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Abstract

A Galerkin-characteristics finite element scheme of lumped mass
type is presented for the convection diffusion problems. Under the
weakly acute triangulation hypothesis the scheme is proved to be un-
conditionally stable and convergent in the maximum-norm. Using
freefem, we show 2D and 3D numerical examples, which reflect the
robustness of the scheme and the theoretical convergence result.

1 Introduction

Upwinding for convection-diffusion equations approximated by the Finite
Element Methods was first introduced by Heinrich et al. [6] and Tabata
[13] in the late seventies. After 40 years and many other methods it is still
difficult to choose among the various existing schemes one which is conser-
vative, with small numerical viscosity, unconditionally stable and positive.
The most popular choices are SUPG, its Galerkin Least Square variant
[7], Deconninck’s PSI method[8], Discontinuous-Galerkin [4] or Galerkin-
characteristics (see [9] and the bibliography therein).

Galerkin-characteristics FEM has a lot of potential but it is not so easy
to find a second order variant [11] and its convergent properties are ruined by
quadrature errors, at least in theory [12]. Although it is common knowledge
that in practice Galerkin-characteristics FEM is an excellent method, as
applied mathematicians we think it is risky to work with a method which can
potentially go wrong. Even if it is fundamental, the problem is sufficiently
important to be dealt with and so the object of this paper is to show -with
proofs- that there is at least one case where the method can be shown to

1Correspondence: tabata@math.kyushu-u.ac.jp
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converge and even if it is an order one case, nevertheless it is a method which
outperform other first order methods.

The paper gives a new proof of convergence of the method with quadra-
ture and mass lumping, based on L∞-estimates and restricted to weakly
acute triangulations. A numerical implementation is given in 2D and 3D
using freefem[5] and compared with one SUPG and one Discontinuous-
Galerkin method.

Throughout this paper we use θn
i as a real number depending on i and

n such that |θn
i | ≤ 1. The symbol c with or without subscripts is used

for a generic positive constant independent of the discretization parameters,
which may take a different value at each occurrence.

2 L∞-stability

Let Ω be a convex polygonal (or polyhedral) domain in �2 (or �3), and T
be a positive number.

Let φ : Ω × (0, T ) → � be the solution of the convection-diffusion equa-
tion,

∂φ

∂t
+ u · ∇φ− νΔφ = f in Ω × (0, T ), (1a)

φ = 0 on Γ × (0, T ), (1b)

φ = φ0 in Ω, at t = 0, (1c)

where u : Ω×(0, T ) → �d is a given velocity vanishing on Γ, f : Ω×(0, T ) →
� be a given function, and φ0 : Ω → � is a given initial function.

Let Th ≡ {K} be a partition of Ω (by triangles in d = 2 and by tetrahedra
in d = 3) , and Δt be a time increment. We set NT = �T/Δt	. Let Xh(⊂
H1(Ω)) be the P1-finite element space, and Vh be Xh ∩H1

0 (Ω). We consider
the following Galerkin-characteristics finite element scheme of lumped mass
type:

Find {φn
h}

NT
n=1 ⊂ Vh such that, for n = 1, · · · , NT ,

(
φ̄n

h − Īh(φn−1
h ◦Xn

h )
Δt

, v̄h

)
+ νa(φn

h, vh) =
(
Īhf

n, v̄h

)
, ∀vh ∈ Vh (2a)

φ0
h = Ihφ

0. (2b)
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Here, (·, ·) is the inner product in L2(Ω),

a(φ, v) = (∇φ,∇v),
Xn

h (x) = x− Δt u(x, nΔt), (3)

Ih : C(Ω̄) → Xh is the interpolation operator defined by

(Ihv)(P ) = v(P ), (∀node P ∈ Ω̄),

¯ : Vh → L2(Ω) is the lumping operator defined by

v̄h(x) = vh(P ), (x ∈ DP )

and DP is the barycentric domain [1] associated with node P shown in Fig.
1,

DP =
⋃
K

{DK
P ;P ∈ K ∈ Th}

DK
P =

d⋂
j=1

{x;x ∈ K,λQ(j)(x) ≤ λP (x)},

where {P,Q(1), · · · , Q(d)} is the set of the vertices of K and {λP , λQ(1),· · · ,
λQ(d)} is the system of the barycentric coordinates.

Figure 1: The barycentric domain DP associted with P .

Let N be the number of interior nodes, and whi, i = 1, · · · , N , be the
base function associated with node Pi ∈ Ω,

whi ∈ Vh, whi(Pj) = δij , i �= j, i, j = 1, · · · , N.

Let A = {aij} be the stiffness matrix with

aij = a(whj , whi), i, j = 1, · · · , N.
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Hypothesis 1 aij ≤ 0 for i �= j, i, j = 1, · · · , N .

Remark 1 A sufficient condition for Hypothesis 1 in d = 2 is that the
triangulation is of weakly acute type, i.e., every angle of any triangle is
equal to or less than π/2 [3]. Furthermore, a weaker sufficient condition for
Hypothesis 1 in d = 2 is, for any edge E,

αE
1 + αE

2 ≤ π,

where αE
i , i = 1, 2, are two angles (of two elements sharging E) opposite to

E [10].

Let 
φn
h be the unknown N -vector consisting of the values of φn

h(Pi) at
nodes Pi and ψn−1

h ≡ φn−1
h ◦Xn

h . Setting vh = whi, i = 1, · · · , N , in (2), we
get a system of linear equations(

1
Δt

M̄ + νA

)

φn

h =
1

Δt
M̄ 
ψn−1

h + M̄ 
fn−1
h , (4)

where M̄ is a diagonal matrix whose diagonal component mi is

mi = measDPi

by virtue of the lumping. Similarly, setting vh = whi in (2) and dividing
the i-th equation by mi, we obtain another equivalent equations, for i =
1, · · · , N ,

1
Δt

(
φn

h(Pi) − (φn−1
h ◦Xn

h )(Pi)
)

+ ν
1
mi

N∑
j=1

aijφ
n
h(Pj) = fn(Pi). (5)

For a set of functions {φn}NT
n=0 we define norms,

‖φ‖l∞(L∞) ≡ max
0≤n≤NT

‖φn‖L∞(Ωh), ‖φ‖l1(L∞) ≡
NT∑
n=0

Δt‖φn‖L∞(Ωh). (6)

We have the following stability result.

Lemma 1 Under Hypothesis 1, scheme (2) is unconditionally L∞-stable,
i.e., it holds

||φh||�∞(L∞) ≤ ||φ0
h||L∞ + ||Ihf ||�1(L∞). (7)
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Proof. Operating ΔtM̄−1 from left to (4), we obtain(
I + νΔtM̄−1A

)

φn

h = 
ψn−1
h + Δt 
fn−1

h .

Since the matrix of the left-hand side,

G ≡ I + νΔtM̄−1A

is an M-matrix from Hypothesis 1 and
N∑

j=1

gij ≥ 1, i = 1, · · · , N,

we get

|φn
h(Pi)| ≤ ||ψn−1

h ||L∞ + Δt||Ihfn||L∞

≤ ||φn−1
h ||L∞ + Δt||Ihfn||L∞ ,

which implies
||φn

h||L∞ ≤ ||φn−1
h ||L∞ + Δt||Ihfn||L∞ .

Summing up the above equations, we obtain (7).

Remark 2 The result of Lemma 1 can be extended to reaction-convention-
diffusion equations. Let b ∈ C(Ω̄ × [0, T ]) be a given function. We replace
(1a) by

∂φ

∂t
+ u · ∇φ− νΔφ+ bφ = f in Ω × (0, T ). (8)

We consider the scheme,(
φ̄n

h − Īh(φn−1
h ◦Xn

h )
Δt

, v̄h

)
+νa(φn

h, vh) + (Īh(bnh)+φ̄n
h − Īh(bnh)−φ̄n−1

h , v̄h)

=
(
Īhf

n, v̄h

)
, ∀vh ∈ Vh (9)

where
b+ = max(b, 0), b− = max(−b, 0).

For the scheme (9) the result

||φh||�∞(L∞) ≤ c(||φ0
h||L∞ + ||Ihf ||�1(L∞)) (10)

holds, where
c = c(||b||L∞(L∞), T )

is a positive constant independent of h and Δt. For the details including
semi-linear functions b we refer to [14].
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3 L∞-convergence

Let C0+1(Ω̄) be the Lipschitz continuous function space defined by

C0+1(Ω̄) = {f ; f ∈ C(Ω̄), ||f ||0+1,Ω <∞}

equipped with norm

||f ||0+1,Ω ≡ max{|f(x)|; x ∈ Ω̄} + |f |0+1,Ω,

where
|f |0+1,Ω ≡ sup{|f(x) − f(y)|

|x− y| ; x �= y, x, y ∈ Ω}

Let C0+1,0 and C0,0+1 be function spaces composed of functions f ∈ C(Ω̄×
[0, T ]) such that f is Lipschitz continuous with respect to x and t, respec-
tively. Let Cm+1,0 and C0,m+1, m ∈ N, be function spaces defined by

Cm+1,0 = {f ∈ C(Ω̄ × [0, T ];Dαf ∈ C0+1,0,∀α = (α1, · · · , αd), |α| ≤ m},

C0,m+1 = {f ∈ C(Ω̄ × [0, T ];
∂nf

∂tn
∈ C0,0+1,∀n, 0 < n ≤ m}.

Similarly Cm+1,n and Cn,m+1 are defined for m,n ∈ N. We denote by C0(Ω̄)
the function space consisting of continuous functions vanishing on Γ,

C0(Ω̄) = {f ∈ C(Ω̄); f|Γ = 0}.

Let φh be a function in Vh. Then, φh has N freedoms at nodes Pi ∈ Ωh,
i = 1, · · · , N . We identify the function φh with a discrete function defined
on the set of the N nodes Pi. We use the same notation Vh to represent the
discrete function space. The space Vh is equipped with the norm

||φh||�∞ ≡ max{|φh(Pi)|; i = 1, · · · , N}. (11)

We introduce a finite difference operator Lh : Vh → Vh defined by

(Lhφh)(Pi) =
1
mi

N∑
j=1

aijφh(Pj), i = 1, · · · , N, φh ∈ Vh. (12)

Then, (5) can be regarded as a generalized difference equation in Vh,

1
Δt

(
φn

h − (φn−1
h ◦Xn

h )
)

+ νLhφ
n
h = fn

h , (13)
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where φn−1
h ◦ Xn

h , and fn
h are discrete functions in Vh. Corresponding to

Lemma 1 we have

Lemma 2 Under Hypothesis 1, scheme (13) is unconditionally stable,
i.e., it holds

||φh||�∞(�∞) ≤ ||φ0
h||�∞ + ||fh||�1(�∞). (14)

Remark 3 Here we treat only the case of homogeneous Dirichlet bound-
ary conditions. For the more general discussion on the inhomogeneous
boudary conditions and the Neumann boundary conditions on the gener-
alized difference equations we refer to [15].

We use the same notation Ih to represent an operator from C(Ω̄) to the
discrete function space Vh defined by

(Ihφ)(Pi) = φ(Pi), i = 1, · · · , N.

Let L ≡ −Δ. It is well-known that Lh has no local consistency [14, 16], that
is, for φ ∈ C∞

0 (Ω)

||(LhIh − IhL)φ||�∞ �→ 0, (h→ +0).

To recover the local consistency we introduce the operator Jh [15],

Jh : C2+1(Ω̄) ∩ C0(Ω̄) → Vh

defined by
a(Jhφ, vh) = (Lφ, vh), ∀vh ∈ Vh,

where Vh is considered to be the finite element space. Jhφ is nothing but the
discrete function whose nodal values are those of the P1-finite element solu-
tion for the Poisson equation subject to the homogeneous Dirichlet boundary
conditions.

Proposition 1 Suppose φ ∈ C2+1(Ω̄) ∩ C0(Ω̄). Then, there exists a
constant c1 independent of h and φ, and for any ε > 0 there exists a constant
cε independent of h and φ such that

||(LhJh − IhL)φ||�∞ ≤ c1h||φ||2+1,Ω, (15)

||(Ih − Jh)φ||�∞ ≤ cεh
2−ε||φ||1+1,Ω. (16)
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In the case d = 3 we can take ε = 0.

Proof. LLet φ ∈ C2+1(Ω̄)∩C0(Ω̄). From the definition of Lh and Jh we
have for any Pi, i = 1, · · · , N ,

(LhJhφ)(Pi) =
1
mi
a(Jhφ,whi)

=
1
mi

(Lφ,whi)

= (Lφ)(Pi) + c1θih||φ||2+1. (17)

Here we have used the property mi = (1, whi) and the Taylor expansion to
obtain the last estimate. From (17) we get (15). (16) is nothing but the
L∞-error estimate for the P1-finite element method [2]. In the case of d = 2
the power of −ε is necessary to eliminate the logarithmic term | lnh|, which
appears in the estimate only in d = 2.

To prove the convergence we assume the regularity of the functions φ,
u, and f .

Hypothesis 2

φ ∈ C2+1,0 ∩ C0+1,1 ∩ C1,0+1 ∩ C0,1+1, (18)
u ∈ C(Ω̄ × [0, T ]), f ∈ C(Ω̄ × [0, T ]).

Theorem 1 Assume Hypotheses 1 and 2. Let φh be the solution of (2).
Then, for any ε ∈ (0, 1) we have

||φh − Ihφ||�∞(L∞) ≤ cε

(
h+ Δt+

h2−ε

Δt

)
, (19)

where cε is independent of Δt and h. By taking Δt = O(h) we have

||uh − Ihu||�∞(L∞) ≤ cεh
1−ε. (20)

In d = 3 we can take ε = 0.

Proof. Since φ ∈ C2+1,0 ∩ H1
0 (Ω), we set eh ≡ φh − Jhφ ∈ Vh. From

(16) we have

||φh − Ihφ||�∞(L∞) ≤ ||eh||�∞(L∞) + ||(Jh − Ih)φ||�∞(L∞)

≤ ||eh||�∞(L∞) + cεh
2−ε||φ||C1+1,0 . (21)
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From (13) we have

1
Δt

(
enh − en−1

h ◦Xn
h

)
+ νLhe

n
h (22)

=fn
h −

{
1

Δt
(
Jhφ

n − (Jhφ
n−1) ◦Xn

h

)
+ νLhJhφ

n

}

=Ihfn −
{

1
Δt

(
Ihφ

n − (Ihφn−1) ◦Xn
h

)
+ νIhLφ

n

}

− 1
Δt

{
(Jh − Ih)φn − (Jh − Ih)φn−1 ◦Xn

h

}
− ν(LhJh − IhL)φn

≡I1 + I2 + I3 + I4 ≡ Fn
h . (23)

At node Pi, I1 + I2 is evaluated as

fn(Pi) −
1

Δt
{
φn(Pi) − φn−1(Pi − Δtun(Pi))

}
+ νΔφn(Pi)

=f(Pi, nΔt) − ∂φ

∂t
(Pi, nΔt) − (u · ∇φ)(Pi, nΔt) + νΔφ(Pi, nΔt)

+ cθn
i Δt(||φ||(C0,1+1∩C1,0+1)(Qn) + ||un||L∞ ||φ||(C1+1,0∩C0+1,1)(Qn)),

which implies

|I1 + I2| ≤ cΔt(||φ||(C0,1+1∩C1,0+1)(Qn) + ||un||L∞ ||φ||(C1+1,0∩C0+1,1)(Qn)),
(24)

where Qn ≡ Ω̄× [(n− 1)Δt, nΔt]. By virtue of (15) and (16), I3 and I4 are
evaluated as

|I3| ≤ cε
h2−ε

Δt
(||φn||C1+1,0(Ω̄) + ||φn−1||C1+1,0(Ω̄)), (25)

|I4| ≤ ch||φn||C2+1,0(Ω̄). (26)

Combining (24), (25) and (26), we obtain

||Fn
h ||�1(�∞) ≤cε

h2−ε

Δt
||φ||C1+1,0(Qn) + c

(
h||φ||C2+1,0(Qn)

+Δt(||φ||(C0,1+1∩C1,0+1)(Qn) + ||u||L∞ ||φ||(C1+1,0∩C0+1,1)(Qn))
)
.

(27)

Applying Lemma 2 to (22), we have

||eh||�∞(�∞) ≤||e0h||�∞ + ||Fn
h ||�1(�∞)

≤cε
h2−ε

Δt
||φ||C1+1,0 + c

(
h||φ||C2+1,0

+ Δt(||φ||C0,1+1∩C1,0+1 + ||u||L∞ ||φ||C1+1,0∩C0+1,1)
)
.
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The above estimate and (21) imply (19).

Remark 4 Xn
h (x) defined by (3) is the first-order approximation of the

characteristic curve. Now we replace it by the second-order approximation,

Xn
h (x) = x− un

(
x− un(x)

Δt
2

)
Δt,

which improves the estimate (24) to Δt2. Furhtermore, if the triangulation
is uniform, e.g., of Friedrichs-Keller type [16], we have a better estimate

||(LhJh − IhL)φ||�∞ ≤ c1h
2||φ||3+1,Ω

in place of (15) [15]. In this case we have an improved result,

||φh − Ihφ||�∞(L∞) ≤ cε

(
h2 + Δt2 +

h2−ε

Δt

)
. (28)

By taking Δt = O(h2/3) we have

||uh − Ihu||�∞(L∞) ≤ cεh
4/3−ε. (29)

In d = 3 we can take ε = 0.

Remark 5 The result of Theorem 1 can be extended to the reacton-
convection-diffusion equation (8) and the estimate (19) holds for the scheme
(9).

4 Numerical tests

4.1 The rotating hill

A point x0 = (x0
1, x

0
2)

T convected by u(x) = (x2,−x1)T is in fact rotated at
time t to x0(t) = (x0

1 cos t+ x0
2 sin t,−x0

1 sin t+ x0
2 cos t)T . So consider

φe(x, t) = e−λt+|x−x0(t)|2r(t).

It verifies
∂φe

∂t
=

(
−λ+ |x− x0(t)|2ṙ − 2rẋ0 · (x− x0(t))

)
φe,

u · ∇φe = 2u · (x− x0(t))rφe, Δφe = 4rφe + 4r2|x− x0(t)|2φe.

Since ẋ0(t) · (x− x0(t)) = u · (x− x0(t)), we have

∂φe

∂t
+ u · ∇φe − νΔφe + (λ+ 4rν)φe = |x− x0(t)|2φe(ṙ − 4r2ν).

With r(t) = −1/(4νt+ t0) the right hand side is zero .
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4.2 Convergence study

We consider the following problem: find φ such that φ = φe initially and on
the boundary and

∂φ

∂t
+ u · ∇φ− νΔφ+ (λ+ 4rν)φ = 0.

Here we assume λ ≥ 4νt−1
0 , which implies λ + 4rν ≥ 0. Obviously the

solution is φ = φe.
The problem is discretized by (2) with a second order scheme for Xn

h ,
namely

Xn
h (x) = x− u

(
x− u(x)

Δt
2

)
Δt.

A Delaunay-Voronoi mesh generator is used for the triangulations of the
unit circle. It does not necessarily gives a mesh of weakly acute type but it
usually comes fairly close (Figure 2-left).

We tested meshes with 942, 2,023 and 7,876 vertices, corresponding re-
spectively to 75, 150 and 300 boundary vertices. The time step is controlled
by NT which for each mesh is 23 then 45 then 90. The other parameters are

x0
1 = 0.35, x0

2 = 0.35, T = 2π, Δt = T/NT ,

ν = 0 or 0.01, t0 = 0.2, λ = 4ν/t0.

Figure 2-right shows a log-log plot of the errors in both cases. The left
(resp. right) plots of Figure 3 shows the exact and computed solutions after
one turn of convection-diffusion-dissipation for the coarsest of the 3 meshes
in the case ν = 0 (resp. ν = 0.01).

4.3 Comparison with two other methods

For comparison we have also implemented the SUPG/Least square Galerkin
method and a Discontinuous-Galerkin method.

SUPG reads:∫
Ω
(
φm − φm−1

Δt
+ u · ∇φ)(wh + αu · ∇wh) +

∫
Ω
ν∇φm · ∇wh = 0.

Results are shown on Figure 4
With homogeneous Dirichlet conditions the dual Discontinuous-Galerkin

methods reads:∫
Ω
((
φm − φm−1

Δt
+u·∇φm)wh+ν∇φm ·∇wh)+

∫
E
wh(α|n·u|− 1

2
n·u)[φm] = 0

11



Figure 2: The coarsest of the 3 meshes (left) and a log-log plot of the error
in the case ν = 0 and ν = 0.01; both seems somewhat better than order one

Figure 3: Exact and computed solutions after one turn of convection-
diffusion-dissipation for the coarsest of the 3 meshes in the case ν = 0
(left) and ν = 0.01 (right)

12



Figure 4: Top row: Performance of a SUPG-Galerkin least-square method
with α = 0.1 in the case ν = 0 (left) and ν = 0.01 (right). Bottom row:
Performance of a Discontinuous Galerkin method in the case ν = 0 (left)
and ν = 0.01 (right). Note that the views are not from the same angle so as
to enhance the vision of the difference between the exact and the computed
curves (exact curves forms the higher hill of the two).
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for all wh ∈ Vh.
Here E is the set of inner edges and [b] is the jump of b from the local

triangle to triangle on the other side of E. In the test shown on Figure 4
α = 1

2 . Table 1 shows the errors for the problem with diffusion ν = 0.01
integrated numerically without upwinding, with SUPG upwinding, and with
the Galerkin-characteristics method.

Table 1: L2-errors to compare several methods with and without diffusion.
In both cases the Galerkin-characteristics method (G-C) out-perform the
others. The numbers of time steps are proportional to the number of mesh
points N on the boundary and the total number of mesh points is propor-
tional to N2.

ν = 0.01 ν = 0
N Centered SUPG G-C D-G SUPG G-C
75 6.96 e-2 6.65 e-2 9.74 e-3 2.88 e-1 2.87 e-1 4.06 e-2
150 4.47 e-2 4.29 e-2 2.27 e-3 2.14 e-1 2.13 e-1 1.02 e-2
300 2.66 e-2 2.56 e-2 8.31 e-4 1.48 e-1 1.46 e-1 2.54 e-3

4.4 Tests in 3 dimensions

The same test can be performed in 3D with version 3 of freefem++. The
geometry is the cube (−1, 1)3. The convection field is a rotation about the
x3-axis, u = (x2,−x1, 0)T and the initial solution is the analytical solution
φe at t = 0:

φe(x, t) = e−λt+|x−x0(t)|2r(t),

which satisfies

∂φe

∂t
+ u · ∇φe − νΔφe + (λ+ 6rν)φe = 0,

when r(t) = −1/(4νt+ t0).
The numerical implementation with freefem++ is simple; the script is

int M=30;
real x0=0.35, y0=0.35, z0=0, dt=2*pi/M,nu=0, t0=0.2, lam=6*nu/t0,t=0;
mesh Th2=square(M,M,[x*2-1,y*2-1]);
mesh3 th=buildlayers(Th2,M, zbound=[-1,1]);
fespace Vh(th,P13d);
func ue = exp(-lam*t-((x-(x0*cos(t)+y0*sin(t)))^2

14



+(y-(-x0*sin(t) + y0*cos(t)))^2+(z-z0)^2)/(4*nu*t+t0));
Vh u,v,vo=ue
for( t=0;t<=T;t+=dt){
solve onestep(u,v,solver=CG)
= int3d(th)( nu*dt*(dx(u)*dx(v)+dy(u)*dy(v)+dz(u)*dz(v)))
+ int3d(th,qfV=qfV1lump)(u*v*(1+dt*(lam- 6*nu/(4*nu*t+t0))))
- int3d(th,qfV=qfV1lump)( vo(x*(1-dt^2)-y*dt,y*(1-dt^2)+x*dt,z)*v)
+ on(1,u=ue);
vo=u;
}

The results for the same parametric values as in 2D and z0 = 0, ν = 0
and ν = 0.01 are shown on Figures 5 and 6, respectively, for a uniform mesh
of the unit cube corresponding to N = 30 points on each edge of the cube.
The decreasing of L2 errors e(N) as a function of N is as follows:

e(10) = 4.77 × 10−2, e(20) = 9.99 × 10−3, e(40) = 2.32 × 10−3.

5 Concluding remarks

We have presented a Galerkin-characteristics finite element scheme of lumped
mass type for the convection diffusion problems. In this scheme no numeri-
cal quadrature is required. Under the weakly acute triangulation hypothesis
we have proved the scheme is unconditionally stable and convergent in the
L∞-norm. For the P1-element the convergence order is essentially O(h) by
choosing Δt = O(h). 2D and 3D numerical results have shown the robust-
ness of the scheme and reflected the theoretical convergence result.
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Figure 5: Galerkin-characteristics with mass lumping for the rotating hill in
3D with ν = 0. Display of the solution at t = 4.0 and after one turn; finally
comparison with the analytical solution after one turn in the plane x3 = 0.

Figure 6: Galerkin-characteristics with mass lumping for the rotating hill
in 3D with ν = 0.01. Display of the solution after one turn and comparison
with the analytical solution in the plane x3 = 0.
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