Stability and convergence of a Galerkin-characteristics finite element scheme of lumped mass type

Pironneau, Olivier
Laboratoire Jacques-Louis Lions, Paris VI university

Tabata, Masahisa
Faculty of Mathematics, Kyushu University

http://hdl.handle.net/2324/15554
Stability and convergence of a Galerkin-characteristics finite element scheme of lumped mass type

O. Pironneau & M. Tabata

MI 2009-32

(Received October 2, 2009)
Stability and convergence of a
Galerkin-characteristics finite element
scheme of lumped mass type

Olivier Pironneau† and Masahisa Tabata‡
† Laboratoire Jacques-Louis Lions, Paris VI university,
75252 Paris Cedex 05, France
‡ Faculty of Mathematics, Kyushu University,
Motooka, Nishi-ku, Fukuoka, 819-0395, Japan

Abstract
A Galerkin-characteristics finite element scheme of lumped mass type is presented for the convection diffusion problems. Under the weakly acute triangulation hypothesis the scheme is proved to be unconditionally stable and convergent in the maximum-norm. Using freefem, we show 2D and 3D numerical examples, which reflect the robustness of the scheme and the theoretical convergence result.

1 Introduction
Upwinding for convection-diffusion equations approximated by the Finite Element Methods was first introduced by Heinrich et al. [6] and Tabata [13] in the late seventies. After 40 years and many other methods it is still difficult to choose among the various existing schemes one which is conservative, with small numerical viscosity, unconditionally stable and positive. The most popular choices are SUPG, its Galerkin Least Square variant [7], Deconninck’s PSI method [8], Discontinuous-Galerkin [4] or Galerkin-characteristics (see [9] and the bibliography therein).

Galerkin-characteristics FEM has a lot of potential but it is not so easy to find a second order variant [11] and its convergent properties are ruined by quadrature errors, at least in theory [12]. Although it is common knowledge that in practice Galerkin-characteristics FEM is an excellent method, as applied mathematicians we think it is risky to work with a method which can potentially go wrong. Even if it is fundamental, the problem is sufficiently important to be dealt with and so the object of this paper is to show -with proofs- that there is at least one case where the method can be shown to

1Correspondence: tabata@math.kyushu-u.ac.jp
converge and even if it is an order one case, nevertheless it is a method which outperform other first order methods.

The paper gives a new proof of convergence of the method with quadrature and mass lumping, based on L^∞-estimates and restricted to weakly acute triangulations. A numerical implementation is given in 2D and 3D using freefem[5] and compared with one SUPG and one Discontinuous-Galerkin method.

Throughout this paper we use θ^n_i as a real number depending on i and n such that $|\theta^n_i| \leq 1$. The symbol c with or without subscripts is used for a generic positive constant independent of the discretization parameters, which may take a different value at each occurrence.

2 L^∞-stability

Let Ω be a convex polygonal (or polyhedral) domain in \mathbb{R}^2 (or \mathbb{R}^3), and T be a positive number.

Let $\phi : \Omega \times (0,T) \to \mathbb{R}$ be the solution of the convection-diffusion equation,

$$\frac{\partial \phi}{\partial t} + u \cdot \nabla \phi - \nu \Delta \phi = f \quad \text{in } \Omega \times (0,T), \quad (1a)$$

$$\phi = 0 \quad \text{on } \Gamma \times (0,T), \quad (1b)$$

$$\phi = \phi^0 \quad \text{in } \Omega, \text{ at } t = 0, \quad (1c)$$

where $u : \Omega \times (0,T) \to \mathbb{R}^d$ is a given velocity vanishing on Γ, $f : \Omega \times (0,T) \to \mathbb{R}$ be a given function, and $\phi^0 : \Omega \to \mathbb{R}$ is a given initial function.

Let $T_h \equiv \{K\}$ be a partition of Ω (by triangles in $d = 2$ and by tetrahedra in $d = 3$), and Δt be a time increment. We set $N_T = \lfloor T/\Delta t \rfloor$. Let $X_h(\subset H^1(\Omega))$ be the P1-finite element space, and V_h be $X_h \cap H^1_0(\Omega)$. We consider the following Galerkin-characteristics finite element scheme of lumped mass type:

Find $\{\phi^n_h\}_{n=1}^{N_T} \subset V_h$ such that, for $n = 1, \cdots, N_T$,

$$\left(\frac{\phi^n_h - I_h(\phi^{n-1}_h \circ X^n_h)}{\Delta t}, \bar{v}_h\right) + \nu a(\phi^n_h, v_h) = \left(I_h f^n, \bar{v}_h\right), \quad \forall v_h \in V_h \quad (2a)$$

$$\phi^0_h = I_h \phi^0. \quad (2b)$$
Here, (\cdot, \cdot) is the inner product in $L^2(\Omega)$,

$$a(\phi, v) = (\nabla \phi, \nabla v),$$

$$X_h^0(x) = x - \Delta t \ u(x, n \Delta t),$$

\hspace{2cm} (3)

$I_h : C(\Omega) \to X_h$ is the interpolation operator defined by

$$(I_h v)(P) = v(P), \quad (\forall \text{ node } P \in \Omega),$$

$\bar{\cdot} : V_h \to L^2(\Omega)$ is the lumping operator defined by

$$\bar{v}_h(x) = v_h(P), \quad (x \in D_P)$$

and D_P is the barycentric domain [1] associated with node P shown in Fig. 1,

\hspace{2cm}

$$D_P = \bigcup_K \{D^K_P; P \in K \in \mathcal{T}_h\}$$

$$D^K_P = \bigcap_{j=1}^d \{x; x \in K, \lambda_Q(j)(x) \leq \lambda_P(x)\},$$

where $\{P, Q(1), \cdots, Q(d)\}$ is the set of the vertices of K and $\{\lambda_P, \lambda_Q(1), \cdots, \lambda_Q(d)\}$ is the system of the barycentric coordinates.

\hspace{2cm}

Figure 1: The barycentric domain D_P associated with P.

Let N be the number of interior nodes, and $w_{hi}, i = 1, \cdots, N$, be the base function associated with node $P_i \in \Omega$,

$$w_{hi} \in V_h, \quad w_{hi}(P_j) = \delta_{ij}, \quad i \neq j, \quad i, j = 1, \cdots, N.$$

Let $A = \{a_{ij}\}$ be the stiffness matrix with

$$a_{ij} = a(w_{hj}, w_{hi}), \quad i, j = 1, \cdots, N.$$

3
Hypothesis 1 $a_{ij} \leq 0$ for $i \neq j$, $i, j = 1, \ldots, N$.

Remark 1 A sufficient condition for Hypothesis 1 in $d = 2$ is that the triangulation is of weakly acute type, i.e., every angle of any triangle is equal to or less than $\pi/2$ [3]. Furthermore, a weaker sufficient condition for Hypothesis 1 in $d = 2$ is, for any edge E,

$$\alpha^E_1 + \alpha^E_2 \leq \pi,$$

where α^E_i, $i = 1, 2$, are two angles (of two elements sharing E) opposite to E [10].

Let $\vec{\phi}_n^h$ be the unknown N-vector consisting of the values of ϕ_n^h at nodes P_i and $\psi_{n-1}^h \equiv \phi_{n-1}^h \circ X_n^P$. Setting $v_h = w_{hi}$, $i = 1, \ldots, N$, in (2), we get a system of linear equations

$$\left(\frac{1}{\Delta t} \bar{M} + \nu A \right) \vec{\phi}_n^h = \frac{1}{\Delta t} \bar{M} \vec{\psi}_{n-1}^h + \bar{M} \vec{f}_{n-1}^h,$$

(4)

where \bar{M} is a diagonal matrix whose diagonal component m_i is

$$m_i = \text{meas}D_{P_i}$$

by virtue of the lumping. Similarly, setting $v_h = w_{hi}$ in (2) and dividing the i-th equation by m_i, we obtain another equivalent equations, for $i = 1, \ldots, N$,

$$\frac{1}{\Delta t} \left(\phi_n^h(P_i) - (\phi_{n-1}^h \circ X_n^P)(P_i) \right) + \frac{\nu}{m_i} \sum_{j=1}^N a_{ij} \phi_n^h(P_j) = f^n(P_i).$$

(5)

For a set of functions $\{\phi^n\}_{n=0}^{N_T}$, we define norms,

$$\|\phi\|_{L^\infty(L^\infty)} \equiv \max_{0 \leq n \leq N_T} \|\phi^n\|_{L^\infty(\Omega_h)}, \quad \|\phi\|_{L^1(L^\infty)} \equiv \sum_{n=0}^{N_T} \Delta t \|\phi^n\|_{L^\infty(\Omega_h)}.$$

(6)

We have the following stability result.

Lemma 1 Under Hypothesis 1, scheme (2) is unconditionally L^∞-stable, i.e., it holds

$$\|\phi_n^h\|_{L^\infty(L^\infty)} \leq \|\phi_0^h\|_{L^\infty} + \|I_h f\|_{L^1(L^\infty)}.$$

(7)
Proof. Operating $\Delta t \bar{M}^{-1}$ from left to (4), we obtain

$$(I + \nu \Delta t \bar{M}^{-1} A) \tilde{\phi}_h^n = \tilde{\psi}_h^{n-1} + \Delta t \tilde{f}_h^{n-1}.$$

Since the matrix of the left-hand side,

$$G \equiv I + \nu \Delta t \bar{M}^{-1} A$$

is an M-matrix from Hypothesis 1 and

$$\sum_{j=1}^{N} g_{ij} \geq 1, \quad i = 1, \ldots, N,$$

we get

$$|\phi_h^n(P_i)| \leq |\psi_h^{n-1}|_{L^\infty} + \Delta t |I_h f^a|_{L^\infty} \leq |\phi_h^{n-1}|_{L^\infty} + \Delta t |I_h f^a|_{L^\infty},$$

which implies

$$||\phi_h^n||_{L^\infty} \leq ||\phi_h^{n-1}||_{L^\infty} + \Delta t ||I_h f^a||_{L^\infty}.$$

Summing up the above equations, we obtain (7).

Remark 2 The result of Lemma 1 can be extended to reaction-convection-diffusion equations. Let $b \in C(\bar{\Omega} \times [0,T])$ be a given function. We replace (1a) by

$$\frac{\partial \phi}{\partial t} + u \cdot \nabla \phi - \nu \Delta \phi + b \phi = f \quad \text{in } \Omega \times (0,T). \quad (8)$$

We consider the scheme,

$$\left(\frac{\tilde{\phi}_h^n - \bar{I}_h(\phi_h^{n-1} \circ X_h^n)}{\Delta t}, \bar{v}_h \right) + \nu a(\phi_h^n, \bar{v}_h) + (\bar{I}_h(b_h^n)^+ - \bar{I}_h(b_h^n)^-) \bar{\phi}_h^{n-1}, \bar{v}_h)$$

$$= (\bar{I}_h f^a, \bar{v}_h), \quad \forall \bar{v}_h \in V_h \quad (9)$$

where

$$b^+ = \max(b,0), \quad b^- = \max(-b,0).$$

For the scheme (9) the result

$$||\phi_h||_{\ell^\infty(L^\infty)} \leq c(||\phi_h^0||_{L^\infty} + ||I_h f||_{L^\infty}) \quad (10)$$

holds, where

$$c = c(||b||_{L^\infty(L^\infty)}, T)$$

is a positive constant independent of h and Δt. For the details including semi-linear functions b we refer to [14].
3 L^∞-convergence

Let $C^{0,+1}(\bar{\Omega})$ be the Lipschitz continuous function space defined by

$$C^{0,+1}(\bar{\Omega}) = \{ f: f \in C(\bar{\Omega}), \| f \|_{0+1,\Omega} < \infty \}$$

equipped with norm

$$\| f \|_{0+1,\Omega} \equiv \max\{|f(x)|; x \in \bar{\Omega}\} + |f|_{0+1,\Omega},$$

where

$$|f|_{0+1,\Omega} \equiv \sup\{|f(x) - f(y)|/|x - y|; x \neq y, x, y \in \Omega\}.$$

Let $C^{0,+1,0}$ and $C^{0,0,+1}$ be function spaces composed of functions $f \in C(\bar{\Omega} \times [0,T])$ such that f is Lipschitz continuous with respect to x and t, respectively. Let $C^{m+1,0}$ and $C^{0,m+1}$, $m \in \mathbb{N}$, be function spaces defined by

$$C^{m+1,0} = \{ f \in C(\bar{\Omega} \times [0,T]); D^\alpha f \in C^{0,+1,0}, \forall \alpha = (\alpha_1, \cdots, \alpha_d), |\alpha| \leq m \},$$

$$C^{0,m+1} = \{ f \in C(\bar{\Omega} \times [0,T]); \partial^n f/\partial t^n \in C^{0,0,+1}, \forall n, 0 < n \leq m \}.$$

Similarly $C^{m+1,n}$ and $C^{n,m+1}$ are defined for $m, n \in \mathbb{N}$. We denote by $C_0(\bar{\Omega})$ the function space consisting of continuous functions vanishing on Γ,

$$C_0(\bar{\Omega}) = \{ f \in C(\bar{\Omega}); f|_{\Gamma} = 0 \}.$$

Let ϕ_h be a function in V_h. Then, ϕ_h has N freedoms at nodes $P_i \in \Omega_h$, $i = 1, \cdots, N$. We identify the function ϕ_h with a discrete function defined on the set of the N nodes P_i. We use the same notation V_h to represent the discrete function space. The space V_h is equipped with the norm

$$\| \phi_h \|_{\ell^\infty} \equiv \max\{|\phi_h(P_i)|; i = 1, \cdots, N\}.$$ \hspace{1cm} (11)

We introduce a finite difference operator $L_h: V_h \rightarrow V_h$ defined by

$$(L_h \phi_h)(P_i) = \frac{1}{m_i} \sum_{j=1}^{N} a_{ij} \phi_h(P_j), \quad i = 1, \cdots, N, \phi_h \in V_h.$$ \hspace{1cm} (12)

Then, (5) can be regarded as a generalized difference equation in V_h,

$$\frac{1}{\Delta t} (\phi^n_h - (\phi_h^{n-1} \circ X^n_h)) + \nu L_h \phi^n_h = f^n_h,$$ \hspace{1cm} (13)
where $\phi_{h}^{n-1} \circ X_{h}^{n}$, and f_{h}^{n} are discrete functions in V_{h}. Corresponding to Lemma 1 we have

Lemma 2 Under Hypothesis 1, scheme (13) is unconditionally stable, i.e., it holds

$$||\phi_{h}||_{\ell^\infty} \leq ||\phi_{h}^{0}||_{\ell^\infty} + ||f_{h}||_{\ell^1(\ell^\infty)}.$$ \hspace{1cm} (14)

Remark 3 Here we treat only the case of homogeneous Dirichlet boundary conditions. For the more general discussion on the inhomogeneous boundary conditions and the Neumann boundary conditions on the generalized difference equations we refer to [15].

We use the same notation I_{h} to represent an operator from $C(\bar{\Omega})$ to the discrete function space V_{h} defined by

$$(I_{h}\phi)(P_{i}) = \phi(P_{i}), \quad i = 1, \ldots, N.$$

Let $L \equiv -\Delta$. It is well-known that L_{h} has no local consistency [14, 16], that is, for $\phi \in C_{0}^{\infty}(\Omega)$

$$||(L_{h}I_{h} - I_{h}L)\phi||_{\ell^\infty} \neq 0, \quad (h \to +0).$$

To recover the local consistency we introduce the operator J_{h} [15],

$$J_{h} : C^{2+1}(\bar{\Omega}) \cap C_{0}(\Omega) \to V_{h}$$

defined by

$$a(J_{h}\phi, v_{h}) = (L\phi, v_{h}), \quad \forall v_{h} \in V_{h},$$

where V_{h} is considered to be the finite element space. $J_{h}\phi$ is nothing but the discrete function whose nodal values are those of the P_{1}-finite element solution for the Poisson equation subject to the homogeneous Dirichlet boundary conditions.

Proposition 1 Suppose $\phi \in C^{2+1}(\bar{\Omega}) \cap C_{0}(\bar{\Omega})$. Then, there exists a constant c_{1} independent of h and ϕ, and for any $\epsilon > 0$ there exists a constant c_{ϵ} independent of h and ϕ such that

$$||(L_{h}J_{h} - I_{h}L)\phi||_{\ell^\infty} \leq c_{1}h||\phi||_{2+1,\Omega}, \quad (15)$$

$$||(I_{h} - J_{h})\phi||_{\ell^\infty} \leq c_{\epsilon}h^{2-\epsilon}||\phi||_{1+1,\Omega}. \quad (16)$$

7
In the case \(d = 3 \) we can take \(\epsilon = 0 \).

Proof. Let \(\phi \in C^{2+1}(\bar{\Omega}) \cap C_0(\bar{\Omega}) \). From the definition of \(L_h \) and \(J_h \) we have for any \(P_i, i = 1, \cdots, N \),

\[
(L_h J_h \phi)(P_i) = \frac{1}{m_i} a(J_h \phi, w_{hi}) = \frac{1}{m_i} (L \phi, w_{hi}) = (L \phi)(P_i) + c_1 \theta_i h |\phi|_{2+1}.
\] (17)

Here we have used the property \(m_i = (1, w_{hi}) \) and the Taylor expansion to obtain the last estimate. From (17) we get (15). (16) is nothing but the \(L_\infty \)-error estimate for the \(P_1 \)-finite element method [2]. In the case of \(d = 2 \) the power of \(-\epsilon\) is necessary to eliminate the logarithmic term \(|\ln h|\), which appears in the estimate only in \(d = 2 \).

To prove the convergence we assume the regularity of the functions \(\phi, u, \) and \(f \).

Hypothesis 2

\[
\phi \in C^{2+1,0} \cap C^{0+1,1} \cap C^{1,0+1} \cap C^{0,1+1},
\] (18)

\[
u \in C(\bar{\Omega} \times [0, T]), \quad f \in C(\bar{\Omega} \times [0, T]).
\]

Theorem 1 Assume Hypotheses 1 and 2. Let \(\phi_h \) be the solution of (2). Then, for any \(\epsilon \in (0, 1) \) we have

\[
||\phi_h - I_h \phi||_{\ell_\infty(L_\infty)} \leq c_\epsilon \left(h + \Delta t + \frac{h^{2-\epsilon}}{\Delta t} \right),
\] (19)

where \(c_\epsilon \) is independent of \(\Delta t \) and \(h \). By taking \(\Delta t = O(h) \) we have

\[
||u_h - I_h u||_{\ell_\infty(L_\infty)} \leq c_\epsilon h^{1-\epsilon}.
\] (20)

In \(d = 3 \) we can take \(\epsilon = 0 \).

Proof. Since \(\phi \in C^{2+1,0} \cap H_0^1(\Omega) \), we set \(e_h \equiv \phi_h - J_h \phi \in M_h \). From (16) we have

\[
||\phi_h - I_h \phi||_{\ell_\infty(L_\infty)} \leq ||e_h||_{\ell_\infty(L_\infty)} + ||(J_h - I_h) \phi||_{\ell_\infty(L_\infty)} \\
\leq ||e_h||_{\ell_\infty(L_\infty)} + c_\epsilon h^{2-\epsilon} ||\phi||_{C^{1+1,0}}.
\] (21)
From (13) we have
\[
\frac{1}{\Delta t} (e^n_h - e^{n-1}_h \circ X^n_h) + \nu L_h e^n_h
\]
\[= f^n_h - \left\{ \frac{1}{\Delta t} (J_h \phi^n - (J_h \phi^{n-1}) \circ X^n_h) + \nu L_h J_h \phi^n \right\}
\]
\[= I_h f^n - \left\{ \frac{1}{\Delta t} (I_h \phi^n - (I_h \phi^{n-1}) \circ X^n_h) + \nu I_h L \phi^n \right\}
\]
\[= \frac{1}{\Delta t} \left\{ (J_h - I_h) \phi^n - (J_h - I_h) \phi^{n-1} \circ X^n_h \right\} - \nu (L_h J_h - I_h L) \phi^n
\]
\[\equiv I_1 + I_2 + I_3 + I_4 \equiv F^n_h.
\] (23)

At node P_i, $I_1 + I_2$ is evaluated as
\[
f^n(P_i) - \frac{1}{\Delta t} \left\{ \phi^n(P_i) - \phi^{n-1}(P_i - \Delta tu^n(P_i)) \right\} + \nu \Delta \phi^n(P_i)
\]
\[= f(P_i, n\Delta t) - \frac{\partial \phi}{\partial t}(P_i, n\Delta t) - (u \cdot \nabla \phi)(P_i, n\Delta t) + \nu \Delta \phi(P_i, n\Delta t)
\]
\[+ c\theta^n_t \Delta t(||\phi||_{(C^{0,1+\gamma\cap C^{1,0+1}})(Q^n)} + ||u^n||_{L\infty} ||\phi||_{(C^{1+1,0,\gamma\cap C^{0,1+1}})(Q^n)}),
\]
which implies
\[|I_1 + I_2| \leq c\Delta t(||\phi||_{(C^{0,1+\gamma\cap C^{1,0+1}})(Q^n)} + ||u^n||_{L\infty} ||\phi||_{(C^{1+1,0,\gamma\cap C^{0,1+1}})(Q^n)}),
\] (24)

where $Q^n \equiv \bar{\Omega} \times [(n-1)\Delta t, n\Delta t]$. By virtue of (15) and (16), I_3 and I_4 are evaluated as
\[|I_3| \leq c_\epsilon \frac{h^{2-\epsilon}}{\Delta t} ||\phi||_{C^{1+1,0,\gamma}(\bar{\Omega})} + ||\phi^{n-1}||_{C^{1+1,0,\gamma}(\bar{\Omega})},
\] (25)
\[|I_4| \leq c\eta ||\phi^n||_{C^{2+1,0,\gamma}(\bar{\Omega})}.
\]

Combining (24), (25) and (26), we obtain
\[||F^n_h||_{L^1(\Omega)} \leq c_\epsilon \frac{h^{2-\epsilon}}{\Delta t} ||\phi||_{C^{1+1,0,\gamma}(Q^n)} + c(h ||\phi||_{C^{2+1,0,\gamma}(Q^n)}
\]
\[+ \Delta t(||\phi||_{(C^{0,1+\gamma\cap C^{1,0+1}})(Q^n)} + ||u||_{L\infty} ||\phi||_{(C^{1+1,0,\gamma\cap C^{0,1+1}})(Q^n)}).
\] (27)

Applying Lemma 2 to (22), we have
\[||e_h||_{L^\infty(\Omega)} \leq ||e_h^n||_{L^\infty} + ||F^n_h||_{L^1(\Omega)}
\]
\[\leq c_\epsilon \frac{h^{2-\epsilon}}{\Delta t} ||\phi||_{C^{1+1,0}} + c(h ||\phi||_{C^{2+1,0}}
\]
\[+ \Delta t(||\phi||_{C^{0,1+\gamma\cap C^{1,0+1}} + ||u||_{L\infty} ||\phi||_{C^{1+1,0,\gamma\cap C^{0,1+1}}})).
\]
The above estimate and (21) imply (19).

Remark 4 $X^n_h(x)$ defined by (3) is the first-order approximation of the characteristic curve. Now we replace it by the second-order approximation,

$$X^n_h(x) = x - u^n \left(x - u^n(x) \frac{\Delta t}{2} \right) \Delta t,$$

which improves the estimate (24) to Δt^2. Furthermore, if the triangulation is uniform, e.g., of Friedrichs-Keller type [16], we have a better estimate

$$|| (L_h J_h - I_h L) \phi ||_{L^\infty} \leq c_1 h^{2-\epsilon} || \phi ||_{L^3+1, \Omega}$$

in place of (15) [15]. In this case we have an improved result,

$$|| \phi_h - I_h \phi ||_{L^\infty} \leq c_1 \left(h^2 + \Delta t^2 + \frac{h^{2-\epsilon}}{\Delta t} \right). \tag{28}$$

By taking $\Delta t = O(h^{2/3})$ we have

$$|| u_h - I_h u ||_{L^\infty} \leq c_1 h^{4/3-\epsilon}. \tag{29}$$

In $d = 3$ we can take $\epsilon = 0$.

Remark 5 The result of Theorem 1 can be extended to the reaction-convection-diffusion equation (8) and the estimate (19) holds for the scheme (9).

4 Numerical tests

4.1 The rotating hill

A point $x^0 = (x_1^0, x_2^0)^T$ convected by $u(x) = (x_2, -x_1)^T$ is in fact rotated at time t to $x^0(t) = (x_1^0 \cos t + x_2^0 \sin t, -x_1^0 \sin t + x_2^0 \cos t)^T$. So consider

$$\phi_e(x, t) = e^{-\lambda t + ||x - x^0(t)||^2 r(t)}.$$

It verifies

$$\frac{\partial \phi_e}{\partial t} = \left(-\lambda + ||x - x^0(t)||^2 \ddot{r} - 2r \dot{x}_0 \cdot (x - x^0(t)) \right) \phi_e,$$

$$u \cdot \nabla \phi_e = 2u \cdot (x - x^0(t)) \dot{r} \phi_e, \quad \Delta \phi_e = 4r \phi_e + 4r^2 ||x - x^0(t)||^2 \phi_e.$$

Since $\dot{x}_0(t) \cdot (x - x^0(t)) = u \cdot (x - x^0(t))$, we have

$$\frac{\partial \phi_e}{\partial t} + u \cdot \nabla \phi_e - \nu \Delta \phi_e + (\lambda + 4r \nu) \phi_e = ||x - x^0(t)||^2 \phi_e (\dot{r} - 4r^2 \nu).$$

With $r(t) = -1/(4rt + t_0)$ the right hand side is zero.
4.2 Convergence study

We consider the following problem: find ϕ such that $\phi = \phi_e$ initially and on the boundary and

$$\frac{\partial \phi}{\partial t} + u \cdot \nabla \phi - \nu \Delta \phi + (\lambda + 4r\nu)\phi = 0.$$

Here we assume $\lambda \geq 4\nu t_0^{-1}$, which implies $\lambda + 4r\nu \geq 0$. Obviously the solution is $\phi = \phi_e$.

The problem is discretized by (2) with a second order scheme for X^n_h, namely

$$X^n_h(x) = x - u \left(x - u(x) \frac{\Delta t}{2} \right) \Delta t.$$

A Delaunay-Voronoi mesh generator is used for the triangulations of the unit circle. It does not necessarily gives a mesh of weakly acute type but it usually comes fairly close (Figure 2-left). We tested meshes with 942, 2,023 and 7,876 vertices, corresponding respectively to 75, 150 and 300 boundary vertices. The time step is controlled by N_T which for each mesh is 23 then 45 then 90. The other parameters are

$x^0_1 = 0.35$, $x^0_2 = 0.35$, $T = 2\pi$, $\Delta t = T / N_T$, $\nu = 0$ or 0.01, $t_0 = 0.2$, $\lambda = 4\nu / t_0$.

Figure 2-right shows a log-log plot of the errors in both cases. The left (resp. right) plots of Figure 3 shows the exact and computed solutions after one turn of convection-diffusion-dissipation for the coarsest of the 3 meshes in the case $\nu = 0$ (resp. $\nu = 0.01$).

4.3 Comparison with two other methods

For comparison we have also implemented the SUPG/Least square Galerkin method and a Discontinuous-Galerkin method.

SUPG reads:

$$\int_\Omega \left(\frac{\phi^m - \phi^{m-1}}{\Delta t} + u \cdot \nabla \phi \right) (w_h + \alpha u \cdot \nabla w_h) + \int_\Omega \nu \nabla \phi^m \cdot \nabla w_h = 0.$$

Results are shown on Figure 4

With homogeneous Dirichlet conditions the dual Discontinuous-Galerkin methods reads:

$$\int_\Omega \left(\frac{\phi^m - \phi^{m-1}}{\Delta t} + u \cdot \nabla \phi^m \right) w_h + \nu \nabla \phi^m \cdot \nabla w_h + \int_E w_h (\alpha |\mathbf{n} \cdot u| - \frac{1}{2} \mathbf{n} \cdot u) [\phi^m] = 0$$

11
Figure 2: The coarsest of the 3 meshes (left) and a log-log plot of the error in the case $\nu = 0$ and $\nu = 0.01$; both seems somewhat better than order one.

Figure 3: Exact and computed solutions after one turn of convection-diffusion-dissipation for the coarsest of the 3 meshes in the case $\nu = 0$ (left) and $\nu = 0.01$ (right).
Figure 4: Top row: Performance of a SUPG-Galerkin least-square method with $\alpha = 0.1$ in the case $\nu = 0$ (left) and $\nu = 0.01$ (right). Bottom row: Performance of a Discontinuous Galerkin method in the case $\nu = 0$ (left) and $\nu = 0.01$ (right). Note that the views are not from the same angle so as to enhance the vision of the difference between the exact and the computed curves (exact curves forms the higher hill of the two).
for all \(w_h \in V_h \).

Here \(E \) is the set of inner edges and \([b]\) is the jump of \(b \) from the local triangle to triangle on the other side of \(E \). In the test shown on Figure 4 \(\alpha = \frac{1}{2} \). Table 1 shows the errors for the problem with diffusion \(\nu = 0.01 \) integrated numerically without upwinding, with SUPG upwinding, and with the Galerkin-characteristics method.

Table 1: \(L^2 \)-errors to compare several methods with and without diffusion. In both cases the Galerkin-characteristics method (G-C) out-perform the others. The numbers of time steps are proportional to the number of mesh points \(N \) on the boundary and the total number of mesh points is proportional to \(N^2 \).

<table>
<thead>
<tr>
<th>N</th>
<th>(\nu = 0.01) Centered</th>
<th>SUPG</th>
<th>G-C</th>
<th>(\nu = 0) D-G</th>
<th>SUPG</th>
<th>G-C</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>6.96 e-2</td>
<td>6.65 e-2</td>
<td>9.74 e-3</td>
<td>2.88 e-1</td>
<td>2.87 e-1</td>
<td>4.06 e-2</td>
</tr>
<tr>
<td>150</td>
<td>4.47 e-2</td>
<td>4.29 e-2</td>
<td>2.27 e-3</td>
<td>2.14 e-1</td>
<td>2.13 e-1</td>
<td>1.02 e-2</td>
</tr>
<tr>
<td>300</td>
<td>2.66 e-2</td>
<td>2.56 e-2</td>
<td>8.31 e-4</td>
<td>1.48 e-1</td>
<td>1.46 e-1</td>
<td>2.54 e-3</td>
</tr>
</tbody>
</table>

4.4 Tests in 3 dimensions

The same test can be performed in 3D with version 3 of freefem++. The geometry is the cube \((-1,1)^3\). The convection field is a rotation about the \(x_3 \)-axis, \(u = (x_2, -x_1, 0)\) and the initial solution is the analytical solution \(\phi_e \) at \(t = 0 \):

\[
\phi_e(x, t) = e^{-\lambda t + |x - x^0(t)|^2 r(t)},
\]

which satisfies

\[
\frac{\partial \phi_e}{\partial t} + u \cdot \nabla \phi_e - \nu \Delta \phi_e + (\lambda + 6r \nu) \phi_e = 0,
\]

when \(r(t) = -1/(4\nu t + t_0) \).

The numerical implementation with freefem++ is simple; the script is

```cpp
int M=30;
real x0=0.35, y0=0.35, z0=0, dt=2*pi/M, nu=0, t0=0.2, lam=6*nu/t0, t=0;
mesh Th2=square(M,M,[x*2-1,y*2-1]);
fespace Vh(th,P13d);
func ue = exp(-lam*t-((x-(x0*cos(t)+y0*sin(t)))^2));
```

14
\begin{verbatim}
+\left(-x_0 \sin(t) + y_0 \cos(t) \right)^2 + \left(z - z_0 \right)^2 \right) / (4 \nu t + t_0));
Vh u,v,vo=ue
for(t=0; t<T; t+=dt) {
 solve onestep(u,v,solver=CG)
 = int3d(th)(\nu dt *(dx(u)*dx(v)+dy(u)*dy(v)+dz(u)*dz(v)))
 + int3d(th,qfV=qfV1lump)(u*v*(1+dt*(\lambda- 6*\nu/(4*\nu t+t_0))))
 - int3d(th,qfV=qfV1lump)(vo(x*(1-dt^2)-y*dt,y*(1-dt^2)+x*dt,z)*v)
 + on(1,u=ue);
 vo=u;
}
\end{verbatim}

The results for the same parametric values as in 2D and \(z_0 = 0, \nu = 0 \) and \(\nu = 0.01 \) are shown on Figures 5 and 6, respectively, for a uniform mesh of the unit cube corresponding to \(N = 30 \) points on each edge of the cube. The decreasing of \(L^2 \) errors \(e(N) \) as a function of \(N \) is as follows:

\[
e(10) = 4.77 \times 10^{-2}, \quad e(20) = 9.99 \times 10^{-3}, \quad e(40) = 2.32 \times 10^{-3}.
\]

5 Concluding remarks

We have presented a Galerkin-characteristics finite element scheme of lumped mass type for the convection diffusion problems. In this scheme no numerical quadrature is required. Under the weakly acute triangulation hypothesis we have proved the scheme is unconditionally stable and convergent in the \(L^\infty \)-norm. For the P1-element the convergence order is essentially \(O(h) \) by choosing \(\Delta t = O(h) \). 2D and 3D numerical results have shown the robustness of the scheme and reflected the theoretical convergence result.

Acknowledgment

We are grateful to Frédéric Hecht for his extension of freefem++ to handle mass lumping in finite element integrals in 3D. The second author was supported by the Japan Society for the Promotion of Science under Grant-in-Aid for Scientific Research (S), No.20224001 and by the Ministry of Education, Culture, Sports, Science and Technology of Japan under Global COE Program, Mathematics for Industry.
Figure 5: Galerkin-characteristics with mass lumping for the rotating hill in 3D with $\nu = 0$. Display of the solution at $t = 4.0$ and after one turn; finally comparison with the analytical solution after one turn in the plane $x_3 = 0$.

Figure 6: Galerkin-characteristics with mass lumping for the rotating hill in 3D with $\nu = 0.01$. Display of the solution after one turn and comparison with the analytical solution in the plane $x_3 = 0$.
References

List of MI Preprint Series, Kyushu University
The Global COE Program
Math-for-Industry Education & Research Hub

MI

MI2008-1 Takahiro ITO, Shuichi INOKUCHI & Yoshihiro MIZOGUCHI
Abstract collision systems simulated by cellular automata

MI2008-2 Eiji ONODERA
The initial value problem for a third-order dispersive flow into compact almost Hermitian manifolds

MI2008-3 Hiroaki KIDO
On isosceles sets in the 4-dimensional Euclidean space

MI2008-4 Hirofumi NOTSU
Numerical computations of cavity flow problems by a pressure stabilized characteristic-curve finite element scheme

MI2008-5 Yoshiyasu OZEKI
Torsion points of abelian varieties with values in infinite extensions over a p-adic field

MI2008-6 Yoshiyuki TOMIYAMA
Lifting Galois representations over arbitrary number fields

MI2008-7 Takehiro HIROTsu & Setsuo TANIGUCHI
The random walk model revisited

MI2008-8 Silvia GANDY, Masaaki KANNO, Hirokazu ANAI & Kazuhiro YOKOYAMA
Optimizing a particular real root of a polynomial by a special cylindrical algebraic decomposition

MI2008-9 Kazufumi KIMOTO, Sho MATSUMOTO & Masato WAKAYAMA
Alpha-determinant cyclic modules and Jacobi polynomials
MI2008-10 Sangyeol LEE & Hiroki MASUDA
Jarque-Bera Normality Test for the Driving Lévy Process of a Discretely Observed Univariate SDE

MI2008-11 Hiroyuki CHIHARA & Eiji ONODERA
A third order dispersive flow for closed curves into almost Hermitian manifolds

MI2008-12 Takehiko KINOSHITA, Kouji HASHIMOTO and Mitsuhiro T. NAKAO
On the L^2 a priori error estimates to the finite element solution of elliptic problems with singular adjoint operator

MI2008-13 Jacques FARAUT and Masato WAKAYAMA
Hermitian symmetric spaces of tube type and multivariate Meixner-Pollaczek polynomials

MI2008-14 Takashi NAKAMURA
Riemann zeta-values, Euler polynomials and the best constant of Sobolev inequality

MI2008-15 Takashi NAKAMURA
Some topics related to Hurwitz-Lerch zeta functions

MI2009-1 Yasuhide FUKUMOTO
Global time evolution of viscous vortex rings

MI2009-2 Hidetoshi MATSUI & Sadanori KONISHI
Regularized functional regression modeling for functional response and predictors

MI2009-3 Hidetoshi MATSUI & Sadanori KONISHI
Variable selection for functional regression model via the L_1 regularization

MI2009-4 Shuichi KAWANO & Sadanori KONISHI
Nonlinear logistic discrimination via regularized Gaussian basis expansions

MI2009-5 Toshiro HIRANOUCHI & Yuichiro TAGUCHII
Flat modules and Groebner bases over truncated discrete valuation rings
MI2009-6 Kenji KAJIWARA & Yasuhiro OHTA
Bilinearization and Casorati determinant solutions to non-autonomous 1+1 dimensional discrete soliton equations

MI2009-7 Yoshiyuki KAGEI
Asymptotic behavior of solutions of the compressible Navier-Stokes equation around the plane Couette flow

MI2009-8 Shohei TATEISHI, Hidetoshi MATSUI & Sadanori KONISHI
Nonlinear regression modeling via the lasso-type regularization

MI2009-9 Takeshi TAKAISHI & Masato KIMURA
Phase field model for mode III crack growth in two dimensional elasticity

MI2009-10 Shingo SAITO
Generalisation of Mack’s formula for claims reserving with arbitrary exponents for the variance assumption

MI2009-11 Kenji KAJIWARA, Masanobu KANEKO, Atsushi NOBE & Teruhisa TSUDA
Ultradiscretization of a solvable two-dimensional chaotic map associated with the Hesse cubic curve

MI2009-12 Tetsu MASUDA
Hypergeometric Φ-functions of the q-Painlevé system of type $E_8^{(1)}$

MI2009-13 Hidenao IWANE, Hitoshi YANAMI, Hirokazu ANAI & Kazuhiro YOKOYAMA
A Practical Implementation of a Symbolic-Numeric Cylindrical Algebraic Decomposition for Quantifier Elimination

MI2009-14 Yasunori MAEKAWA
On Gaussian decay estimates of solutions to some linear elliptic equations and its applications

MI2009-15 Yuya ISHIHARA & Yoshiyuki KAGEI
Large time behavior of the semigroup on L^p spaces associated with the linearized compressible Navier-Stokes equation in a cylindrical domain
MI2009-16 Chikashi ARITA, Atsuo KUNIBA, Kazumitsu SAKAI & Tsuyoshi SAWABE
Spectrum in multi-species asymmetric simple exclusion process on a ring

MI2009-17 Masato WAKAYAMA & Keitaro YAMAMOTO
Non-linear algebraic differential equations satisfied by certain family of elliptic functions

MI2009-18 Me Me NAING & Yasuhide FUKUMOTO
Local Instability of an Elliptical Flow Subjected to a Coriolis Force

MI2009-19 Mitsunori KAYANO & Sadanori KONISHI
Sparse functional principal component analysis via regularized basis expansions and its application

MI2009-20 Shuichi KAWANO & Sadanori KONISHI
Semi-supervised logistic discrimination via regularized Gaussian basis expansions

MI2009-21 Hiroshi YOSHIDA, Yoshihiro MIWA & Masanobu KANEKO
Elliptic curves and Fibonacci numbers arising from Lindenmayer system with symbolic computations

MI2009-22 Eiji ONODERA
A remark on the global existence of a third order dispersive flow into locally Hermitian symmetric spaces

MI2009-23 Stjepan LUGOMER & Yasuhide FUKUMOTO
Generation of ribbons, helicoids and complex scherk surface in laser-matter Interactions

MI2009-24 Yu KAWAKAMI
Recent progress in value distribution of the hyperbolic Gauss map

MI2009-25 Takehiko KINOSHITA & Mitsuhiro T. NAKAO
On very accurate enclosure of the optimal constant in the a priori error estimates for H^2_0-projection
MI2009-26 Manabu YOSHIDA
 Ramification of local fields and Fontaine’s property (Pm)

MI2009-27 Yu KAWAKAMI
 Value distribution of the hyperbolic Gauss maps for flat fronts in hyperbolic
 three-space

MI2009-28 Masahisa TABATA
 Numerical simulation of fluid movement in an hourglass by an energy-stable
 finite element scheme

MI2009-29 Yoshiyuki KAGEI & Yasunori MAEKAWA
 Asymptotic behaviors of solutions to evolution equations in the presence of
 translation and scaling invariance

MI2009-30 Yoshiyuki KAGEI & Yasunori MAEKAWA
 On asymptotic behaviors of solutions to parabolic systems modelling chemotaxis

MI2009-31 Masato WAKAYAMA & Yoshinori YAMASAKI
 Hecke’s zeros and higher depth determinants

MI2009-32 Olivier PIRONNEAU & Masahisa TABATA
 Stability and convergence of a Galerkin-characteristics finite element scheme
 of lumped mass type