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Heke's zeros and higher depth determinantsMasato WAKAYAMA� and Yoshinori YAMASAKIySeptember 27, 2009AbstratWe establish \higher depth" analogues of regularized determinants due to Milnor for thezeros of Heke L-funtions. This is an extension of the result of Deninger about the regularizeddeterminant for the zeros of the Riemann zeta funtion.2000 Mathematis Subjet Classi�ation : Primary 11M36, Seondary 11F72.Key words and phrases : Heke L-funtions, Regularized determinants (produts), Weil'sexpliit formula, Extended Riemann hypothesis.1 IntrodutionLet K be an algebrai number �eld of degree n and of disriminant dK , OK the ring of integersof K, and r1 and r2 the number of real and omplex plaes of K, respetively. Let � be a Hekegr�ossenharater with ondutor f andLK(s;�) :=Yp �1� �(p)N(p)s��1 =Xa �(a)N(a)s (Re (s) > 1)be the Heke L-funtion assoiate with �. Here, p runs over all prime ideals of OK and a over allintegral ideals of OK (we understand that �(p) = 0 if p and f are not oprime). It is known thatLK(s;�) admits a meromorphi ontinuation to the whole omplex plane C with a possible simplepole at s = 1 and has a funtional equation�K(1� s;�) =WK(�)�K(s;�);where �K(s;�) is the entire funtion de�ned by(1.1) �K(s;�) := �12s(s� 1)�"��N(f)jdK j22r2�n � s2LK(s;�) Yv2S1(K)��Nv(s+ i'v) + jmvj2 �;and WK(�) is a onstant with jWK(�)j = 1. Here, S1(K) is the set of all arhimedean plaes ofK, "� = 1 if � is prinipal and 0 otherwise. Moreover, for v 2 S1(K), Nv = 1 if v is real and 2otherwise, and 'v = '(�) 2 R with Pv2S1(K)Nv'v = 0 and mv = m(�) 2 Z are determined by��(�)� = Yv2S1(K) j�v j�iNv'v� �vj�v j�mv (� 2 OK with � � 1 mod� f);where mod� indiates the multipliative ongruene and �v is the image of � of the embeddingK ,! Kv with Kv = R or C . When 'v = mv = 0 for all v 2 S1(K), � is alled a lass harater.�Partially supported by Grant-in-Aid for Sienti� Researh (B) No. 21340011.yPartially supported by Grant-in-Aid for Young Sientists (B) No. 21740019.1



2 Masato WAKAYAMA and Yoshinori YAMASAKIFor T > 0, let RK(T ;�) be the set of non-trivial zeros of LK(s;�) (that is, the zeros whose realpart is in (0; 1)) with jIm (�)j < T and RK(�) := limT!1RK(T ;�). In this paper, we study thefuntion(1.2) �K(s; z;�) := X�2RK(�)�z � �2� ��s := limT!1 X�2RK(T ;�)�z � �2� ��sand, for a positive integer r, ompute the funtion(1.3) �K;r(z;�) := exp�� dds�K(s; z;�)���s=1�r�:Remark that, when Re (z) > 1, the funtion �K;r(z;�) an be de�ned beause it will be shownthat �K(s; z;�) admits a meromorphi ontinuation to C as a funtion of s and, in partiular, isholomorphi at s = 1� r for any r 2 N (Proposition 2.2). When r = 1, the right-hand side of (1.3)oinides with the so-alled the zeta-regularized produt of the sequene f( z��2� )�sg�2RK (�) and isdenoted by aY�2RK(�)�z � �2� � = exp�� dds�K(s; z;�)���s=0�:Hene one may all �K;r(z;�) a \higher depth (or depth r) determinants (regularized produt)"of the sequene f( z��2� )�sg�2RK(�). Suh a higher depth objet was �rst studied by Milnor in[Mi℄. Atually, from the viewpoint of the Kubert identity whih plays an important role in thestudy of Iwasawa theory, he introdued an higher depth gamma funtion �r(z), whih we all a\Milnor-gamma funtion" of depth r, de�ned by�r(z) := exp� dds�(s; z)���s=1�r�with �(s; z) :=P1m=0(m+ z)�s being the Hurwitz zeta funtion, and studied funtional relationsamong them (see [KOW℄ for some analyti properties of �r(z)). Notie that, by the Lerh formuladds�(s; z) = log �(s)p2� , we have �1(z) = �(s)p2� , whene �r(z) indeed gives a generalization of the usualgamma funtion.When K = Q and r = 1, by Deninger [D, Theorem 3.3℄ (see also [SS, V℄), it is shown that, asan entire funtion,(1.4) �(z) = aY�2R�z � �2� � = 2� 12 (2�)�2�� z2��z2��(z)z(z � 1) = 12 32�2�(z):Here, when � is the trivial harater 1, we write LK(s;1) = �K(s) (that is, �K(s) is the Dedekindzeta funtion of K), �K(s;1) = �K(s), WK(1) = WK , RK(T ;1) = RK(T ) and RK(1) = RK ,respetively. Moreover, we omit the symbol K when K = Q and r when r = 1.The aim of the present paper is to extend the result (1.4) of Deninger to general r and algebrainumber �elds. Namely, we alulate the funtion �K;r(z;�) expliitly for any � and r 2 N. To stateour main result, let us introdue a \poly-Heke L-funtion" L(r)K (s;�). Let Lir(z) :=P1m=1 zmmr bethe polylogarithm of degree r and Hr(z) := exp(�Lir(z)). Then, the funtion L(r)K (s;�) is de�nedby the following Euler produt;(1.5) L(r)K (s;�) :=Yp Hr� �(p)N(p)s��(logN(p))1�r :Notie that, sine Pp��log(Hr(�(p)Nps )�(logNp)1�r )�� � log �K(Re (s)), the in�nite produt onvergesabsolutely for Re (s) > 1, whene the right-hand side of (1.5) de�nes a holomorphi funtion on the



Heke's zeros and higher depth determinants 3region. It is obvious to see that this is a poly-analogue of the Heke L-funtion. Atually, whenr = 1, sine Li1(z) = � log (1� z) and hene H1(z) = (1 � z), we have L(1)K (s;�) = LK(s;�). Westudy several analyti properties of L(r)K (s;�) in Setion 3.The main theorem of the paper is the following.Theorem 1.1. For Re (z) > 1, it holds that�K;r(z;�) = � z2��"�( z2� )r�1�z � 12� �"�( z�12� )r�1L(r)K (z;�)(�1)r�1(r�1)!(2�)1�r(1.6) � Yv2S1(K)(Nv�)� (Nv�)1�rr Br(Nv(z+i'v)+jmv j2 )�r�Nv(z + i'v) + jmvj2 �(Nv�)1�r ;where Br(z) is the rth Bernoulli polynomial.2 Proof of Theorem 1.1To prove our main theorem, we employ a re�ned version of the Weil expliit formula due to Barner[Ba℄. For a funtion F of bounded variation (i.e., VR(F ) <1 where VR(F ) is the total variation ofF on R), we de�ne the funtion �F (s) (s 2 C ) by�F (s) := Z 1�1 F (x)e(s� 12 )xdx:Moreover, for a Heke harater � and v 2 S1(K), de�neFv(x;�) := F (x)e�i'vx:Lemma 2.1 ([Ba, Theorem1℄). Let � be a Heke harater and F : R ! C be a funtion of boundedvariation satisfying the following three onditions:(a) There is a positive onstant b suh thatVR(F (x)e( 12+b)jxj) <1:(b) F is \normalized", that is,2F (x) = F (x+ 0) + F (x� 0) (x 2 R):() For any v 2 S1(K), it holds thatFv(x;�) + Fv(�x;�) = 2F (0) +O(jxj) (jxj ! 0):Then, the following equation holds:limT!1 X�2RK(T ;�)�F (�) = "���F (0) + �F (1)�+ F (0) log N(f)jdK j22r2�n(2.1) �Xp 1Xl=1 logN(p)N(p) l2 ��(pl)F (logN(p)l) + �(pl)F (� logN(p)l)�+ Xv2S1(K)Wv(F ;�);where Wv(F ;�) := Z 10  NvF (0)x � �Fv(x;�) + Fv(�x;�)�e( 2�jmv jNv � 12 )x1� e� 2xNv !e� 2xNv dx:



4 Masato WAKAYAMA and Yoshinori YAMASAKIUsing the expliit formula (2.1), we �rst show the followingProposition 2.2. For Re (z) > 1, we have�K(s; z;�) = "���2�z �s + � 2�z � 1�s�+ (2�)s2�i ZL� L0KLK (z � t;�)t�sdt(2.2) � Xv2S1(K)(Nv�)s��s; Nv(z + i'v) + jmvj2 �;where L� is the ontour onsisting of the lower edge of the ut from �1 to �Æ, the irle t = Æei for �� �  � � and the upper edge of the ut from �Æ to �1. This gives a meromorphiontinuation of �K(s; z;�) as a funtion of s to the whole plane C with a simple pole at s = 1.Proof. Suppose Re (z) > 1 and Re (s) > 1. Then, it is shown that the funtionF (x) := (xs�1e�(z� 12 )x (x � 0);0 (x < 0)satis�es the onditions (a), (b) and () in Lemma 2.1. Notie that�F (w) = �(s)(z � w)s ; whene �F (0) = �(s)zs ; �F (1) = �(s)(z � 1)s ;and Wv(F ;�) = �Z 10  xs�1e�(z� 12+i'v)x e( 2�jmv jNv � 12 )x1� e� 2xNv !e� 2xNv dx= �Z 10 xs�1 e�(z+i'v+ jmv jNv )x1� e� 2xNv dx= ��(s)�Nv2 �s��s; Nv(z + i'v) + jmvj2 �:In the last equality, we have used the formula�(s)�(s; z) = Z 10 xs�1 e�zx1� e�xdx (Re (s) > 1):Therefore the expliit formula (2.1) reads(2�)�s�(s)�K(s; z;�) = "���(s)zs + �(s)(z � 1)s��Xp 1Xl=1 logN(p)N(p)lz �(pl)(logN(p)l)s�1(2.3) � �(s) Xv2S1(K)�Nv2 �s��s; Nv(z + i'v) + jmvj2 �:Moreover, from the formula(2.4) L0KLK (s;�) = �Xp 1Xl=1 logN(p)�(pl)N(p)�lstogether with as�1�(s) = 12�i ZL� t�seatdt (a > 0);



Heke's zeros and higher depth determinants 5a standard manipulation shows�Xp 1Xl=1 logN(p)N(p)lz �(pl)(logN(p)l)s�1 = �(s)2�i ZL� L0KLK (z � t;�)t�sdt:(2.5)By the same argument performed in [D℄, we see that the integral on the right-hand side onvergesabsolutely for any s 2 C , whene it de�nes an entire funtion as a funtion of s. Therefore,substituting the formula (2.5) into (2.3) and multiplying (2�)s�(s)�1 to the both-hand sides of (2.3),we obtain the expression (2.2). Now it is easy to see that (2.2) gives a meromorphi ontinuationof �K(s; z;�) to the whole plane C with only a simple pole at s = 1. This ompletes the proof ofthe proposition.We now give a proof of our main result.Proof of Theorem 1.1. Let us aluulate the derivative of �K(s; z;�) at s = 1� r for r 2 N. Write�K(s; z;�) = A1(s; z) +A2(s; z) +A3(s; z) whereA1(s; z) := "���2�z �s + � 2�z � 1�s�;A2(s; z) := (2�)s2�i ZL� L0KLK (z � t;�)t�sdt;A3(s; z) := � Xv2S1(K)(Nv�)s��s; Nv(z + i'v) + jmvj2 �:At �rst, it is easy to see thatexp�� ddsA1(s; z)���s=1�r� = � z2��"�( z2� )r�1�z � 12� �"�( z�12� )r�1 :(2.6)We next alulate the derivative of A2(s; z) at s = 1� r by the same way in [D℄. It is lear thatddsA2(s; z)���s=1�r = �(2�)1�r2�i ZL� L0KLK (z � t;�)tr�1 log t2�dt:It holds that 12�i ZL�L0KLK (z � t;�)tr�1 log t2�dt= 12�i Z 01 L0KLK (z � xe��i;�)(xe��i)r�1 log xe��i2� e��idx+ 12�i Z 10 L0KLK (z � xe�i;�)(xe�i)r�1 log xe�i2� e�idx= 12�i Z 10 L0KLK (z + x;�)(�1)r�1xr�1�log x2� � �i�dx� 12�i Z 10 L0KLK (z + x;�)(�1)r�1xr�1�log x2� + �i�dx= (�1)r Z 10 L0KLK (z + x;�)xr�1dx:



6 Masato WAKAYAMA and Yoshinori YAMASAKIMoreover, using the formula (2.4), we see that the right-hand side above is equal to(�1)r�1Xp 1Xl=1 logN(p) � �(pl) �N(p)�lz Z 10 xr�1e�lx logN(p)dx= (�1)r�1Xp 1Xl=1 logN(p) � �(p)l �N(p)�lz �(r)(l logN(p))r= (�1)r�1(r � 1)!Xp (logN(p))1�rLir� �(p)N(p)z �= (�1)r�1(r � 1)! logL(r)K (s;�):This shows that ddsA2(s; z)���s=1�r= (�1)r(r � 1)!(2�)1�r logL(r)K (s;�);whene(2.7) exp�� ddsA2(s; z)���s=1�r� = L(r)K (s;�)(�1)r�1(r�1)!(2�)1�r :Finally, using the fat �(1� r; z) = �Br(z)r where Br(z) is the Bernoulli polynomial, we haveddsA3(s; z)���s=1�r= Xv2S1(K)(Nv�)1�r" log (Nv�)r Br�Nv(z + i'v) + jmvj2 �� log�r�Nv(z + i'v) + jmvj2 �#;whene exp�� ddsA3(s; z)���s=1�r�(2.8) = Yv2S1(K)(Nv�)� (Nv�)1�rr Br(Nv(z+i'v)+jmv j2 )�r�Nv(z + i'v) + jmvj2 �(Nv�)1�r :Combining three equations (2.6), (2.7) and (2.8), we obtain the desired formula (1.6). This om-pletes the proof of the theorem.Corollary 2.3. We have(2.9) aY�2RK(�)�z � �2� � = (N(f)jdK j)� z22"�+ 12 r1+i'C+ 12mC�2"�+m�K(z;�);where 'C :=Pv : omplex 'v, mC :=Pv : omplex jmvj and m :=Pv2S1(K) jmvj. In partiular, if � isa lass harater, then we have(2.10) aY�2RK (�)�z � �2� � = (N(f)jdK j)� z22"�+ 12 r1�2"� �K(z;�):Proof. Let r = 1 in (1.6). Then, noting that L(1)K (z;�) = LK(z;�), �1(z) = �(z)p2� and B1(z) = z� 12 ,and realling the de�nition (1.1) of �K(z;�), one easily obtains the expression (2.9). The formula(2.10) immediately follows from (2.9) sine 'C = mC = m = 0.



Heke's zeros and higher depth determinants 7Example 2.4. Let � = 1. Then, from the equation (2.10), we obtain the regularized determinantexpression of the Dedekind zeta funtion �K(z);aY�2RK�z � �2� � = jdK j� z22 12 r1+1�2�K(z):This yields the equation (1.4) of Deninger by letting K = Q .Remark 2.5. As analogues of Theorem 1.1, \higher depth determinants" of the Laplaian onompat Riemann surfaes of genus g � 2 are investigated in [KWY℄ (see [Y℄ for the orrespondingresults on higher dimensional spheres). We notie that these are de�ned like (1.3) but we employthe spetral zeta funtions for surfaes instead of �K(s; z;�), whene the determination of gammafators is involved.3 Analyti properties of the Poly-Heke L-funtionLet 
K(�) be the set of all omplex numbers whih are not of the form �� � for � 2 RK(�) andfor � � 0 or, if � is prinipal, 1�� for � � 0 (See Figure 1). We now give an analyti ontinuationof L(r)K (s;�) to the region 
K(�).
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Figure 1: The region 
K(�) (if � is prinipal)
Lemma 3.1. It holds that(3.1) dr�1dsr�1 logL(r)K (s;�) = (�1)r�1 logLK(s;�) (Re (s) > 1):Proof. The ase r = 1 is trivial. Assume r � 2. Then, using the di�erential equationddzLir(z) = z�1Lir�1(z)



8 Masato WAKAYAMA and Yoshinori YAMASAKIof the polylogarithm, we havedds logL(r)K (s;�) =Xp (logN(p))1�r ddsLir� �(p)N(p)s�=Xp (logN(p))1�r� �(p)N(p)s��1Lir�1� �(p)N(p)s� �(p)N(p)s (� logN(p))= �Xp (logN(p))1�(r�1)Lir�1� �(p)N(p)s�= � logL(r�1)K (s;�):Therefore we indutively obtain the formula (3.1).Corollary 3.2. Let Re (a) > 1. Then, for r � 2, we haveL(r)K (s;�) = Q(r)K (s; a) exp Z sa Z �r�1a � � � Z �2a| {z }r�1 logLK(�1;�)d�1 � � � d�r�1!(�1)r�1 :(3.2)Here Q(r)K (s; a) := Qr�2k=0 L(r�k)K (a;�) (�1)kk! (s�a)k and the path for eah integral is ontained in 
K(�).The expression shows an analyti ontinuation of L(r)K (s;�) to the region 
K(�).Proof. By indution on r, (3.2) follows from (3.1). Sine logLK(s;�) is a (single-valued) holomor-phi funtion in 
K(�), (3.2) in fat gives an analyti ontinuation of L(r)K (s;�) to 
K(�). Thisproves the orollary.Remark 3.3. Let �K(�) be the set of all omplex numbers whih are not of the form� jmvjNv �i'v��for v 2 S1(K) and for � � 0. Then, sine the Milnor-gamma funtion �r(z) is holomorphiin the region C n (�1; 0℄, from Corollary 3.2, one sees that the expression (1.6) is valid for allz 2 
K(�) \�K(�). We notie that 
K(�) \�K(�) = 
K(�) when � is a lass harater.Remark 3.4. Let eL(r)K (s;�) := QpHr� �(p)N(p)s ��1 for Re (s) > 1. Then we have also eL(1)K (s;�) =LK(s;�). It does not, however, seem to have an analyti ontinuation to the whole plane C . Infat, in [KW℄, it was shown that e�(r)(s) := eL(r)Q (s;1) has an analyti ontinuation to the regionRe (s) > 0 but has a natural boundary at the imaginary axis Re (s) = 0.We �nally show a relation between L(r)K (s;�) and the extended Riemann hypothesis for LK(s;�).Reall that the extended Riemann hypothesis asserts that Re (�) = 12 for any � 2 RK(�).Corollary 3.5. The extended Riemann hypohesis for LK(s;�) is equivalent to say that the funtion(s� 1)�(s�1)L(2)K (s;�) is a single-valued holomorphi funtion in Re (s) > 12 .Proof. Let r = 2 in (3.2). Then, from (3.2), we have(3.3) L(2)K (s;�) = L(2)K (a;�) exp��Z sa logLK(�;�)d�� (s 2 
K(�); Re (a) > 1):Here the path is taken in 
K(�). Notie that, sineZ sa log (� � 1)d� = (s� 1) log (s� 1)� s� ((a� 1) log (a� 1)� a);



Heke's zeros and higher depth determinants 9we have es(s� 1)�(s�1) = ea(a� 1)�(a�1) exp��Z sa log (� � 1)d��:Henees(s� 1)�(s�1)L(2)K (s;�) = ea(a� 1)�(a�1)L(2)K (a;�) exp��Z sa log (� � 1)LK(�;�)d��:Now the statement follows immediately from the fat that (� � 1)LK(�;�) is holomorphi at � =1.Referenes[Ba℄ K. Barner.: On A. Weil's expliit formula. J. Reine Angew. Math., 323 (1981) 139{152.[D℄ C. Deninger.: Loal L-fators of motives and regularized determinants, Invent. Math., 107(1992), 135{150.[KOW℄ N. Kurokawa, H. Ohiai and M. Wakayama.: Milnor's multiple gamma funtions, J. Ra-manujan Math. So., 21 (2006), 153{167.[KW℄ N. Kurokawa and M. Wakayama.: Analytiity of polylogarithmi Euler produts, Rend. Cir.Mat. di Palermo, 200 (2003), 382{388.[KWY℄ N. Kurokawa, M. Wakayama and Y. Yamasaki.: Milnor-Selberg zeta funtions and higherdepth determinants, preprint, 2009.[Mi℄ J. Milnor.: On polylogarithms, Hurwitz zeta funtions, and the Kubert identities, Enseigne-ment Math�ematique, 29 (1983), 281{322.[SS℄ M. Shr�oter and C. Soul�e.: On a result of Deninger onerning Riemann's zeta funtion, In :Motives, Pro. Symp. Pure Math., 55, Part 1 (1994), 745{747[V℄ A. Voros.: Spetral funtions, speial funtions and the Selberg zeta funtions, Commun.Math. Phys., 110 (1987), 439{465.[Y℄ Y. Yamasaki.: Evaluation of higher depth determinants of the Laplaian on the n-sphere,preprint, 2009.Masato WAKAYAMAFaulty of Mathematis, Kyushu University,Motooka, Nishiku, Fukuoka, 819-0395, JAPAN.wakayama�math.kyushu-u.a.jpYoshinori YAMASAKIGraduate Shool of Siene and Engineering, Ehime University,Bunkyo-ho, Matsuyama, 790-8577 JAPAN.yamasaki�math.si.ehime-u.a.jp
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(1)
8

MI2009-13 Hidenao IWANE, Hitoshi YANAMI, Hirokazu ANAI & Kazuhiro YOKOYAMA
A Practical Implementation of a Symbolic-Numeric Cylindrical Algebraic De-
composition for Quantifier Elimination

MI2009-14 Yasunori MAEKAWA
On Gaussian decay estimates of solutions to some linear elliptic equations and
its applications

MI2009-15 Yuya ISHIHARA & Yoshiyuki KAGEI
Large time behavior of the semigroup on Lp spaces associated with the lin-
earized compressible Navier-Stokes equation in a cylindrical domain



MI2009-16 Chikashi ARITA, Atsuo KUNIBA, Kazumitsu SAKAI & Tsuyoshi SAWABE
Spectrum in multi-species asymmetric simple exclusion process on a ring

MI2009-17 Masato WAKAYAMA & Keitaro YAMAMOTO
Non-linear algebraic differential equations satisfied by certain family of elliptic
functions

MI2009-18 Me Me NAING & Yasuhide FUKUMOTO
Local Instability of an Elliptical Flow Subjected to a Coriolis Force

MI2009-19 Mitsunori KAYANO & Sadanori KONISHI
Sparse functional principal component analysis via regularized basis expan-
sions and its application

MI2009-20 Shuichi KAWANO & Sadanori KONISHI
Semi-supervised logistic discrimination via regularized Gaussian basis expan-
sions

MI2009-21 Hiroshi YOSHIDA, Yoshihiro MIWA & Masanobu KANEKO
Elliptic curves and Fibonacci numbers arising from Lindenmayer system with
symbolic computations

MI2009-22 Eiji ONODERA
A remark on the global existence of a third order dispersive flow into locally
Hermitian symmetric spaces

MI2009-23 Stjepan LUGOMER & Yasuhide FUKUMOTO
Generation of ribbons, helicoids and complex scherk surface in laser-matter
Interactions

MI2009-24 Yu KAWAKAMI
Recent progress in value distribution of the hyperbolic Gauss map

MI2009-25 Takehiko KINOSHITA & Mitsuhiro T. NAKAO
On very accurate enclosure of the optimal constant in the a priori error esti-
mates for H2

0 -projection



MI2009-26 Manabu YOSHIDA
Ramification of local fields and Fontaine’s property (Pm)

MI2009-27 Yu KAWAKAMI
Value distribution of the hyperbolic Gauss maps for flat fronts in hyperbolic
three-space

MI2009-28 Masahisa TABATA
Numerical simulation of fluid movement in an hourglass by an energy-stable
finite element scheme

MI2009-29 Yoshiyuki KAGEI & Yasunori MAEKAWA
Asymptotic behaviors of solutions to evolution equations in the presence of
translation and scaling invariance

MI2009-30 Yoshiyuki KAGEI & Yasunori MAEKAWA
On asymptotic behaviors of solutions to parabolic systems modelling chemo-
taxis

MI2009-31 Masato WAKAYAMA & Yoshinori YAMASAKI
Hecke’s zeros and higher depth determinants


