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Abstract

In this paper, baseball is formulated as a finite Markov game with approximately 6.45
million states. We give an effective dynamic programming algorithm which computes Markov
perfect equilibria and the value functions of the game for both teams in 2 second per game.
Optimal decision making can be found depending on the situation—for example, for the
batting team, whether batting for a hit, stealing a base or sacrifice bunting will maximize
their win percentage, or for the fielding team, whether to pitch to or intentionally walk a
batter, yields optimal results. In addition, our algorithm makes it possible to compute the
optimal batting order, in consideration of strategy optimization such as a sacrifice bunt or
a stolen base. The authors believe that this baseball model is also useful as a benchmark
instance for evaluating the performances of (multi-agent) Reinforcement Learning methods.

Keywords Markov game, Markov perfect equilibrium, dynamic programming, intentional walk,
advantage of the last-batting team, optimal lineup.

1 Introduction

In the field of mathematical science, the first research paper evaluating batting in baseball is
said to be by Lindsey [14]. In his paper, baseball is analyzed by a statistical method. A dynamic
programming (DP) approach to baseball is the main theme for this paper, and we first see a
prototype of this idea in Howard’s famous book [8]. Howard set maximization of the expected
number of runs scored for one inning as a criterion, formulating baseball as a Markov decision
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process with 25 states. Orders from the manager, such as base stealing, sacrifice bunting, and
batting for a hit, were also taken into consideration. Howard’s work is based on the assumption
that all nine batters on the team have equal abilities. The transition probabilities (the success
rate of sacrificing, etc.) were artificially set and the optimal strategies for a manager were
determined using a computer of that time. Bellman [1] proposes a more detailed formulation. His
model analyzes not only the batter-by-batter level, but also the pitch-by-pitch level. He provided
a subtle insight into strategies through a discussion based on the two criteria of maximizing the
expected number of runs scored and the threshold probability of scoring at least k runs in one
inning. However, due to the shortage of computing capacity at the time, Bellman’s approach
was not implemented.

On the other hand, at the same time as the work of Bellman, in 1977, two papers were
published that use a Markov chain approach with matrix analysis. D’Esopo and Lefkowitz [6]
propose a scoring index (SI) as an evaluation index for the expected number of runs scored in
one inning, assuming that the same player steps up to the plate repeatedly. Under the same
assumption, Cover and Keilers [5] propose a similar index, the OERA (Offensive Earned-Run
Average) value, as an index to evaluate the expected number of runs scored in a single game. In
the OERA model, the baseball rules are simplified to apply the absorbing Markov chain model
in the calculation of the expected runs scored. While Howard and Bellman focused on strategy
optimization, the goal of the matrix analysis approach is to express the contributions of each
individual player in numerical form. From this point on, this method became popular. Bukiet
et al. [4] in 1997 take the batting order into consideration. Their algorithm can calculate the
expected runs scored in one inning, assuming the nine players constituting the team step up to
the plate in a given order. However, the expected runs scored in a game can not be obtained by
a simple multiplication.1 Therefore, they propose a heuristic method.

Now, half a century from Howard’s proposal, the ability of computers has rapidly developed
and an approach using DP has become possible. In 2008, Turocy [19] produces a model to also
couple the strategies of the opposing team with DP approach by using a Markov game, which is
a multi-agent extension of MDPs (e.g. see Shapley [17] and Zachrisson [24]). Here, the manager
of each opposing team is the game-theoretic player who maximizes the probability of their team
winning. As an order from the manager, intentional walk is also taken into consideration. Since
the model adopts the MLB rule to play extra innings until a winner is determined (i.e., the
length of the game is finite with probability 1), the states for an extra inning can be identified
as being the same as for the ninth inning. In addition, by establishing an upper limit of 30
runs for the run difference (mercy-rule), his stochastic game has a finite number of states and
a finite number of actions, so a Markov perfect equilibrium (MPE) exists. The total number
of states in this case is approximately 2.13 million. Turocy performed numerical experiments
using backward induction from the start of the game up to the completion of the eighth inning,
and using a fixed-point approximation by a value-function iteration for the ninth inning. The
details of the recursive formula and the algorithm are omitted in the paper, but he states that
the values of the game (the equilibrium winning percentages for both teams) could be solved
with high accuracy in less than a minute.

In our previous paper [10, 11], we formulate baseball as a finite Markov game with ap-
proximately 3.5 million states. We also suppose that the manager of each team maximizes the
probability of their team winning. The principal advantages compared to Turocy’s model are:
(a) to consider the success rate with stolen bases in more detail, the identity of the runner
on first base is stored in the state, and (b) the rule from Japanese professional baseball that
extra innings are restricted to a maximum of three is included, so the game may end in a draw.
Because of the mercy-rule and the finiteness of the number of extra innings, the length of the

1If the same player steps up to the plate repeatedly, nine times the expected runs scored in one inning equals
that scored in a game.
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game also becomes finite. Hence, at least one pure-strategy MPE does exist in this model. We
derive a recursive formula that is satisfied by the MPEs and the value functions of the game. By
solving this, we realize to calculate the value functions of the game and a MPE in approximately
1 second per game. However, the details of the algorithm is omitted in our previous paper. In
addition, another disadvantage is that intentional walk is not taken into consideration.

In this paper, we take intentional walk into consideration and reformulate baseball as a
finite Markov game with approximately 6.45 million states. When a batter steps up to the
plate, we always assume that the team in defence chooses their action whether to pitch to or
to intentionally walk the batter before the team in offence chooses their action whether batting
for a hit, stealing a base or sacrifice bunting. Hence our model is still a sequential game and
there exists at least one pure-strategy MPE. We describe a depth-first search DP algorithm for
effectively computing the value functions of the game for both teams and pure-strategy MPEs
in detail.

In the theory of finite MDPs, the usual optimization criterion is to maximize the expected
value of the total (discounted) sum of stage-wise rewards. Is is well known that this criterion
can be solved in polynomial time. On the other hand, the threshold probability problem,
which attempts to maximize the probability that the total sum of stage-wise rewards exceeds a
specified value, has been extensively studied by many researchers (Boda and Filar [2], Bouakiz
and Kebir [3], Kira et al. [12], Ohtsubo and Toyonaga [16], Sobel [18], White [20, 21], Wu and
Lin [22], and others), and this problem has been proved to be NP-hard (Xu and Mannor [23]).
So, handling with probability criteria is more difficult than that with the usual expectation
criterion in general. The same applies to Markov games. However, in baseball, our algorithm
runs in less than 2 second per game. It will be clearly understood, through this paper, that
baseball possesses some properties quite suitable for DP computation. In addition, although
our baseball model is a large-scale Markov game, the optimal value functions can be found.
Therefore, the authors believe that our model is also useful as a benchmark for (multi-agent)
Reinforcement Learning methods.

In Section 2, we provide a finite Markov game as a formulation for baseball. States, actions,
state transitions with simplifying rules, and payoff functions are all defined. In Section 3, we
define MPEs and the value functions of the game, and derive the recursive formula that is
satisfied by them. By solving this, the value functions of the game and MPEs are obtained.
In Section 4, a depth-first search DP algorithm for effectively solving the recursive formula is
described in detail. Section 5 discusses whether the last-batting team has an advantage. Section
6 shows our results for computing the optimal lineup and the worst lineup for the Fukuoka
Softbank Hawks. So far as we know, there has been no study that has tried to optimize batting
order, in consideration of strategy optimization such as a sacrifice bunt or a stolen base. Our
effort reducing the computational time per game makes it possible. Concluding remarks and
future direction are discussed in Section 7.

2 Formulation as a Markov game

Most decision problems in the real world require multi-stage decisions, where successive decisions
need to be made while taking into account changes in the situation arising from the results of
previous decisions, rather than where decision making takes place just once. Dynamic program-
ming (DP) is an optimization method to efficiently solve these kinds of problems. However, in
order to solve them using DP, the problem needs to be properly formulated as a mathematical
model. One such mathematical model is the Markov game. In a Markov game, the following
three elements are considered: (i) successive decision making conducted over time; (ii) uncer-
tainty of changes in the situation; (iii) multiple decision makers competing against one another.
The word “uncertainty” needs to be treated with caution as it can mean completely different
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things depending on the community; however, here it refers to a situation whereby future events
can be probabilistically estimated from past data.

In this section, baseball is formulated as a finite Markov game. For convenience, we call the
first-batting team and the last-batting team “team 0” and “team 1” respectively.

2.1 States

Let S be the state space. A state s = (ι, τ, ω, λ, r, b,m) ∈ S is made up of 7 components. Each
component is defined as follows:

1. ι ∈ {1, 2, . . . , 12} represents the current inning. ι = 9 is the final inning, and for a tie,
extra innings are played up to a maximum of ι = 12.

2. τ ∈ {0, 1} represents offense in the top half of the inning (τ = 0) or offense in the bottom
half of the inning (τ = 1).

3. ω ∈ {0, 1, 2, 3} represents the current number of outs.

4. λ is the current run difference and represents the value found by subtracting the runs of
team 0 from the runs of team 1. For the purpose of determining the final winner, we
store not the runs scored by each team but the current run difference. This is a state
aggregation technique (e.g. see Sniedovich [15, Chap. 11]).

5. r = (r3, r2, r1) represents the state of the runners.

• r3 ∈ {0, 1} takes a value 0 if there is no runner on third base, and a value 1 if a runner
is present.

• r2 ∈ {0, 1} takes a value 0 if there is no runner on second base, and a value 1 if a
runner is present.

• r1 ∈ {0, 1, . . . , 9} takes a value 0 if there is no runner on first base, and the same
value as the batting order of the runner if a runner is present.

Only r1 distinguishes between runners, to take into account the success rate which is
dependent on the runner when performing a stolen base from first to second base. In this
paper, neither a stolen base from second to third base, nor a stolen base from third to
home base, are considered.

6. b = (b0, b1) is made up of 2 components. bi ∈ {1, 2, . . . , 9} indicates to which batter the
batting order of team i rotates (i = 0, 1). It represents, when in offense (τ = i), that the
bi-th batter steps up to the plate. When in defense (τ ̸= i), it means that the leadoff hitter
in the next inning is the bi-th batter.

7. m ∈ {0, 1} is the index of the team which is on move. In this state, team m can choose
their actions.

By the above definition, the initial state s0 at the start time of the game is as follows:

s0 = (ι, τ, ω, λ, r, b, m)0 = (1, 0, 0, 0, (0, 0, 0), (1, 1), 1).

SQ denotes the total states (absorbing states) at the end of the game:

SQ := S0
Q ∪ S1

Q ∪ Stie
Q ∪ Sm

Q (0) ∪ Sm
Q (1) ⊂ S,
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where

S0
Q = {(ι, τ, ω, λ, r, b,m) ∈ S | ι ≥ 9, τ = 1, ω = 3, λ > 0},

S1
Q = {(ι, τ, ω, λ, r, b,m) ∈ S | ι = 9, τ = 0, ω = 3, λ < 0}

∪ {(ι, τ, ω, λ, r, b,m) ∈ S | ι ≥ 9, τ = 1, λ < 0},

Stie
Q = {(ι, τ, ω, λ, r, b,m) ∈ S | ι = 12, τ = 1, ω = 3, λ = 0},

Sm
Q (0) = {(ι, τ, ω, λ, r, b,m) ∈ S |λ ≥ 30}, (mercy-rule)

Sm
Q (1) = {(ι, τ, ω, λ, r, b,m) ∈ S |λ ≤ −30}. (mercy-rule)

S0
Q and S1

Q correspond to a victory for team 0 and a victory for team 1, respectively. Stie
Q

corresponds to a tie in the 12th inning after playing extra innings. We note that the mercy-rule
refers to the establishment of a called game during the inning. By adopting both the Japanese
professional baseball rules (i.e., the number of extra innings is finite) and the above mercy-rule,
we get a finite Markov game. In addition, we equate the state s, such that ω = 3 and s /∈ SQ,
with the corresponding state after the inning is over.

2.2 Actions

The manager of each team is the game-theoretic player maximizing the probability of their team
winning. Here we let Si be the set of states of moves for team i. Namely,

Si = {(ι, τ, ω, λ, r, b,m) ∈ S \ SQ |m = i}, i = 0, 1.

In S0 ∪S1, there are a lot of states that are not reachable from the initial state s0. For example,
(τ, r1, b0) = (0, 1, 2) is feasible, but (0, 2, 1) is infeasible. We find out that the number of reachable
states in S0 ∪ S1 is 6, 454, 296 by coding a computer program for counting them. In this paper,
the action space is defined as

A = Adefence ∪ Aoffence,

where

Adefence = {pitching, intentional walk},
Aoffence = {batting, stolen base, sacrifice bunt}.

Let us consider a point-to-set valued mapping A : S \ SQ → 2A \ {ϕ}. A(s), called the feasible
action space, represents the set of all actions in state s. In this paper, we define A(s), for any
s = (ι, τ, ω, λ, r, b,m) ∈ S \ SQ in the following manner:

pitching ∈ A(s) ⇐⇒ τ ̸= m,

intentional walk ∈ A(s) ⇐⇒ τ ̸= m,

batting ∈ A(s) ⇐⇒ τ = m,

stolen base ∈ A(s) ⇐⇒ τ = m, r2 = 0, r1 ≥ 1,

sacrifice bunt ∈ A(s) ⇐⇒ τ = m, ω ≤ 1, r3 + r2 + r1 ≥ 1.

Hence, stolen bases are feasible if and only if there is no second base runner and there is a runner
present on first base, and sacrifice hits are feasible if and only if a runner is present with 0 or 1
outs.
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2.3 State transitions

For any a ∈ A, let us define X (a), the set of all results that can occur stochastically when the
action a is chosen, as follows:

X (a) =


{game} if a = pitching,
{walk} if a = intentional walk,
{out, single, double, triple, home run, walk} if a = batting,
{success, fail} otherwise.

We denote the graph of A(·) by Gr(A). Namely,

Gr(A) = {(s, a) | a ∈ A(s), s ∈ S}.

For any (s, a) ∈ Gr(A) and any x ∈ X (a), p(x| s, a) represents the conditional probability with
which the result x occurs, given that action a is chosen in state s.

p(· | s, a) : X (a) → [0, 1], ∀(s, a) ∈ Gr(A),∑
x∈X (a)

p(x | s, a) = 1, ∀(s, a) ∈ Gr(A).

With our definition, the state s = (ι, τ, ω, λ, r, b,m) includes information about the inning
number, whether it is the top or bottom half, the out count, the run difference, the batting
order of the batters, whether there are runners present or not, and also, the batting order of the
runner if one is present on first base. Therefore, the transition probability generally depends
on all of these states. However, in the numerical experiments carried out in Section 5 and
Section 6, we assume that the transition probability depends only on the players that make a
hit, or perform sacrifice hits or stolen bases, and does not depend on those other components
which comprise the state. Table 1 shows the probability parameters for the starting order of the
Fukuoka Softbank Hawks, and was compiled based on the values achieved in Japan’s professional
baseball 2014 season [25, 26].

Table 1: Probability parameters

* The minimum of 0.8 and the actual value was adopted for the sacrifice hit success rate for players with
extremely small numbers of attempted sacrifice hits (less than 4) over the year.

This paper simplifies baseball in a similar manner to previous research. The simplifying rules
used in this paper are as below.
“Simplifying rules”
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1. With a mishit (an out), neither a batter nor a runner can advance bases.

2. A single advances a runner on first base to third base, and runners on second and third
base reach the home plate.

3. A double and a triple allows all runners to reach the home plate.

4. It is assumed that there are no double plays.

5. For a successful stolen base, the runner on first base advances to second base.

6. For an unsuccessful stolen base, the runner on first base is out.

7. For a successful sacrifice hit, the runners advance one base forward, and the batter per-
forming the sacrifice hit is out.

8. For an unsuccessful sacrifice hit, the runner closest to the home plate is out, the other
runners advance one base forward, and the batter is then the runner on first base.

If these simplifying rules are followed, then the next state s′ is determined uniquely when in
state s, action a is chosen, and result x occurs. We denote this next state by

s′ = t(s, a, x).

Figure 1 illustrates the two-step transitions from a state with a runner on first with one out.

Figure 1: A part of the game tree

2.4 Markov policies

As a class of allowable policies, we consider the following class of Markov policies. The reason
why we restrict our attention to this class will be stated in Section 3.

Definition 2.1 (Markov policy). A mapping πi : Si → A is called a (deterministic) Markov
policy for team i if πi(s) ∈ A(s) for all s ∈ Si (i = 0, 1). We denote the set of all deterministic
Markov policies for team i by Πi (i = 0, 1).
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Suppose that Markov policy πi is employed by team i. In this case, the Markov game
commencing from each state s can be regarded as a Markov chain. In other words, if we let
Xn be the state after n step transition from the initial state s0, then {Xn} is the Markov chain
satisfying

Pπ0,π1(Xn+1 = s′ |Xn = s) =


p(x | s, πi(s)) if s ∈ Si, s′ = t(s, πi(s), x),

1 if s ∈ SQ, s′ = s,
0 otherwise,

where Pπ0,π1 represents the conditional probability given that the policy πi is employed by team
i with i = 0, 1. Let T be the arrival time of {Xn} to SQ. Namely,

T := min{n |Xn ∈ SQ} < ∞.

We denote the probabilities of team i winning by vi(s; π0, π1).

vi(s; π0, π1) := Pπ0,π1
(
XT ∈ Si

Q ∪ Sm
Q (i) |X0 = s

)
, s ∈ S, (π0, π1) ∈ Π0×Π1, i = 0, 1.

2.5 Payoff functions

For any Borel set B and any random variable X, we know the relation

Pr(X is in B ) = E[1B(X) ], (1)

where

1B(X) =
{

1 if X is in B,
0 otherwise .

Thus, let us define team i’s terminal payoff function ψi : SQ → {0, 1} as follows:

ψi(s) =
{

1 (−1)iλ > 0,
0 othewise,

s = (ι, τ, ω, λ, r, b, m) ∈ SQ, i = 0, 1.

If the game is won, a payoff of 1 is acquired, whereas a loss or a tie is a payoff of 0. This value
depends only on the current run difference λ. Now, we can rewrite vi(s;π0, π1) as follows:

vi(s; π0, π1) = Eπ0,π1 [ψi(XT ) |X0 = s] , s ∈ S, (π0, π1) ∈ Π0×Π1, i = 0, 1,

where Eπ0,π1 represents the conditional expectation given that the policy πi is employed by team
i with i = 0, 1. The approach of using the relation (1) to reduce a probability criterion to the
usual expectation criterion is often used in the field of MDPs (see Kira et al. [12]).

From the viewpoint of the theoretical framework of Markov games, the runs of team i may
be treated as a reward system. In our model, to express the problem in the form of the usual
expectation criterion, we store information about the runs scored as a component of the states.
In the field of MDPs, such the state space S is called the augmented state space. In the most
general context of Markov games, the sum of rewards, for any state, earned up to that point
depends on the history of the process. This indicates that the cardinality of the augmented state
space increases exponantially with the length of the game. However, in our baseball model, it is
sufficient and efficient to sotre the run difference λ and it only takes small integer values. This
property is quite suitable for DP computation.
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3 Markov perfect equilibria and recursive formula

In this section, we define an MPE and the value functions of the game, and derive the recursive
formula for effectively computing them.

An MPE is a profile of Markov policies that yields a Nash equilibrium in every proper
subgame.

Definition 3.1 (Markov perfect equilibrium, MPE). A profile of (deterministic) Markov policies
(π∗

0, π
∗
1) is called a (pure-strategy) MPE if it is a subgame perfect equilibrium. Namely, it satisfies

v0(s; π0, π
∗
1) ≤ v0(s; π∗

0, π
∗
1), ∀s ∈ S, ∀π0 ∈ Π0,

v1(s; π∗
0, π1) ≤ v1(s; π∗

0, π
∗
1), ∀s ∈ S, ∀π1 ∈ Π1.

Remark 3.1 (existence of the equilibria). In the most general context, the action chosen by a
policy in each state may be randomized. However, it is well-known that at least one pure-strategy
MPE exists for a finite Markov game with perfect information (e.g. see Fundenberg and Tirole
[7], Chap.13, p.516)2. We thus restrict our attention to the class of pure-strategy MPEs.

Definition 3.2 (the value function of the game). Let (π∗
0, π

∗
1) be a MPE, and for any state

s ∈ S, let Vi(s) be the probability of team i winning when in state s. That is,

Vi(s) = vi(s;π∗
0, π

∗
1), s ∈ S.

Then the function Vi is called the value function of the game for team i.

Remark 3.2 (uniqueness of the value functions). Every MPE is a Nash equilibrium. It follows
from Kuhn’s theorem [13] that the value function of the game for each team is unique. In other
words, all equilibria must result in the same probability of the team winning.

Theorem 3.1 (Bellman equation). The value functions and any MPE (π∗
0, π

∗
1) satisfy the fol-

lowing recursive formula.

Vi(s) =



ψi(s) s ∈ SQ,

Max
a∈A(s)

∑
x∈X (a)

Vi(t(s, a, x))p(x|s, a) s ∈ Si,∑
x∈X (π∗

j (s))

Vi(t(s, π∗
j (s), x))p(x|s, π∗

j (s)) s ∈ Sj .

π∗
i (s) ∈ arg max

a∈A(s)

∑
x∈X (a)

Vi(t(s, a, x))p(x|s, a), s ∈ Si,

where (i, j) = (0, 1), (1, 0).

Proof. As the initial condition for backward induction, we have

Vi(s) = ψi(s), s ∈ SQ, i = 0, 1.

Suppose that we are now in position to evaluate V0(s) and V1(s) for some state s ∈ S0 ∪S1, and
suppose that we have evaluated V0(·) and V1(·) for all accessible states in one-step transition

2This fact is an immediate consequence of the well-known Kuhn’s theorem [13]. Kawasaki et al. [9] give
another proof using a discrete fixed point theorem.
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from s. If the team on move in the state s choses an action a ∈ A(s), and if each team does
their best in the subsequent subgame, then the winning percentages of both teams are∑

x∈X (a)

Vi(t(s, a, x))p(x|s, a), i = 0, 1.

Therefore, any MPE (π∗
0, π

∗
1) must satisfy

π∗
i (s) ∈ arg max

a∈A(s)

∑
x∈X (a)

Vi(t(s, a, x))p(x|s, a),

where i is such that s ∈ Si. We thus obtain the result by backward induction.

4 Dynamic programming algorithm

In the previous section, we have obtained the recursive formula satisfied by the optimal value
functions and any MPEs. By solving this, the optimal equilibrium strategies for each state, such
as a sacrifice bunt or a stolen base, are obtained.

In the theory of finite Markov games (including finite MDPs), any general-purpose algorithm
takes quadratic time with respect to the size of the state space in worst case. This time com-
plexity is required because all the states must be evaluated and all the states may be accessible
from all the states in one-step transition. However, in our basebal model, the number of all
accessible states in one-step transition from any state s can be counted on both hands (See
Figure 1). This indicates that we can construct a specialized algorithm which takes linear time
with the size of the state space. We realize it by the use of memoized recursion. The algorithm
can be implemented as described in Algorithm 1.

Data: an instance of the transition probabilities p(· | s, a) : X (a) → [0, 1], (s, a) ∈ Gr(A).
Result: the optimal value functions V0 and V1 and an pure-strategy MPE π∗ = (π∗

0, π
∗
1)

Initialize V0(s) and V1(s) to −1 for all s ∈ S;
s0 = (ι, τ, ω, λ, r, b, m)0 ← (1, 0, 0, 0, (0, 0, 0), (1, 1), 1);
Call Evaluate(arguments: s0);

Algorithm 1: A dynamic programming algorithm for solving the baseball game

The memoized recurisive function Evaluate(parameters: s = (ι, τ, ω, λ, r, b,m) ∈ S), which
evaluates Vi(s) with i = 0, 1, can be implemented as follows:
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if s ∈ SQ then
Vi(s) ← ψi(s) for i = 0, 1;

else
Declare local variables: an integer j, a floating-point variable temp, and a state s′;
if m = 0 then

j ← 1;
else

j ← 0;

forall the a ∈ A(s) do
temp ← 0;
forall the x ∈ X (a) such that p(x|s, a) > 0 do

s′ ← Call Transition(arguments: s, a, x);
if Vm(s′) = −1 then

Call Evaluate(arguments: s′);

temp ← temp + Vm(s′)p(x|s, a);

if Vm(s) < temp then
Vm(s) ← temp, π∗

m(s) ← a;

Vj(s) ← 0;
forall the x ∈ X (π∗

m(s)) such that p(x|s, π∗
m(s)) > 0 do

s′ ← Call Transition(arguments: s, π∗
m(s), x);

Vj(s) ← Vj(s) + Vj(s′)p(x|s, π∗
m(s));

Function Evaluate(parameters: s = (ι, τ, ω, λ, r, b, m) ∈ S)

This memoized recursion solves the recursive formula just for reachable states from the
initial state by implementing the depth-first search of the game tree. The function Tran-
sition(parameters: s, a, x) returns the next state s′ = t(s, a, x), and can be implemented as
follows:

switch the value of a do
case pitching

(Do nothing)
case intentional walk or batting

s ← Call TransBatting(arguments: s, x);
case stolen base

s ← Call TransStolenBase(arguments: s, x);
case sacrifice bunt

s ← Call TransSacrificeBunt(arguments: s, x);

if ω = 3, s /∈ SQ then
s ← Call InningIsOver(arguments: s);

else if a ̸= intentionalwalk then
m ← (m + 1) mod 2;

return s;

Function Transition(parameters: s = (ι, τ, ω, λ, r, b,m) ∈ S, a ∈ A(s), x ∈ X (a))
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switch the value of x do
case out

ω ← ω + 1;
case single

λ ← λ + (−1)τ (r3 + r2), r3 ← 1>0(r1), r2 ← 0, r1 ← bτ ;
case double

λ ← λ + (−1)τ (r3 + r2 + 1>0(r1)), r3 ← 0, r2 ← 1, r1 ← 0;
case triple

λ ← λ + (−1)τ (r3 + r2 + 1>0(r1)), r3 ← 1, r2 ← 0, r1 ← 0;
case home run

λ ← λ + (−1)τ (r3 + r2 + 1>0(r1) + 1), r3 ← 0, r2 ← 0, r1 ← 0;
case walk

if r3 = r2 = 1>0(r1) = 1 then
λ ← λ + (−1)τ ;

else
Declare a local integer variable n;
n ← min{j ∈ {1, 2, 3} | rj = 0};
if n ≥ 2 then

rn ← 1;

r1 ← bτ ;

bτ ← bτ mod 9 + 1;
return s;

Function TransBatting(parameters: s = (ι, τ, ω, λ, r, b,m) ∈ S, x ∈ X (batting))

switch the value of x do
case success

r2 ← 1;
case fail

ω ← ω + 1;

r1 ← 0;
return s;

Function TransStolenBase(parameters: s ∈ S, x ∈ X (stolen base))
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switch the value of x do
case success

λ ← λ + (−1)τr3, r3 ← r2, r2 ← 1>0(r1), r1 ← 0;
case fail

Declare a local integer n and set n ← max{i | ri > 0};
if n = 3 then

r3 ← r2, r2 ← 1>0(r1);
else if n = 2 then

r2 ← 1>0(r1);

r1 ← bτ ;

ω ← ω + 1, bτ ← bτ mod 9 + 1;
return s;

Function TransSacrificeBunt(parameters: s ∈ S, x ∈ X (sacrifice bunt))

if τ = 0 then
τ ← 1;

else
ι ← ι + 1, τ ← 0;

ω ← 0, r3 ← 0, r2 ← 0, r1 ← 0;
return s;

Function InningIsOver(parameters: s = (ι, τ, ω, λ, r, b,m) ∈ S)

5 Advantage of the last-batting team

In baseball, there is often talk of whether the last-batting team has an advantage. In Japanese
professional baseball games, the visiting team bats first and the home team bats second. The
wins and losses for home and visiting teams in the 2014 season are shown in Table 2.

Table 2: Win-loss records by home/road (2014 season)

PCT := W/(W + L + D)

Source: Nippon Professional Baseball Official Website [25]

In total, 864 games were played in the Central and Pacific leagues combined. The winning
percentage for teams batting first was .450 and the winning percentage for teams batting last
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was .532, approximately 8 % higher. There are various advantages to being able to play a game
at home, such as support from the home crowd. However, is there an advantage caused strictly
by baseball rules?

Turocy [19] argued for the advantage of batting last by calculating the value of the game for
the hypothetical situation where the same team plays itself. When doing this, the strategies that
can be chosen by the manager are base stealing, sacrifice bunting, and intentionally walking a
batter. These strategies can be turned “ON” or “OFF,” and the value of the game is compared
over a total of 8 different situations. In our paper, we have the Fukuoka Softbank Hawks
(shown as in Table 1) play against themselves. We also switched each manager plan ON and
OFF, both for the team batting first and the team batting last, and evaluated the value of the
game in a total of 64 situations. We show the results in Table 3. We implemented our DP

Table 3: Values of the games at the point of the game starting, and the effects of the strategies

• The upper row (right) displays the value of the game for the last-batting team, the lower row (left) for the
first-batting team

• S = Base stealing is “ON”, B = Sacrifice bunting is “ON”, W = Intentional Walk is “ON”

algorithm using C++ Language and executed it on a desktop PC with Intel R⃝ CoreTM i7-3770K
processor and 16GB memory installed. Computational time is longest when all strategies for
both teams are ON. In this case, the calculation for pure-strategy MPE and value of the game
was completed in 1.61 second per game. Figure 2 illustrates the computational result of Vi(s)
for s = (ι, τ, ω, λ, r, b,m) = (7, 0, 1, 0, (0, 0, 1), (2, 1), 1).

For the condition of only intentional walks being ON for both teams, the team batting first
had a higher winning percentage. On the other hand, for the condition of only base stealing being
ON for both teams and for the condition of only sacrifices being ON for both teams, the winning
percentage of the team batting last was higher. Thus, intentional walks are most advantageous
to the team batting first, while stolen bases and sacrifice bunting are most advantageous to the
team batting last. Therefore, when the strategies of both teams are all switched ON, whether
the winning percentage of the team batting first or of the team batting last is higher depends on
the transition probabilities of chance moves. However, as Table 3 shows, the influence of walks
is less than that of base stealing and sacrifice bunting. Thus, it seems safe to say that, normally,
the winning percentage of the team batting last would be higher. These results correspond to
the facts outlined by Turocy [19]. However, Turocy does state in his paper that “the disparity
is slight, and does not make a big difference.” Although this is true, when considering the fact
that a .007 increase in winning percentage would amount to 1 additional win in a 144 game
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• all strategies for both teams are ON.

Figure 2: Computational result: Vi(s) for s = (ι, τ, ω, λ, r, b,m) = (7, 0, 1, 0, (0, 0, 1), (2, 1), 1)

season, this difference should not be ignored.
We note that optimal decision also depends on the current run difference. Take a state with

runner on first base with no outs in the bottom half of the final inning, for instance. Sacrifice
bunt will probably maximize team 1’s win percentage when the score is tied. However, in the
case of 3 runs behind, sacrifice bunt should not be executed. Hence, the run difference between
the opposing teams must be considered to win a game. In other words, the number of runs
scored by the opposing team is an important piece of information. When the first-batting team
makes decisions on batting for a hit, stealing a base, or sacrifice bunting (i.e., when in the top
half of some inning), the manager can not know the the runs scored in the bottom half of the
inning by the last-batting team. However, when the last-batting team makes such decisions
(i.e., when in the bottom half of some inning), the manager can know the runs scored in the top
half of the inning by the first-batting team. Therefore, the last-batting team has an advantage
of a half inning more observation. On the other hand, when making decisions on intentional
walks, the stands of the first-batting team and the last-batting team is reversed. We believe
this asymmetry due to the rules of baseball is the reason for the slight difference in winning
percentage between the team batting first and that batting last.

6 Optimal lineup

Since the paper by Bukiet et al. [4] was published, the hottest topic within research on Markov
chain approaches with matrix analysis has been the calculation of optimal batting order. This
topic has been addressed in many previous studies. In a DP approach, considerable computa-
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tional time is required for the optimization of strategy itself; thus, the computational cost of
completing an exhaustive search of batting lineup to find the optimal one is very high. However,
in actuality, it is enough to search 8! permutations. A memoized value of a subgame can be
reused for another, so the time taken to evaluate a single lineup σ = (1, 2, 3, 4, 5, 6, 7, 8, 9) is
nearly the same as the time taken to evaluate all 9 lineups that can be obtained by rotations
(e.g. σ′ = (2, 3, 4, 5, 6, 7, 8, 9, 1), σ′′ = (3, 4, 5, 6, 7, 8, 9, 1, 2)).

Tables 4 and 5 show our results for computing the optimal lineup for the Fukuoka Softbank
Hawks. In this case, we also created a hypothetical game where the first-batting team and the
last-batting team are the exact same team. The batting lineup for the first team was fixed as
the default batting order, shown in Table 1. An exhaustive search was then conducted for the
batting order of the last-batting team, and we found the optimal lineup and the worst lineup
which maximizes and minimize the winning percentage of the last-batting team, respectively.
Moreover, we changed the run difference established in a called game from 30 runs to 20 runs,
because it was sufficient to be able to precisely calculate the values of the games at the start of
the game. Since we conducted a simple exhaustive search on a single thread, the computation
took approximately half a day.

Table 4: Optimal lineup

Table 5: Probability of the last-batting team winning

• The upper row (right) displays the value of the game for the last-batting team, the lower row (left) for the
first-batting team

With the assumption that both teams make the best choices in terms of their game decision
making on batting for a hit, stealing a base, or sacrifice bunting, the winning percentage differ-
ence between the optimal and worst batting order was only 2.34 %. However, in the context of
a 144 game regular season, this would amount to a difference of 3.374 wins. Considering that
more wins equate to more losses for other teams, the game difference with the other teams would
be even greater.

7 Summary and Future Challenges

In this paper, baseball has been formulated as a finite Markov game with approximately 6.45
million states. We demonstrated that the value functions of the games and MPEs, where both
teams’ managers maximize the probabilities of their respective team winning, can be computed
in 2 second per game. Based on this computational improvement, we have successfully computed
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the optimal batting order, in consideration of strategy optimization such as a sacrifice bunt or
a stolen base.

The authors have been also interested in applying the model description capability of the
Markov game and the calculation power of DP to decision making problems in social fields such
as marketing. More specifically, problems such as production planning for a producer, price and
advertising strategies for a retailer, and purchasing strategies of consumers are to be formulated
as large-scale, rich Markov games. We would like to solve them and use results to sicial system
design as challenges for the future.
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cesses under high-frequency sampling

MI2010-27 Chikashi ARITA & Daichi YANAGISAWA
Exclusive Queueing Process with Discrete Time

MI2010-28 Jun-ichi INOGUCHI, Kenji KAJIWARA, Nozomu MATSUURA & Yasuhiro OHTA
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