ from Σ to the set of numerical
vectors to be

ψ(a) = (φ1(a), . . . , φ|Φ|(a))

for a ∈ Σ. Then, ψ is expressed by σ vectors on |Φ|-
dimensional space, for example, the vectors in the ex-
ample of the standard algorithm are (1, 0, 0), (0, 1, 0),
and (0, 0, 1). The following lemma gives conditions to
compute the score vector by FFT in terms of ψ.

Lemma 1 The score vector between a text of length
n and a pattern of length m can be computed by FFT
in O(dn log m) time, if we have a function ψ from Σ
to the d-dimensional vector space such that:
(1) ψ(a) 6= ψ(b) for any a, b ∈ Σ (a 6= b);
(2) |ψ(a)| is constant for any a ∈ Σ;
(3) 〈ψ(a)|ψ(b)〉 is constant for any a, b ∈ Σ (a 6= b).
Proof. By (2) and (3), 〈ψ(a)|ψ(a)〉 = α and
〈ψ(a)|ψ(b)〉 = β for any a, b ∈ Σ (a 6= b) with con-
stants α and β. By (1), α is not equal to β. Hence, the
Kronecker function is δ(a, b) = (〈ψ(a)|ψ(b)〉−β)/(α−
β). Therefore, by the definition of the score vector,

ci =
m∑

j=1

1
α− β

(〈ψ(ti+j−1)|ψ(pj)〉 − β)

=
|Φ|∑

`=1

1
α− β




m∑

j=1

φ`(ti+j−1) · φ`(pj)− βm

|Φ|


 .(4)
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Thus, the exact score vector is computed in
O(|Φ|n log m) time. 2

This lemma implies that the number of the itera-
tions of the O(n log m) computation is equal to the
cardinality of the set Φ of all functions which convert
characters into numbers. In the standard algorithms,
α = 1 and β = 0, hence Eq. (1) is obtained from
Eq. (4). In the same way, we have Eq. (2) and Eq. (3)
since α = |Φ| and β = 0 in the two algorithms.

The generalization provides the lower-bound of the
dimension of the vector space which is the range of the
function ψ.

Theorem 2 The exact score vector between a text of
length n and a pattern of length m over an alphabet Σ
is obtained by repeating the O(n log m) computation of
FFT at least σ − 1 times.

To prove the theorem, first, we show an algorithm
to compute the exact score vector by repeating the
FFT computation σ− 1 times. The precise procedure
of the algorithm is constructed in the same way as one
by Atallah et al., hence we show only the existence of
σ−1-vectors which satisfy the conditions in Lemma 1.

Let Σ = {a1, · · · , aσ}. We define a function ψ from
Σ to the (σ − 1)-dimensional vector space as follows:

ψ(ar) =
{

(p1, · · · , pr−1, qr, 0, · · · , 0) 1 ≤ r < σ,
(p1, · · · , pσ−2,−qσ−1) r = σ,

where

pr =
√

σ

(σ − r + 1)(σ − r)
and qr = −

√
σ(σ − r)
σ − r + 1

.

Then, the following lemma is straightforward.

Lemma 2 For 1 ≤ r, s ≤ σ, δ(ar, as) =
(〈ψ(ar)|ψ(as)〉+ 1)σ.

Next, we show that the dimension of any vectors
which satisfy the conditions in Lemma 1 is at least
σ − 1.

Proposition 1 Let σ and d be natural numbers such
that σ ≥ 3 and d < σ − 1. Then, no σ vectors
v1, . . . , vσ in d-dimensional vector space Rd satisfy the
following three conditions:
(1) vr 6= kvs for any 1 ≤ r, s ≤ σ (r 6= s) and k ∈ R;
(2) for some constant α, |vr| = α for any 1 ≤ r ≤ σ;
(3) for some constant β, 〈vr|vs〉 = β for any 1 ≤ r, s ≤
σ (r 6= s).

Proof. We first show that if v1, . . . , vσ ∈ Rσ−1 satisfy
the conditions then β = −α2/(σ−1) and v1+· · ·+vσ =
0. The case σ = 3 is easy. Let u1, . . . , uσ−1 be
σ − 1 vectors such that ui = vi − 〈vi|vσ〉vσ/|vσ|2 =
vi − βvσ/α2 (1 ≤ i ≤ σ − 1). We check u1, . . . , uσ−1

satisfy the conditions. Suppose ui = kuj . Then
vi − βvσ/α2 = k(vj − βvσ/α2). It is easy to see
that k 6= 1. Then, vi = kvj − (k − 1)βvσ/α2. Since
σ ≥ 4, we can take vl with l 6= i, j, σ. Then, β =
〈vi|vl〉 = 〈kvj−(k−1)βvσ/α2|vl〉 = kβ−(k−1)β2/α2.
Since v1, . . . , vσ is in (σ−1)-dimensional vector space,
β 6= 0. Hence, β = α2. However, this is contradiction,
since v1, . . . , vσ satisfy the first condition, again. The
second and the third conditions follow immediately,
since for any i and any j 6= i, |ui|2 = α2 − β2/α2

and 〈ui|uj〉 = β − β2/α2. Since the σ-th elements
of all u1, . . . , uσ−1 are 0, they are in the (σ − 2)-
dimensional vector space. Hence, by induction hy-
pothesis, β − β2/α2 = 〈ui|uj〉 = −|ui|2/(σ − 2) =
−(α2 − β2)/α2(σ − 2). Therefore, β = −α2/(σ − 1),
since v1, . . . , vσ satisfy the first condition. Moreover,
v1+ · · ·+vσ =

∑σ−1
i=1 (vi−βvσ/α2) = u1+ · · ·+uσ−1 =

0. This complete the proof of the claim. Now, we
show the proposition. Suppose there exist σ-vectors
v1, . . . , vσ in d-dimensional vector space. Then, by the
claim, v1 + · · · + vd+1 = 0 and v2 + · · · + vd+2 = 0.
Hence, v1 = vd+2, which is contradiction. 2

By Lemmas 1 and 2 and Proposition 1, we have
Theorem 2.

4 Randomized Algorithm

The deterministic algorithm described in Section 3 can
be extended to a randomized version in which an es-
timate is provided by choosing some functions inde-
pendently and uniformly from Φ. We define a sample
si,` of an element ci of the score vector between a text
T = t1 · · · tn and a pattern P = p1 · · · pm to be

si,` =
m∑

j=1

φ`(ti+j−1) · φ`(pj)

for a chosen function φ`. Then, by Eq. (4), the esti-
mate ei obtained from k samples whose expectation
equals to the score ci is

ei =
|Φ|
k

k∑

`=1

1
α− β

(
si,` − βm

|Φ|
)

,

where α = |ψ(a)| and β = 〈ψ(a)|ψ(b)〉 (a 6= b). By
the basic property of variance, the variance of the es-
timates is V (ei) = |Φ|2V (si,`)/k(α− β)2.

Since each ci is defined in a similar way and we can
assume n = m without any loss of generality, we omit
i in the rest of this paper.

In order to analyze the variance accurately, we de-
fine a function ρT,P from Σ × Σ to the set of non-
negative integer for each text T = t1 . . . tm and each
pattern P = p1 . . . pm to be

ρT,P (a, b) = |{j | tj = a, pj = b, 1 ≤ j ≤ m}|.
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We omit the subscription T, P of ρT,P in the sequel.

Lemma 3 The variance of the sample is

V (s`) =
∑

a,b∈Σ

ρ(a, a)ρ(b, b)
(

ξ(a, a, b, b)− α2

|Φ|2
)

+ 2
∑

a,b,c∈Σ,b6=c

ρ(a, a)ρ(b, c)
(

ξ(a, a, b, c)− αβ

|Φ|2
)

+
∑

a,b,c,d∈Σ,a6=b,c 6=d

ρ(a, b)ρ(c, d)
(

ξ(a, b, c, d)− β2

|Φ|2
)

,

where ξ(a, b, c, d) =
∑|Φ|

`=1 φ`(a)·φ`(b)·φ`(c)·φ`(d)/|Φ|.
Proof. Let E(s`) be the mean of the samples. Then
V (s`) =

∑|Φ|
`=1 s2

`/|Φ| −E(s`)2. By the definition of ρ,

1
|Φ|

|Φ|∑

`=1

s2
` =

1
|Φ|

|Φ|∑

`=1


 ∑

a,b∈Σ

φ`(a)φ`(b)ρ(a, b)




2

=
∑

a,b,c,d∈Σ

ρ(a, b)ρ(c, d)ξ(a, b, c, d)

=
∑

a,b,c,d∈Σ,a=b,c=d

ρ(a, b)ρ(c, d)ξ(a, b, c, d)

+ 2
∑

a,b,c,d∈Σ,a=b,c 6=d

ρ(a, b)ρ(c, d)ξ(a, b, c, d)

+
∑

a,b,c,d∈Σ,a6=b,c 6=d

ρ(a, b)ρ(c, d)ξ(a, b, c, d).

On the other hand,

E(s`)2 =
(

α− β

|Φ| E(e) +
βm

|Φ|
)2

=
α2

|Φ|2
∑

a,b∈Σ

ρ(a, a)ρ(b, b)

+
2αβ

|Φ|2
∑

a,b,c∈Σ,b 6=c

ρ(a, a)ρ(b, c)

+
β2

|Φ|2
∑

a,b,c,d∈Σ,a6=b,c6=d

ρ(a, b)ρ(c, d).

2

Theorem 3 In the randomized algorithms by Atal-
lah et al. and by Baba et al., the variance of the
estimates for the score vector is exactly equal to∑

a,b∈Σ,a 6=b ρ(a, b)(ρ(a, b) + ρ(b, a))/k.

Proof. In these algorithms, α = |Φ| and β = 0.
Since φ`(a)2 = 1 for any φ` ∈ Φ and any a ∈ Σ,
we have ξ(a, a, b, b) = 1 and ξ(a, a, b, c) = 0 for any
a, b, c ∈ Σ (b 6= c). Moreover, if a 6= b and c 6= d,
then ξ(a, b, c, d) is 1 if either a = c and b = d, or
a = d and b = c, and 0 otherwise. Therefore, by
Lemma 3, the variance of the estimates is V (s`)/k =∑

a,b∈Σ,a 6=b ρ(a, b)(ρ(a, b) + ρ(b, a))/k. 2

It should be remarked that the variance for the al-
gorithm by Baba et al. is obtained by Lemma 6 in
[2].

We can extend the standard algorithm and the al-
gorithm in the proof of Theorem 2 to randomized ver-
sions. However, by Lemma 3, the variance of the es-
timates in each algorithm depends on the size of an
alphabet.

5 Conclusion

We generalized three algorithms for the problem of
string matching with mismatches which use FFT and
analyze its deterministic version and randomized ver-
sion. The generalization reduce the difference of each
algorithm to the difference of the functions which con-
vert characters into numbers. This observation pro-
vides that the exact score is obtained by repeating the
computation by FFT at least σ − 1 time, where σ is
the size of an alphabet, and the variances in the two
randomized algorithms by Atallah et al. and by Baba
et al. have the same value.
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