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Abstract

We establish “higher depth” analogues of regularized determinants due to Milnor for the
zeros of Hecke L-functions. This is an extension of the result of Deninger about the regularized
determinant for the zeros of the Riemann zeta function.

2000 Mathematics Subject Classification: Primary 11M36, Secondary 11F72.
Key words and phrases: Hecke L-functions, Regularized determinants (products), Weil’s
explicit formula, Fxtended Riemann hypothesis.

1 Introduction

Let K be an algebraic number field of degree n and of discriminant dg, Ok the ring of integers
of K, and r; and r9 the number of real and complex places of K, respectively. Let x be a Hecke
grossencharacter with conductor f and

Lk (s;x) = H(l - ]\>;((§))3)1 = Z ]3;8;3 (Re(s) > 1)
p a

be the Hecke L-function associate with x. Here, p runs over all prime ideals of O and a over all
integral ideals of O (we understand that y(p) = 0 if p and f are not coprime). It is known that
L (s;x) admits a meromorphic continuation to the whole complex plane C with a possible simple
pole at s = 1 and has a functional equation

Ar (1= 5%) = Wr(x)Ak (s: %),

where Ag(s;x) is the entire function defined by

(L) Ax(six) = (%3(3_1))5"(M)%LK(8;X) I F<Nu(s+isou)+|mv|>,

22r2 n 2
V€S (K)

and Wik (x) is a constant with |[Wg(x)| = 1. Here, Soo(K) is the set of all archimedean places of
K, ey = 1 if x is principal and 0 otherwise. Moreover, for v € S (K), N, = 1 if v is real and 2
otherwise, and ¢, = p(x) € R with }° (k) Nowy = 0 and m, =m(x) € Z are determined by

x((@) = H oy | Ve (ﬂ)mv (a € Ok with @ =1 mod™ f),
VESoo (K) ||

where mod”™ indicates the multiplicative congruence and «, is the image of « of the embedding

K — K, with K, =R or C. When ¢, =m, =0 for all v € S(K), x is called a class character.
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For T > 0, let R (T';x) be the set of non-trivial zeros of Ly (s;x) (that is, the zeros whose real
part is in (0,1)) with [Im (p)| < T and Ri(x) := limy_ 0 Rk (T;Xx). In this paper, we study the
function

(1.2) Ek(s,z0) = Y (22;’))75:11320 > (Z;rp)is

PERK (X) PERK (T;x)

s:lfr>'

Remark that, when Re(z) > 1, the function Zx ,(2;x) can be defined because it will be shown

and, for a positive integer r, compute the function

d
(1.3) Err(2X) = eXp(—gé“K(s, 25 X)

that £x (s, z;x) admits a meromorphic continuation to C as a function of s and, in particular, is
holomorphic at s = 1 —r for any € N (Proposition 2.2). When r = 1, the right-hand side of (1.3)
coincides with the so-called the zeta-regularized product of the sequence {(%52) *},cr () and is

denoted by p
I () =e(-gentnl )
PER K (X)

Hence one may call Zx (z;x) a “higher depth (or depth r) determinants (reqularized product)”’
of the sequence {(%2)™"},cru(y)- Such a higher depth object was first studied by Milnor in
[Mi]. Actually, from the viewpoint of the Kubert identity which plays an important role in the
study of Twasawa theory, he introduced an higher depth gamma function I',(z), which we call a

s:l—r)

with ((s,2) :== > 0" (m + z)~* being the Hurwitz zeta function, and studied functional relations

“Milnor-gamma function” of depth r, defined by

I.(2) = exp( (s, 2)

among them (see [KOW] for some analytic properties of I'; (z)). Notice that, by the Lerch formula

d% (s,z) =log \F/(%, we have I'(z) = \F/(%, whence T',(z) indeed gives a generalization of the usual
gamma function.
When K = Q and r = 1, by Deninger [D, Theorem 3.3] (see also [SS, V]), it is shown that, as

an entire function,

(1.4) =) = [ (z - p) - 2*%(2w)*2w*%r(§)g(z)z(z = A,

2T 5.2
pER 22

Here, when x is the trivial character 1, we write L (s;1) = (x(s) (that is, (x(s) is the Dedekind
zeta function of K), Ax(s;1) = Ag(s), Wk(1) = Wk, Rg(T;1) = Rg(T) and R (1) = R,
respectively. Moreover, we omit the symbol K when K = Q and » when r = 1.

The aim of the present paper is to extend the result (1.4) of Deninger to general r and algebraic
number fields. Namely, we calculate the function Zx ,(z; x) explicitly for any x and r € N. To state
be

the polylogarithm of degree r and H,(z) := exp(—Li,(z)). Then, the function L(Iz)(s; X) is defined

m

our main result, let us introduce a “poly-Hecke L-function” L(Iz)(s; x)- Let Li,(z) :== > °_ 25

by the following Euler product;

(1.5) LD (s =] H( x(p) >—<logN<p>>”.
p

N(p)®

Notice that, since Zp‘log(Hr(ﬁ(—Q)—(logNP)l’r)
absolutely for Re (s) > 1, whence the right-hand side of (1.5) defines a holomorphic function on the

< log (x(Re(s)), the infinite product converges
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region. It is obvious to see that this is a poly-analogue of the Hecke L-function. Actually, when
r =1, since Lii(z) = —log (1 — z) and hence H;(z) = (1 — 2), we have L(Ip(s;x) = Li(s;x). We
study several analytic properties of L(Iz)(s; X) in Section 3.

The main theorem of the paper is the following.

Theorem 1.1. For Re(z) > 1, it holds that

—_ z € (ﬁ)r_l zZ — 1 € (%)T_l _1\r—1(0m_ 1\t T 1—r
(1.6) ZExy(zx) = <§> x(3 ( — ) x5 L%)(Z;X)( D Hr=1)!(27)
_ W' g Ny (ebipu) tmol Ny(z + ipy) + [my| Nem) =
< I vom) % ; rr< : ) ,

V€S (K)

where By(z) is the rth Bernoulli polynomial.

2 Proof of Theorem 1.1

To prove our main theorem, we employ a refined version of the Weil explicit formula due to Barner
[Ba]. For a function F' of bounded variation (i.e., Vr(F) < oo where Vi(F') is the total variation of
F on R), we define the function ®p(s) (s € C) by

Dp(s) = / F(x)e(s_%)xdx.

—0o0

Moreover, for a Hecke character xy and v € Sy (K), define
Fy(z:x) := Fx)e "7

Lemma 2.1 ([Ba, Theorem 1]). Let x be a Hecke character and F : R — C be a function of bounded
variation satisfying the following three conditions:

(a) There is a positive constant b such that
Vi (F(z)ex ) < oo,
(b) F is “normalized”, that is,
2F(z) = F(x 4+ 0)+ F(x - 0) (x € R).
(c) For any v € Sxo(K), it holds that
Fy(z; x) + Fo(—2;x) = 2F(0) + O(|z]) (|| = 0).

Then, the following equation holds:

(1) Jlim Y <I>F(p)=8x(<1’F(0)+‘I’F(1))+F(0)log%|ﬁ|
PER K (T5X)
-2 %(x(pl)ﬂlog N(p)") +X(")F(~log N(p)"))
P oI=1 ?
+ Y W(F;y),
VESs (K)
where  ( N,F(0) L= e .
W, (F; x) ::/0 < Ux —(Fv(x;x)—i—Fv(—:E;X))l_i_ﬁ_m)e_N_”dx'
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Using the explicit formula (2.1), we first show the following

Proposition 2.2. For Re(z) > 1, we have

(2.2) Ex(s,25X) = SX((Q—W)S + ( 2n )s) + (%).s /L &(z — & x)todt

z z—1 271 _ Lk

S (Nvﬂ')sC(S, Ny(z +ipy) + |mv|)’

2
VES (K)

where L_ is the contour consisting of the lower edge of the cut from —oo to —d, the circle t = de'™®
for —m < o < w and the upper edge of the cut from —0 to —oo. This gives a meromorphic
continuation of £x(s,z;x) as a function of s to the whole plane C with a simple pole at s = 1.

Proof. Suppose Re (z) > 1 and Re(s) > 1. Then, it is shown that the function

Pl 4871 T @20,
0 (x <0)
satisfies the conditions (a), (b) and (c¢) in Lemma 2.1. Notice that

I'(s)
(z —w)*

, whence ®p(0) :E Op(l) =

28’

Pp(w) =

and

00 (m_;)x
Wy (F; x) = —/ xs—le—(z—%mu)xe“i; B
0 1—e N

; [mo]
oo - ef(z+chv+N—:):r
=— ¥z
0

1—e ™

_ —F(S)(%>SC(S, Nu(2+i<,;v) + |mv|).

In the last equality, we have used the formula

O A

Therefore the explicit formula (2.1) reads

23) (0 Tk 0 =+ )~ 53 ) (o N
poI=1

zS
Ny s Ny(z +ipy) + |my|
T 3 (s Rl i
VESeo (K)
Moreover, from the formula
LIK - [ l

. —_ —iS
(2.4) E(S’X) = —zp:lz;logN(p)X(p )N (p)
together with

@t 1
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a standard manipulation shows

(2.5) _ZZIOgN o) (log N(p)!)*=! = 1;(—;)/L iK (x — i)t~ "dt.

By the same argument performed in [D], we see that the integral on the right-hand side converges
absolutely for any s € C, whence it defines an entire function as a function of s. Therefore,
substituting the formula (2.5) into (2.3) and multiplying (27r)°T'(s) ™! to the both-hand sides of (2.3),
we obtain the expression (2.2). Now it is easy to see that (2.2) gives a meromorphic continuation
of £k (s, z;x) to the whole plane C with only a simple pole at s = 1. This completes the proof of
the proposition. O

We now give a proof of our main result.

Proof of Theorem 1.1. Let us caluculate the derivative of (s, z;x) at s =1 —r for r € N. Write
Er(s,z3x) = Ai(s, 2) + Aa(s, z) + A3(s, z) where

= () + (7))

(2m)* / L .
A = £ (z —t; )t °dt
2(87 Z) 27_[_2 I LK (Z Y X) Y

As(s,z) == — Z (Nvﬂ)5(<s, No(z +ipy) + |mv|>.

2
VESeo (K)

At first, it is easy to see that

r r—1

ex(=) 1t — Ex Trl
I Co G =

We next calculate the derivative of As(s,z) at s =1 —r by the same way in [D]. It is clear that

(2.6) exp(—disAl(s, z)

d (2m)tr L
) = Ky — ) —dt
ds 2(8 Z) s=1—r 271 /L LK (Z X) 08
It holds that
! L K-t dt
omi J, L' M 985
1O Ly —ri Cmiyr—ty €T
5 T (z —xe ™ x)(xe™ ™) log 76 dz
1 e o] LII( . 1 7TZ
LT, r=1] et
50y T (z — ze™; x) (ze™) og x
1 * L
=5 L K4z x) (1) ta" 1<log——m)d$
T Jo K
211 0 LK
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Moreover, using the formula (2.4), we see that the right-hand side above is equal to

o0

(—I)T’IZilogN(p)-x(pl) -N(p)”/ gl lwlog N(p) gy,

p o=l 0
I'(r)

= (07 0D g N i) xe)' - N )

poI=1

This shows that

d _
TAa(s,2)] = (1) (= DIEm) T log L (s5.0),
whence
d r _1\r—1(m_ 1)1 T 1—7r
(2.7) exp(—-Aa(s,2)| ) = L (s 0T b
Finally, using the fact (1 —r,z) = —BTT(Z) where B, (z) is the Bernoulli polynomial, we have
d
%Ag(s, Z) s=1-—r
log (N, N, ] N, )
_ Y (m [ O8Ny (Nollz 4 i) Fmal) g, (Mol 4] & |mv|>]7
T 2 2
VES (K)
whence

(2.8) exp(—d%fh(saz) s:l—r)

_ H (N ﬂ)_(NU?I_T BT(Nv(z+i502v)+|mv|)I‘ (Nv(z +ipy) + |mv|)(Nv7r)l—r
— ; ) |
2

VESeo (K)

Combining three equations (2.6), (2.7) and (2.8), we obtain the desired formula (1.6). This com-
pletes the proof of the theorem. O

Corollary 2.3. We have

(2.9) I (Z - P) _ (N(H)ldr )2 Ar(2),

2 o ax—i-%rl—l—iapc-l-%mc 2ex+m
PERK(X) 2 T

where o = 3", comples Pvs TC 7= D0 comples M| and m:=3_ o gy |my|. In particular, if X is
a class character, then we have

(2.10) I (52)-= NDIARD 2 5 ).

2T Ex+5T1 26,
PERK(X) 2 T

Proof. Let r = 11in (1.6). Then, noting that L(I?(z; X) = Lr(z;x), Ti(2) = f/(% and By (2) = 2 — 3,
and recalling the definition (1.1) of Ax(z; ), one easily obtains the expression (2.9). The formula

(2.10) immediately follows from (2.9) since oc = mc = m = 0. O
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Example 2.4. Let x = 1. Then, from the equation (2.10), we obtain the regularized determinant
expression of the Dedekind zeta function (i (z);

z—p\ _ ldg|7?
H ( 2 >_ 2§r1+17r2AK(Z)'

PERK

This yields the equation (1.4) of Deninger by letting K = Q.

Remark 2.5. As analogues of Theorem 1.1, “higher depth determinants” of the Laplacian on
compact Riemann surfaces of genus g > 2 are investigated in [KWY] (see [Y] for the corresponding
results on higher dimensional spheres). We notice that these are defined like (1.3) but we employ
the spectral zeta functions for surfaces instead of {x (s, z; x), whence the determination of gamma

factors is involved.

3 Analytic properties of the Poly-Hecke L-function

Let Qi (x) be the set of all complex numbers which are not of the form p — A for p € R () and
for A > 0 or, if x is principal, 1 — X for A > 0 (See Figure 1). We now give an analytic continuation
of L(I;)(S; X) to the region Qg (x).

Im

o=

Figure 1: The region Qg (x) (if x is principal)

Lemma 3.1. It holds that

drfl

(3.1) ———log L (i) = (<1 log Lic(sx)  (Re(s) > 1).

Proof. The case r = 1 is trivial. Assume r > 2. Then, using the differential equation

d . 1y
ELzr(z) =2 'Li, 1(2)



8 Masato WAKAYAMA and Yoshinori YAMASAKI

of the polylogarithm, we have

ilOgL%)(S;x) = Z(logN(p))l—’"iLz‘r< x(p) )

- e ds N(p)s
= (log N( ))u( x(p) )_ILZ ( o ) T (o)
p a N (p N(p)® I \Np)s Ny
. x(p)
:—z,g:(logN(;o))1 ( 1)LZ’"—1<J\7(10)3

Therefore we inductively obtain the formula (3.1).

Corollary 3.2. Let Re(a) > 1. Then, for r > 2, we have

(~1y-
s &t 3

(3.2) L(zz)(S;X) = Q%)(Saa) exp </ / / log L (&5 x)d&q -+ dér—1> .
rtl 7

ok
Here Q(Ig)(s, a) := Hz;% L(I;_k)(a; X)( -0 and the path for each integral is contained in Qg ().

The expression shows an analytic continuation of L([:)(s;x) to the region Qg (x).

Proof. By induction on r, (3.2) follows from (3.1). Since log Lx(s; ) is a (single-valued) holomor-
phic function in Qg (), (3.2) in fact gives an analytic continuation of L(Iz)(s; X) to Qx(x). This
proves the corollary. O
||

Ny
for v € Seo(K) and for A > 0. Then, since the Milnor-gamma function I',(z) is holomorphic

Remark 3.3. Let Ag () be the set of all complex numbers which are not of the form — = —ip, — A\

in the region C\ (—o0,0], from Corollary 3.2, one sees that the expression (1.6) is valid for all
z € Qr(x) N Ag(x). We notice that Qx(x) N Ax(x) = Q2x(x) when x is a class character.
Xp

Remark 3.4. Let E%)(SQX) = [I, Hr(]\,((p))s)_1 for Re(s) > 1. Then we have also E(Ip(s;x) =
Lk (s;x). It does not, however, seem to have an analytic continuation to the whole plane C. In
fact, in [KW], it was shown that (") (s) := Lg)(s; 1) has an analytic continuation to the region

Re (s) > 0 but has a natural boundary at the imaginary axis Re (s) = 0.

We finally show a relation between L(I;) (s;x) and the extended Riemann hypothesis for L (s; x).

Recall that the extended Riemann hypothesis asserts that Re (p) = 1 for any p € R (x).

Corollary 3.5. The extended Riemann hypohesis for Lx (s;x) is equivalent to say that the function
(s — 1)_(5_1)Lg)(s;x) is a single-valued holomorphic function in Re (s) > &.

Proof. Let r =2 in (3.2). Then, from (3.2), we have

(33  Ls500 = L (a0 exp (- /slogLK(s;xms) (s € 2 (x), Re(a) > 1).

a

Here the path is taken in Qg (). Notice that, since

[ 1086 = 1)de = (s~ Doy (s = 1) =5 ((a — D log a— 1) - a)
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we have

(s — 1)~(=D = ¢8(q — 1)~(e=D) eXp(— / log (€ — 1)d§>.

Hence

(s = 1) VIR s = ela = 1) DI @ exp (- [ log (€ — 1)L (€ )dE)-

a

Now the statement follows immediately from the fact that (¢ — 1)L (; x) is holomorphic at { =
1. ]
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