九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Traveling waves bifurcating from plane Poiseuille flow of the compressible Navier－ Stokes equation

Kagei，Yoshiyuki
Faculty of Mathematics，Kyushu University
Nishida，Takaaki
Department of Applied Complex System，Kyoto University
https：／／hdl．handle．net／2324／1547351

出版情報：MI Preprint Series．2015－9，2015－10－16．九州大学大学院数理学研究院
バージョン：
権利関係：

MI Preprint Series

Mathematics for Industry Kyushu University

Traveling waves bifurcating from
 plane Poiseuille flow of the compressible Navier-Stokes
 equation

Yoshiyuki Kagei
\& Takaaki Nishida

MI 2015-9

(Received October 16, 2015)

Institute of Mathematics for Industry
Graduate School of Mathematics
Kyushu University
Fukuoka, JAPAN

Traveling waves bifurcating from plane Poiseuille flow of the compressible Navier-Stokes equation

Yoshiyuki Kagei ${ }^{1}$ and Takaaki Nishida ${ }^{2}$
${ }^{1}$ Faculty of Mathematics, Kyushu University, Nishi-ku, Motooka 744, Fukuoka 819-0395, Japan
${ }^{2}$ Department of Applied Complex System, Kyoto University, Yoshida Honmachi, Sakyo-ku, Kyoto, 606-8317, Japan

Abstract

Plane Poiseuille flow in viscous compressible fluid is known to be asymptotically stable if Reynolds number R and Mach number M are sufficiently small. On the other hand, for R and M being not necessarily small, an instability criterion for plane Poiseuille flow is known; and the criterion says that, when R increases, a pair of complex conjugate eigenvalues of the linearized operator cross the imaginary axis. In this paper it is proved that a spatially periodic traveling wave bifurcates from plane Poiseuille flow when the critical eigenvalues cross the imaginary axis.

Mathematics Subject Classification (2000). 35Q30, 76N15.
Keywords. Compressible Navier-Stokes equation, Poiseuille flow, bifurcation, spatially periodic traveling wave.

1 Introduction

This paper is concerned with the bifurcation of traveling waves from plane Poiseuille flow of the compressible Navier-Stokes equation. We consider the following system of equations

$$
\begin{gather*}
\partial_{t} \rho+\operatorname{div}(\rho v)=0 \tag{1.1}\\
\rho\left(\partial_{t} v+v \cdot \nabla v\right)-\mu \Delta v-\left(\mu+\mu^{\prime}\right) \nabla \operatorname{div} v+\nabla P(\rho)=\rho \boldsymbol{g} \tag{1.2}
\end{gather*}
$$

in a 2-dimensional infinite layer $\Omega_{\ell}=\mathbb{R} \times(0, \ell)$:

$$
\Omega_{\ell}=\left\{x=\left(x_{1}, x_{2}\right): x_{1} \in \mathbb{R}, 0<x_{2}<\ell\right\} .
$$

Here $\rho=\rho(x, t)$ and $v=^{\top}\left(v^{1}(x, t), v^{2}(x, t)\right)$ denote the density and velocity, respectively, at time $t \geq 0$ and position $x \in \Omega_{\ell} ; P=P(\rho)$ is the pressure that is assumed to be a smooth function of ρ satisfying

$$
P^{\prime}\left(\rho_{*}\right)>0
$$

for a given constant $\rho_{*}>0 ; \mu$ and μ^{\prime} are the viscosity coefficients that are assumed to be constants and satisfy

$$
\mu>0, \quad \mu+\mu^{\prime} \geq 0
$$

div, ∇ and Δ denote the usual divergence, gradient and Laplacian with respect to x; and \boldsymbol{g} is a given external force. Here and in what follows ${ }^{\top}$. stands for the transposition.

We assume that the external force \boldsymbol{g} takes the form

$$
\boldsymbol{g}=g \boldsymbol{e}_{1},
$$

where g is a positive constant and $\boldsymbol{e}_{1}=^{\top}(1,0) \in \mathbb{R}^{2}$.
The system (1.1)-(1.2) is considered under the boundary condition

$$
\begin{equation*}
\left.v\right|_{x_{2}=0, \ell}=0 . \tag{1.3}
\end{equation*}
$$

We also require periodicity of ρ and v in x_{1} :

$$
\begin{equation*}
\rho\left(x_{1}+\frac{2 \pi}{\alpha}, x_{2}\right)=\rho\left(x_{1}, x_{2}\right), \quad v\left(x_{1}+\frac{2 \pi}{\alpha}, x_{2}\right)=v\left(x_{1}, x_{2}\right), \tag{1.4}
\end{equation*}
$$

where $\alpha>0$ is a given wave number.
It is easily seen that (1.1)-(1.4) has a stationary solution $\bar{u}_{s}={ }^{\top}\left(\bar{\rho}_{s}, \bar{v}_{s}\right)$ satisfying

$$
\bar{\rho}_{s}=\rho_{*}, \quad \bar{v}_{s}=\frac{\rho_{*} g}{2 \mu} x_{2}\left(\ell-x_{2}\right) \boldsymbol{e}_{1}
$$

that is the so-called plane Poiseuille flow.
The aim of this paper is to show the bifurcation of traveling wave solutions from plane Poiseuille flow.

The function \bar{v}_{s} also gives a stationary solution representing parallel flow of the incompressible Navier-Stokes equation. It is known that stationary parallel flow of the incompressible Navier-Stokes equation is stable under any initial perturbations in L^{2} if the Reynolds number R is sufficiently small. Furthermore, plane Poiseuille flow is stable under sufficiently small initial perturbations if $\mathrm{R}<\mathrm{R}_{c}$ for a critical number $\mathrm{R}_{c} \sim 5772$, and unstable if $\mathrm{R}>\mathrm{R}_{c}([9])$.

As for the compressible case, the stability of parallel flow in the infinite layer Ω_{ℓ} was studied in [7]; and it was proved that parallel flow is asymptotically stable under perturbations sufficiently small in some Sobolev space over Ω_{ℓ} if the Reynolds and Mach numbers are sufficiently small. In [8] an instability criterion was established; plane Poiseuille flow of the compressible Navier-Stokes equation (1.1)-(1.4) is linearly unstable if $\alpha \ll 1$ and

$$
\begin{equation*}
\frac{1}{280}>\gamma^{2}, \quad \frac{1}{280}-\gamma^{2}>\frac{\nu}{30 \gamma^{2}}\left(3 \nu+\nu^{\prime}\right) \tag{1.5}
\end{equation*}
$$

where $\nu=\frac{\mu}{8 \rho_{*}+V_{0}}, \nu^{\prime}=\frac{\mu^{\prime}}{8 \rho_{*} \ell V_{0}}$ and $\gamma=\frac{\sqrt{P^{\prime}\left(\rho_{*}\right)}}{8 V_{0}}$ with $V_{0}=\frac{\rho_{*} \ell \ell}{8 \mu}$ being the maximum velocity of plane Poiseuille flow \bar{v}_{s}. More precisely, the spectrum of the linearized operator $-L$ consists of simple eigenvalues $\lambda_{\alpha k}\left(|k|=1, \cdots, n_{0}\right)$ for some $n_{0} \in \mathbb{R}$ such that

$$
\lambda_{\alpha k}=-\frac{i}{6}(\alpha k)+\kappa_{0}(\alpha k)^{2}+O\left(|\alpha k|^{3}\right) \quad(\alpha k \rightarrow 0) .
$$

Here κ_{0} is the number given by

$$
\kappa_{0}=\frac{1}{12 \nu}\left[\left(\frac{1}{280}-\gamma^{2}\right)-\frac{\nu}{30 \gamma^{2}}\left(3 \nu+\nu^{\prime}\right)\right] .
$$

As a consequence, if $\alpha \ll 1$ and (1.5) is satisfied, then $\kappa_{0}>0$ and plane Poiseuille flow $\bar{u}_{s}={ }^{\top}\left(\bar{\rho}_{s}, \bar{v}_{s}\right)$ is linearly unstable. Note that the Reynolds number R and Mach number M are given by $\mathrm{R}=\frac{1}{16 \nu}$ and $\mathrm{M}=\frac{1}{8 \gamma}$, respectively. Instability condition (1.5) is thus restated as

$$
\begin{equation*}
\mathrm{M}>\sqrt{\frac{35}{8}} \sim 2.09, \quad \frac{1}{35}-\frac{1}{8 \mathrm{M}^{2}}>\frac{\mathrm{M}^{2}}{15 \mathrm{R}}\left(\frac{3}{\mathrm{R}}+\frac{1}{\mathrm{R}^{\prime}}\right) \tag{1.6}
\end{equation*}
$$

where $\mathrm{R}^{\prime}=\frac{1}{16 \nu^{\prime}}$. Therefore, Reynolds and Mach numbers are not small when (1.5) (i.e., (1.6)) is satisfied. For example, if $\mathrm{M}=2.5, \mathrm{R}=\frac{173}{16} \sim 10.81$ and $\frac{1}{\mathrm{R}^{\prime}}=-\frac{2}{3 \mathrm{R}}$ (i.e., $\nu^{\prime}=-\frac{2 \nu}{3}$), then instability condition (1.6) (i.e., (1.5)) is satisfied. ${ }^{1}$

When the instability described above occurs, there seems to appear the Hopf bifurcation. In fact, if γ^{2} is fixed so that $\frac{1}{280}-\gamma^{2}>0$, one can find the value $\nu_{1}>0$ such that $\kappa_{0}<0$ for $\nu=\nu_{1}$. When ν is decreased from ν_{1}, complex conjugate eingenvalues $\lambda_{ \pm \alpha}$ cross the imaginary axis at some $\nu=\nu_{0}$. We will show that there are traveling wave solutions, which are periodic in x_{1} and t, bifurcating from plane Poiseuille flow for $\nu \sim \nu_{0}$, provided that

$$
\begin{equation*}
\sigma(-L) \cap\{\lambda ; \operatorname{Re} \lambda=0\}=\left\{\lambda_{\alpha}, \lambda_{-\alpha}\right\} \text { at } \nu=\nu_{0} . \tag{1.7}
\end{equation*}
$$

Since Iooss and Padula ([6]) proved that $\sigma(-L) \cap\{\lambda ; \operatorname{Re} \lambda>-c\}$ consists of finite number of eigenvalues with finite multiplicities for some constant $c>0$, it seems very unlikely that the assumption (1.7) is not satisfied for all $\alpha \ll 1$. We also note that we construct bifurcating solutions from Poiseuille flow when ν and γ are small, which implies that Poiseuille flow is large, in other words, we show the bifurcation from large stationary solution.

The bifurcation problem for compressible fluid was firstly treated by Nishida-Padula-Teramoto [11] (cf., [10]); and the existence of the bifurcating convection solutions was proved for thermal convection problem. The main difficulty in the proof of the bifurcation arises from the convection term $v \cdot \nabla \rho$ in (1.1) which may cause the derivative-loss, in other words, it is not Frechét differentiable in a standard setting. In [11], the effective viscous flux was used to overcome this difficulty

[^0]and establish the necessary estimates for the proof of the bifurcation of stationary convective patterns. (Cf., [1, 5].) In this paper we will not use the effective viscous flux but employ the iterative method in which the convection term $v \cdot \nabla \rho$ in (1.1) is regarded as a part of the principal part as in the proof of the local solvability of the time evolution problem. The method of this paper will be widely applicable to the bifurcation problem for certain classes of quasilinear hyperbolic-parabolic systems.

To prove the existence of bifurcating traveling waves, we rewrite the time evolution problem to a stationary problem in a moving coordinates. We then decompose the stationary problem into the null space of the linearized operator and its complementary subspace. One of the points of the proof is to establish the solvability in the complementary subspace, for which we apply the Matsumura-Nishida energy method [12] and the results on the resolvent problem for transport equation by Heywood and Padula [4] for a linear system which includes the convective term $v \cdot \nabla \rho$ as in (1.1) with a given velocity v.

This paper is organized as follows. In section 2 we derive a non-dimensional form of system (1.1)-(1.2) and rewrite it into the system of equations for the perturbation. We also introduce notation used in this paper. In section 3 we state the instability result of Poiseuille flow obtained in [8], and in section 4, we state the main result of this paper on the existence of bifurcating traveling waves. Sections 5-8 are devoted to the proof of the main result. In section 5 we first formulate the problem. We then rewrite the time evolution problem to a stationary problem in a moving coordinates, and we give a proof of the main result. In section 6 we prove the solvability in the complementary subspace. Section 7 is devoted to a proof of a periodic version of Bogovskii's lemma. In section 8 we present a proof of the solvability in the null space of the linearized operator.

2 Preliminaries

In this section we first derive a non-dimensional form of system (1.1)-(1.2) and then give the system of equations for the perturbation. In the end of this section we introduce notations used in this paper.

2.1 Non-dimensionalization

We introduce the following non-dimensional variables:

$$
x=\ell \tilde{x}, t=\frac{\ell}{V} \tilde{t}, v=V \tilde{v}, \rho=\rho_{*} \tilde{\rho}, P=\rho_{*} V^{2} p
$$

with

$$
V=\frac{\rho_{*} g \ell^{2}}{\mu}
$$

Under this transformation, (1.1) and (1.2) on Ω_{ℓ} are written, by omitting tildes, as

$$
\begin{equation*}
\partial_{t} \rho+\operatorname{div}(\rho v)=0, \tag{2.1}
\end{equation*}
$$

$$
\begin{equation*}
\rho\left(\partial_{t} v+v \cdot \nabla v\right)-\nu \Delta v-\left(\nu+\nu^{\prime}\right) \nabla \operatorname{div} v+\nabla p(\rho)=\nu \rho \boldsymbol{e}_{1} \tag{2.2}
\end{equation*}
$$

on the infinite layer $\Omega=\Omega_{1}$:

$$
\Omega=\left\{x=\left(x_{1}, x_{2}\right): x_{1} \in \mathbb{R}, 0<x_{2}<1\right\} .
$$

Here and in what follows we denote $\boldsymbol{e}_{1}=^{\top}(1,0) \in \mathbb{R}^{2} ; \nu$ and ν^{\prime} are the nondimensional parameters given by

$$
\nu=\frac{\mu}{\rho_{*} \ell V}, \quad \nu^{\prime}=\frac{\mu^{\prime}}{\rho_{*} \ell V} .
$$

The assumption $P^{\prime}\left(\rho_{*}\right)>0$ is restated as

$$
p^{\prime}(1)>0 \text {. }
$$

To derive (2.2) we have used the relation $\frac{\ell g}{V^{2}}=\nu$.
We will show the existence of traveling wave solutions of (2.1)-(2.2) bifurcating from Poiseuille flow. Due to the above non-dimensionalization, the Poiseuille flow is transformed to

$$
u_{s}={ }^{\top}\left(\rho_{s}, v_{s}\right),
$$

where

$$
\rho_{s}=1, \quad v_{s}=^{\top}\left(v_{s}^{1}\left(x_{2}\right), 0\right), \quad v_{s}^{1}\left(x_{2}\right)=\frac{1}{2}\left(-x_{2}^{2}+x_{2}\right) .
$$

We next derive the system of equations for the perturbation. We substitute $u(t)=^{\top}(\phi(t), w(t)) \equiv{ }^{\top}\left(\gamma^{2}\left(\rho(t)-\rho_{s}\right), v(t)-v_{s}\right)$ into (2.1) and (2.2), where γ is the non-dimensional number given by

$$
\gamma=\sqrt{p^{\prime}(1)}=\frac{\sqrt{P^{\prime}\left(\rho_{*}\right)}}{V}
$$

Noting that $\rho_{s}=1, v_{s}={ }^{\top}\left(v_{s}^{1}\left(x_{2}\right), 0\right)$ and $-\Delta v_{s}=\boldsymbol{e}_{1}$, we obtain the following system of equations

$$
\begin{gather*}
\partial_{t} \phi+v_{s}^{1} \partial_{x_{1}} \phi+\gamma^{2} \operatorname{div} w=f^{0} \tag{2.3}\\
\partial_{t} w-\nu \Delta w-\tilde{\nu} \nabla \operatorname{div} w+\nabla \phi-\frac{\nu}{\gamma^{2}} \phi \boldsymbol{e}_{1}+v_{s}^{1} \partial_{x_{1}} w+\left(\partial_{x_{2}} v_{s}^{1}\right) w^{3} \boldsymbol{e}_{1}=f . \tag{2.4}
\end{gather*}
$$

Here $\tilde{\nu}=\nu+\nu^{\prime}$; and f^{0} and $f={ }^{\top}\left(f^{1}, f^{2}\right)$ denote the nonlinearities:

$$
\begin{gathered}
f^{0}=-\operatorname{div}(\phi w) \\
f=-w \cdot \nabla w-\frac{\phi}{\gamma^{2}+\phi}\left(\nu \Delta w+\frac{\nu}{\gamma^{2}} \phi \boldsymbol{e}_{1}+\tilde{\nu} \nabla \operatorname{div} w\right)+P^{(1)}(\phi) \phi \nabla \phi
\end{gathered}
$$

where

$$
P^{(1)}(\phi)=\frac{1}{\gamma^{2}+\phi}\left(1-\frac{1}{\gamma^{2}} \int_{0}^{1} P^{\prime \prime}\left(1+\theta \gamma^{-2} \phi\right) d \theta\right)
$$

We consider (2.3)-(2.4) under the boundary conditions

$$
\begin{equation*}
\left.w\right|_{x_{2}=0,1}=0, \quad \phi, w: \frac{2 \pi}{\alpha} \text {-periodic in } x_{1}, \tag{2.5}
\end{equation*}
$$

and the initial condition

$$
\begin{equation*}
\left.u\right|_{t=0}=u_{0}=^{\top}\left(\phi_{0}, w_{0}\right) . \tag{2.6}
\end{equation*}
$$

Here α is a given positive number.

2.2 Notation

We introduce some notations used in this paper. For given $\alpha>0$, we denote the basic period cell by

$$
\mathcal{P}_{\alpha}=\left[-\frac{\pi}{\alpha}, \frac{\pi}{\alpha}\right) .
$$

We set

$$
\Omega_{\alpha}=\mathcal{P}_{\alpha} \times(0,1)
$$

We denote by $C_{p e r}^{\infty}\left(\bar{\Omega}_{\alpha}\right)$ the space of restrictions to $\bar{\Omega}_{\alpha}$ of functions in $C^{\infty}(\bar{\Omega})$ which are \mathcal{P}_{α}-periodic in x_{1}. We also denote by $C_{p e r, 0}^{\infty}\left(\Omega_{\alpha}\right)$ the space of restrictions to $\bar{\Omega}_{\alpha}$ of functions in $C^{\infty}(\Omega)$ which are \mathcal{P}_{α}-periodic in x_{1} and vanish near $x_{2}=0,1$.

We set

$$
\begin{gathered}
L_{p e r}^{2}\left(\Omega_{\alpha}\right)=\text { the } L^{2}\left(\Omega_{\alpha}\right) \text {-closure of } C_{p e r, 0}^{\infty}\left(\Omega_{\alpha}\right), \\
H_{p e r}^{k}\left(\Omega_{\alpha}\right)=\text { the } H^{k}\left(\Omega_{\alpha}\right) \text {-closure of } C_{p e r}^{\infty}\left(\bar{\Omega}_{\alpha}\right), \\
H_{p e r, 0}^{1}\left(\Omega_{\alpha}\right)=\text { the } H^{1}\left(\Omega_{\alpha}\right) \text {-closure of } C_{p e r, 0}^{\infty}\left(\Omega_{\alpha}\right) .
\end{gathered}
$$

We note that if $f \in H_{p e r, 0}^{1}\left(\Omega_{\alpha}\right)$, then $\left.f\right|_{x_{1}=-\pi / \alpha}=\left.f\right|_{x_{1}=\pi / \alpha}$ and $\left.f\right|_{x_{2}=0,1}=0 . H_{p e r}^{-1}\left(\Omega_{\alpha}\right)$ stands for the dual space of $H_{p e r, 0}^{1}\left(\Omega_{\alpha}\right)$. The inner product of $f_{j} \in L_{p e r}^{2}\left(\Omega_{\alpha}\right)(j=1,2)$ is denoted by

$$
\left(f_{1}, f_{2}\right)=\int_{\Omega_{\alpha}} f_{1}(x) \overline{f_{2}(x)} d x
$$

where \bar{z} denotes the complex conjugate of z.
The mean value of a function $\phi(x)$ over Ω_{α} is denoted by $\langle\phi\rangle$:

$$
\langle\phi\rangle=\frac{1}{\left|\Omega_{\alpha}\right|} \int_{\Omega_{\alpha}} \phi(x) d x .
$$

The set of all $\phi \in L_{p e r}^{2}\left(\Omega_{\alpha}\right)$ with $\langle\phi\rangle=0$ is denoted by $L_{p e r, *}^{2}\left(\Omega_{\alpha}\right)$, i.e.,

$$
L_{p e r, *}^{2}\left(\Omega_{\alpha}\right)=\left\{\phi \in L_{p e r}^{2}\left(\Omega_{\alpha}\right):\langle\phi\rangle=0\right\} .
$$

Furthermore, we set

$$
H_{p e r, *}^{k}\left(\Omega_{\alpha}\right)=H_{p e r}^{k}\left(\Omega_{\alpha}\right) \cap L_{p e r, *}^{2}\left(\Omega_{\alpha}\right) .
$$

For simplicity the set of all vector fields whose components are in $L_{p e r}^{2}\left(\Omega_{\alpha}\right)$ (resp. $H_{\text {per }, 0}^{1}\left(\Omega_{\alpha}\right), H_{\text {per }}^{k}\left(\Omega_{\alpha}\right)$) is also denoted by $L_{\text {per }}^{2}\left(\Omega_{\alpha}\right)$ (resp. $H_{p e r, 0}^{1}\left(\Omega_{\alpha}\right), H_{p e r}^{k}\left(\Omega_{\alpha}\right)$) if no confusion will occur.

We also use notation $L_{\text {per }}^{2}\left(\Omega_{\alpha}\right)$ for the set of all $u=^{\top}(\phi, w)$ with $\phi \in L_{\text {per }}^{2}\left(\Omega_{\alpha}\right)$ and $w={ }^{\top}\left(w^{1}, w^{2}\right) \in L_{p e r}^{2}\left(\Omega_{\alpha}\right)$ if no confusion will occur. The inner product of $u_{j}={ }^{\top}\left(\phi_{j}, w_{j}\right) \in L_{p e r}^{2}\left(\Omega_{\alpha}\right)(j=1,2)$ is defined by

$$
\left\langle u_{1}, u_{2}\right\rangle=\frac{1}{\gamma^{2}} \int_{\Omega_{\alpha}} \phi_{1}(x) \overline{\phi_{2}(x)} d x+\int_{\Omega_{\alpha}} w_{1}(x) \cdot \overline{w_{2}(x)} d x .
$$

In what follows we abbreviate Ω_{α} in $L_{p e r}^{2}\left(\Omega_{\alpha}\right), H_{p e r}^{k}\left(\Omega_{\alpha}\right), \cdots$, and etc., and write them as $L_{p e r}^{2}, H_{p e r}^{k}, \cdots$, and etc.

We denote by $L^{2}(0,1)$ the usual L^{2} space on $(0,1)$ with norm $|\cdot|_{L^{2}}$, and, likewise, by $H^{k}(0,1)$ the k th order L^{2}-Sobolev space on $(0,1)$ with norm $|\cdot|_{H^{k}}$. The H^{1} closure of $C_{0}^{\infty}(0,1)$ is denoted by $H_{0}^{1}(0,1)$. As in the case of functions on Ω_{α}, function spaces of vector fields $w=^{\top}\left(w^{1}, w^{2}\right)$ and, also, those of $u=^{\top}(\phi, w)$, are simply denoted by $L^{2}(0,1), H_{0}^{1}(0,1)$, and so on. We define an inner product $\left\langle\left\langle u_{1}, u_{2}\right\rangle\right\rangle$ of $u_{j}=^{\top}\left(\phi_{j}, w_{j}\right) \in L^{2}(0,1)(j=1,2)$, by

$$
\left\langle\left\langle u_{1}, u_{2}\right\rangle\right\rangle=\frac{1}{\gamma^{2}} \int_{0}^{1} \phi_{1}\left(x_{2}\right) \overline{\phi_{2}\left(x_{2}\right)} d x_{2}+\int_{0}^{1} w_{1}\left(x_{2}\right) \cdot \overline{w_{2}\left(x_{2}\right)} d x_{2} .
$$

We denote the resolvent set of a closed operator A by $\rho(A)$ and the spectrum of A by $\sigma(A)$. The null space and the range of A are denoted by $N(A)$ and $R(A)$, respectively.

3 Instability of Poiseuille flow

In this section we consider the instability of Poisueille flow.
Let us consider the linearized problem

$$
\begin{gather*}
\partial_{t} \phi+v_{s}^{1} \partial_{x_{1}} \phi+\gamma^{2} \operatorname{div} w=0, \tag{3.1}\\
\partial_{t} w-\nu \Delta w-\tilde{\nu} \nabla \operatorname{div} w+\nabla \phi-\frac{\nu}{\gamma^{2}} \phi \boldsymbol{e}_{1}+v_{s}^{1} \partial_{x_{1}} w+\left(\partial_{x_{2}} v_{s}^{1}\right) w^{2} \boldsymbol{e}_{1}=0, \tag{3.2}\\
\left.w\right|_{x_{2}=0,1}=0, \quad \phi, w: \frac{2 \pi}{\alpha} \text {-periodic in } x_{1}, \tag{3.3}\\
\left.u\right|_{t=0}=u_{0}=^{\top}\left(\phi_{0}, w_{0}\right) . \tag{3.4}
\end{gather*}
$$

We set

$$
X=L_{p e r, *}^{2} \times\left(L_{p e r}^{2}\right)^{2} .
$$

We define the operator L on X by

$$
\begin{gathered}
D(L)=\left\{u=^{\top}(\phi, w) \in X ; w \in\left(H_{p e r, 0}^{1}\right)^{2}, L u \in X\right\} \\
L=\left(\begin{array}{cc}
v_{s}^{1} \partial_{x_{1}} & \gamma^{2} \operatorname{div} \\
\nabla & -\nu \Delta-\tilde{\nu} \nabla \operatorname{div}
\end{array}\right)+\left(\begin{array}{cc}
0 & 0 \\
-\frac{\nu}{\gamma^{2}} \boldsymbol{e}_{1} & v_{s}^{1} \partial_{x_{1}}+\left(\partial_{x_{2}} v_{s}^{1}\right) \boldsymbol{e}_{1}^{\top} \boldsymbol{e}_{2}
\end{array}\right) .
\end{gathered}
$$

Recall that $\tilde{\nu}=\nu+\nu^{\prime} \geq 0$. As in [6] one can show that $-L$ generates a C_{0}-semigroup in X.

We state an instability criterion for Poiseuille flow.
Theorem 3.1. ([8]) There exist constants $r_{0}>0$ and $\eta_{0}>0$ such that if $\alpha \leq r_{0}$, then

$$
\sigma(-L) \cap\left\{\lambda \in \mathbb{C}:|\lambda| \leq \eta_{0}\right\}=\left\{\lambda_{\alpha k}:|k|=1, \cdots, n_{0}\right\}
$$

for some $n_{0} \in \mathbb{N}$, where $\lambda_{\alpha k}$ are simple eigenvalues of $-L$ that satisfies

$$
\lambda_{\alpha k}=-\frac{i}{6}(\alpha k)+\kappa_{0}(\alpha k)^{2}+O\left(|\alpha k|^{3}\right)
$$

as $\alpha k \rightarrow 0$. Here κ_{0} is the number given by

$$
\kappa_{0}=\frac{1}{12 \nu}\left[\left(\frac{1}{280}-\gamma^{2}\right)-\frac{\nu}{30 \gamma^{2}}\left(3 \nu+\nu^{\prime}\right)\right] .
$$

As a consequence, if $\gamma^{2}<\frac{1}{280}$ and $\nu\left(3 \nu+\nu^{\prime}\right)<30 \gamma^{2}\left(\frac{1}{280}-\gamma^{2}\right)$, then $\kappa_{0}>0$ and plane Poiseuille flow $u_{s}={ }^{\top}\left(\phi_{s}, v_{s}\right)$ is linearly unstable.

Remark 3.2. The eigenspace for $\lambda_{\alpha k}$ is spanned by a function of the form $u\left(x_{2}\right) e^{i \alpha k x_{1}}$ where $u\left(x_{2}\right)$ is an eigenfunction for $\lambda_{\alpha k}$ of $-L_{\eta, k}$. Here $L_{\eta, k}$ is an operator appearing in (5.2) below. See [8, Sections 4-6].

4 Traveling wave solutions

In this section we state the result on the existence of traveling wave solutions bifurcating from the Poiseuille flow when it becomes unstable as in Theorem 3.1.

We fix γ such that $\frac{1}{280}-\gamma^{2}>0$. We will take ν as a bifurcation parameter, and therefore, denote the eigenvalue $\lambda_{\alpha k}$ by $\lambda_{\alpha k}(\nu)$:

$$
\lambda_{\alpha k}=\lambda_{\alpha k}(\nu),
$$

and the linearized operator L by L_{ν} :

$$
L=L_{\nu} .
$$

Let $\tilde{\nu}_{0}>0$ be the number satisfying $\kappa_{0}=0$, where κ_{0} is the coefficient of $(\alpha k)^{2}$ in $\lambda_{\alpha k}(\nu)$ given in Theorem 3.1. Then, by a perturbation argument, one can see that for each $0<\alpha \ll 1$, there exists $\nu_{0}>0$ such that

$$
\begin{gathered}
\operatorname{Re} \lambda_{ \pm \alpha}\left(\nu_{0}\right)=0 ; \\
\operatorname{Re} \lambda_{ \pm \alpha}(\nu)<0 \Leftrightarrow \nu>\nu_{0} ; \\
\operatorname{Re} \lambda_{ \pm \alpha}(\nu)>0 \Leftrightarrow \nu<\nu_{0} .
\end{gathered}
$$

From [8, Section 6], one can see that $\operatorname{Re} \lambda_{\alpha}(\nu)$ is analytic in α^{2}. Setting $\zeta\left(\alpha^{2}, \nu\right)=$ $\operatorname{Re} \lambda_{\alpha}(\nu) / \alpha^{2}$, we see that $\partial_{\nu} \zeta\left(\alpha^{2}, \nu\right)=-\frac{1}{12 \nu^{2}}\left[\left(\frac{1}{280}-\gamma^{2}\right)+\frac{\nu^{2}}{10 \gamma^{2}}\right]+O\left(\alpha^{2}\right)<0$ for $\alpha \ll 1$, and so $\operatorname{Re} \lambda_{\alpha}(\nu)$ crosses the imaginary axis from left to right at $\nu=\nu_{0}$ when ν is decreased.

We make the following assumption:

$$
\begin{equation*}
\sigma\left(-L_{\nu_{0}}\right) \cap\{\lambda ; \operatorname{Re} \lambda=0\}=\left\{\lambda_{\alpha}\left(\nu_{0}\right), \lambda_{-\alpha}\left(\nu_{0}\right)\right\} . \tag{4.1}
\end{equation*}
$$

Theorem 4.1. Assume that (4.1) holds true. Then there is a solution branch $\{\nu, u\}=\left\{\nu_{\varepsilon}, u_{\varepsilon}\right\} \quad(|\varepsilon| \ll 1)$ such that

$$
\begin{aligned}
& \nu_{\varepsilon}=\nu_{0}+O(\varepsilon), \\
& u_{\varepsilon}=u_{\varepsilon}\left(x_{1}-c_{\varepsilon} t, x_{2}\right), \\
& u_{\varepsilon}\left(x_{1}+\frac{2 \pi}{\alpha}, x_{2}\right)=u_{\varepsilon}\left(x_{1}, x_{2}\right), \\
& u_{\varepsilon}\left(x_{1}, x_{2}\right)=\varepsilon\left(\begin{array}{c}
1 \\
\frac{1}{2 \gamma^{2}}\left(-x_{2}^{2}+x_{2}\right) \\
0
\end{array}\right) \frac{\sqrt{2}}{2} \cos \alpha x_{1}(1+O(\alpha))+O\left(\varepsilon^{2}\right), \\
& c_{\varepsilon}=\frac{1}{6}+O(\varepsilon) .
\end{aligned}
$$

Remark 4.2. Iooss and Padula ([6]) showed that, for each ν, there exists a positive number c such that the set

$$
\sigma\left(-L_{\nu}\right) \cap\{\lambda ; \operatorname{Re} \lambda \geq-c\}
$$

consists of a finite number of eigenvalues with finite multiplicities. (See Lemma 6.10 below.) Therefore, it seems very unlikely that assumption (4.1) does not hold true for all $\alpha \ll 1$.

5 Proof of Theorem 4.1

In this section we give a proof of Theorem 4.1.
We set $\eta=\nu-\nu_{0}$ that will be taken as a new bifurcation parameter. For simplicity, we write L_{η} for $L_{\eta+\nu_{0}}$ omitting ν_{0}.

5.1 Spectrum of $-L_{0}$

We first make an observation of the spectrum of $-L_{\eta}$. Let us consider the resolvent problem

$$
\begin{equation*}
\lambda u+L u=F . \tag{5.1}
\end{equation*}
$$

We expand u and F into the Fourier series in x_{1} :

$$
\begin{aligned}
& u=\sqrt{\frac{\alpha}{2 \pi}} \sum_{k \in \mathbb{Z}} u_{k}\left(x_{2}\right) e^{i \alpha k x_{1}}, \quad u_{k}=^{\top}\left(\phi_{k}, w_{k}\right), \\
& F=\sqrt{\frac{\alpha}{2 \pi}} \sum_{k \in \mathbb{Z}} F_{k}\left(x_{2}\right) e^{i \alpha k x_{1}}, \quad F_{k}=^{\top}\left(f_{k}^{0}, f_{k}\right)
\end{aligned}
$$

with $\int_{0}^{1} \phi_{0}\left(x_{2}\right) d x_{2}=\int_{0}^{1} f_{0}^{0}\left(x_{2}\right) d x_{2}=0$. Then the problem is reduce to the following problems for $k \in \mathbb{Z}$:

$$
\begin{equation*}
\left(\lambda+L_{\eta, k}\right) u_{k}=F_{k} . \tag{5.2}
\end{equation*}
$$

Here $L_{\eta, k}$ is the operator on $L_{k}^{2}(0,1) \times L^{2}(0,1)^{2}$ obtained by replacing $\partial_{x_{1}}$ in L by $i \alpha k$ with domain $D\left(L_{\eta, k}\right)=\left\{u_{k}={ }^{\top}\left(\phi_{k}, w_{k}\right) \in L_{k}^{2}(0,1) \times L^{2}(0,1)^{2} ; w_{k} \in\right.$
$\left.H_{0}^{1}(0,1), L_{\eta, k} u_{k} \in L_{k}^{2}(0,1) \times L^{2}(0,1)^{2}\right\}$, where $L_{k}^{2}(0,1)=L^{2}(0,1)$ when $k \neq 0$ and $L_{0}^{2}(0,1)=L^{2}(0,1) \cap\left\{\phi ; \int_{0}^{1} \phi\left(x_{2}\right) d x_{2}=0\right\}$.

Let $\tilde{X}=L_{p e r}^{2} \times\left(L_{p e r}^{2}\right)^{2}$. We denote by \tilde{L} the extension of L to \tilde{X}, more precisely, \tilde{L} is an operator on \tilde{X} with domain $D(\tilde{L})=\left\{u=^{\top}(\phi, w) \in \tilde{X} ; w \in\left(H_{p e r, 0}^{1}\right)^{2}, \tilde{L} u \in \tilde{X}\right\}$ and \tilde{L} has the same form as L. Similarly, we define an operator $\tilde{L}_{\eta, k}$ on $L^{2}(0,1) \times$ $L^{2}(0,1)^{2}$ by the extension of $L_{\eta, k}$ to $L_{\tilde{L}}^{2}(0,1) \times L^{2}(0,1)^{2}$. Note that $\tilde{L}_{\eta, k}=L_{\eta, k}$ when $k \neq 0$ and $L_{\eta, 0}$ is the restriction of $\tilde{L}_{0, \eta}$ to $L_{0}^{2}(0,1) \times L^{2}(0,1)^{2}$. We also introduce the adjoint operator \tilde{L}^{*} (with respect to the inner product $\langle\cdot, \cdot\rangle$) which is given by

$$
\tilde{L}^{*}=\left(\begin{array}{cc}
-v_{s}^{1} \partial_{x_{1}} & -\nu^{\top} \boldsymbol{e}_{1}-\gamma^{2} \operatorname{div} \\
-\nabla & -\nu \Delta-\tilde{\nu} \nabla \operatorname{div}-v_{s}^{1} \partial_{x_{1}}+\left(\partial_{x_{2}} v_{s}^{1}\right) \boldsymbol{e}_{2}^{\top} \boldsymbol{e}_{1}
\end{array}\right) .
$$

Similarly, the adjoint operators $\tilde{L}_{\eta, k}^{*}$ of $\tilde{L}_{\eta, k}$ are defined.
Since X is an invariant set of \tilde{L}, we see that if λ is an eigenvalue of $-L$, then the eigenprojection for λ of $-L$ is the restriction of the eigenprojection for λ of $-\tilde{L}$. The same also holds for eigenprojections of $L_{\eta, 0}$ and $\tilde{L}_{\eta, 0}$.

Under the assumption (4.1), the following claims are concluded. In what follows we denote the critical eigenvalues $\lambda_{ \pm \alpha}\left(\nu_{0}\right)$ by $\pm i a$ with $a=-\frac{\alpha}{6}\left(1+O\left(\alpha^{2}\right)\right) \in \mathbb{R} \backslash\{0\}$:

$$
\lambda_{ \pm \alpha}\left(\nu_{0}\right)= \pm i a .
$$

As for $\sigma\left(-L_{0, k}\right)$, we have

- $k= \pm 1$:

$$
\begin{aligned}
& \sigma\left(-L_{0, \pm 1}\right) \cap\{\lambda ; \operatorname{Re} \lambda=0\}=\{ \pm i a\}, \\
& \pm i a \text { are isolated simple eigenvalues of }-L_{0, \pm 1}, \\
& N\left(\pm i a+L_{0, \pm 1}\right)=\operatorname{span}\left\{v_{ \pm 1}\right\}, \quad v_{-1}=\overline{v_{+1}} .
\end{aligned}
$$

- $k \neq \pm 1$: there exists a constant $\beta>0$ such that $\sigma\left(-L_{0, k}\right) \subset\{\lambda ;|\operatorname{Re} \lambda| \geq \beta\}$ for all $k \in \mathbb{Z}$ with $k \neq \pm 1$.

The eigenprojections for $\pm i a$ are given in terms of eigenfunctions of the adjoint operator $\tilde{L}_{0, k}^{*}$. Namely, we have
the eigenprojections $\Pi_{ \pm}$for $\pm i a$ are given by $\Pi_{ \pm} u=\left\langle\left\langle u, v_{ \pm 1}^{*}\right\rangle\right\rangle v_{ \pm 1}$, where $N\left(\mp i a+\tilde{L}_{0, \pm 1}^{*}\right)=\operatorname{span}\left\{v_{ \pm 1}^{*}\right\},\left\langle\left\langle v_{ \pm 1}, v_{ \pm 1}^{*}\right\rangle\right\rangle=1$.

It then follows that $\sigma\left(-L_{0}\right)$ satisfies

$$
\begin{aligned}
& \sigma\left(-L_{0}\right) \cap\{\lambda ; \operatorname{Re} \lambda=0\}=\{ \pm i a\}, \\
& \pm i a \text { are isolated simple eigenvalues of }-L_{0}, \\
& N\left(\pm i a+L_{0}\right)=\operatorname{span}\left\{V_{ \pm}\right\}, \\
& \text {where } V_{ \pm}=v_{ \pm 1}\left(x_{2}\right) e^{ \pm i \alpha x_{1}}
\end{aligned}
$$

Furthermore, $V_{ \pm}^{*}=\frac{\alpha}{2 \pi} v_{ \pm 1}^{*}\left(x_{2}\right) e^{ \pm i \alpha x_{1}}$ satisfy

$$
-\tilde{L}_{0}^{*} V_{ \pm}^{*}=\mp i a V_{ \pm}^{*},\left\langle V_{ \pm}, V_{ \pm}^{*}\right\rangle=1,\left\langle V_{ \pm}, V_{\mp}^{*}\right\rangle=0
$$

and the eigenprojections $P_{ \pm}$for $\pm i a$ of $-L$ are given by

$$
P_{ \pm} V=\left\langle V, V_{ \pm}^{*}\right\rangle V_{ \pm} .
$$

It was proved in [7] that eigenfunctions $V_{ \pm}$and $V_{ \pm}^{*}$ are smooth and, for each nonnegative integer k, eigenprojections $P_{ \pm}$are bounded from $L_{p e r, *}^{2} \times L_{p e r}^{2}$ to $H_{p e r, *}^{k} \times H_{p e r}^{k}$:

$$
\left\|P_{ \pm} u\right\|_{H^{k} \times H^{k}} \leq C_{k}\|u\|_{2} .
$$

See [7, Lemma 4.3]. These boundedness properties of $P_{ \pm}$will be employed later.

5.2 Traveling wave solution

Let us consider the nonlinear problem

$$
\begin{equation*}
\partial_{t} \tilde{u}+L_{\eta} \tilde{u}=F(\eta, \tilde{u}), \tag{5.3}
\end{equation*}
$$

where $F(\eta, \tilde{u})$ denotes the nonlinear term.
We look for a solution in the form

$$
\tilde{u}\left(x_{1}, x_{2}, t\right)=u\left(x_{1}-c t, x_{2}\right) .
$$

We substitute this into (5.3). Then the problem is rewritten as

$$
\begin{equation*}
\mathcal{L}_{c, \eta} u=F(\eta, u), \tag{5.4}
\end{equation*}
$$

where

$$
\mathcal{L}_{c, \eta}=L_{\eta}-c \partial_{x_{1}} .
$$

We first investigate the spectrum of $-\mathcal{L}_{c_{0}, 0}$.

5.3 Spectrum of $-\mathcal{L}_{c_{0}, 0}$

The following proposition on the spectrum of $\mathcal{L}_{c_{0}, 0}$ follows from the observation in section 5.1.

Proposition 5.1. Set $c_{0}=-\frac{a}{\alpha}$. Then

$$
\sigma\left(-\mathcal{L}_{c_{0}, 0}\right) \cap\{\lambda ; \operatorname{Re} \lambda=0\}=\{0\},
$$

0 is an isolated semisimple eigenvalue of $-\mathcal{L}_{c_{0}, 0}$,
$N\left(-\mathcal{L}_{c_{0}, 0}\right)=\operatorname{span}\left\{V_{+}, V_{-}\right\}, \quad V_{-}=\overline{V_{+}}$.

Let us next introduce the eigenprojection for the eigenvalue 0 of $-\mathcal{L}_{c_{0}, 0}$. We set

$$
\begin{aligned}
V_{1} & =\sqrt{2} \operatorname{Re} V_{+}, \quad V_{2}=\sqrt{2} \operatorname{Im} V_{+} \\
V_{1}^{*} & =\sqrt{2} \operatorname{Re} V_{+}^{*}, \quad V_{2}^{*}=\sqrt{2} \operatorname{Im} V_{+}^{*}
\end{aligned}
$$

Then

$$
\begin{aligned}
& N\left(-\mathcal{L}_{c_{0}, 0}\right)=\operatorname{span}\left\{V_{1}, V_{2}\right\}, \\
& \left\langle V_{j}, V_{k}^{*}\right\rangle=\delta_{j k}, \quad j, k=1,2 .
\end{aligned}
$$

We introduce the following notation $\llbracket u \rrbracket_{j}(j=1,2)$:

$$
\llbracket u \rrbracket_{j}=\left\langle u, V_{j}^{*}\right\rangle .
$$

Proposition 5.2. Define P, P_{1} and P_{2} by

$$
P u=P_{1} u+P_{2} u, \quad P_{j} u=\llbracket u \rrbracket_{j} V_{j} \quad(j=1,2) .
$$

Then P is the eigenprojection for eigenvalue 0 of $-\mathcal{L}_{c_{0}, 0}$; and

$$
R\left(P_{j}\right)=\operatorname{span}\left\{V_{j}\right\}, \quad P_{j}^{2}=P_{j}, \quad P_{j} P_{k}=O(j \neq k)
$$

For each nonnegative integer k, P_{j} are bounded from $L_{p e r, *}^{2} \times L_{p e r}^{2}$ to $H_{p e r, *}^{k} \times H_{p e r}^{k}$:

$$
\left\|P_{j} u\right\|_{H^{k} \times H^{k}} \leq C\|u\|_{2} .
$$

Furthermore, $u \in R\left(I-P_{j}\right)$ if and only if $\llbracket u \rrbracket_{j}=0$.

5.4 Formulation of the problem

We look for solutions of (5.4) in a neighborhood of $\{c, \eta, u\}=\left\{c_{0}, 0,0\right\}$ in the form:

$$
\begin{gathered}
u=\varepsilon\left(V_{1}+\varepsilon V\right), \quad V \in R(Q), \quad Q=I-P, \\
c=c_{0}+\varepsilon \sigma .
\end{gathered}
$$

Here ε is a small parameter. Note that $P_{2} u=0$.
We set

$$
K_{0}=\frac{1}{\eta}\left(L_{\eta}-L_{0}\right)=\left(\begin{array}{cc}
0 & 0 \\
-\frac{1}{\gamma^{2}} \boldsymbol{e}_{1} & -\Delta-\nabla \text { div }
\end{array}\right) .
$$

Then

$$
L_{\eta}=L_{0}+\eta K_{0}
$$

and

$$
\mathcal{L}_{c, \eta}=\mathcal{L}_{c_{0}, 0}-\varepsilon \sigma \partial_{x_{1}}+\eta K_{0}
$$

We scale η as

$$
\eta=\varepsilon \omega .
$$

Problem (5.4) is then written as

$$
\begin{equation*}
\mathcal{L}_{c_{0}, 0} V-\sigma \partial_{x_{1}}\left(V_{1}+\varepsilon V\right)+\omega K_{0}\left(V_{1}+\varepsilon V\right)=\frac{1}{\varepsilon^{2}} F\left(\varepsilon \omega, \varepsilon\left(V_{1}+\varepsilon V\right)\right) . \tag{5.5}
\end{equation*}
$$

We denote the right-hand side by

$$
\frac{1}{\varepsilon^{2}} F\left(\varepsilon \omega, \varepsilon\left(V_{1}+\varepsilon V\right)\right)=-N\left[V_{1}+\varepsilon V\right]\left(V_{1}+\varepsilon V\right)+G\left(\varepsilon, \varepsilon \omega, V_{1}+\varepsilon V\right),
$$

where

$$
N[\tilde{u}] u=^{\top}(\operatorname{div}(\phi \tilde{w}), 0)
$$

for $\tilde{u}={ }^{\top}(\tilde{\phi}, \tilde{w})$ and $u={ }^{\top}(\phi, w)$, and

$$
G(\varepsilon, \omega, u)=^{\top}(0, g(\varepsilon, \omega, u))
$$

with

$$
\begin{aligned}
g(\varepsilon, \omega, u)= & -w \cdot \nabla w-\frac{\phi}{\gamma^{2}+\varepsilon \phi}\left(\left(\nu_{0}+\omega\right) \Delta w+\frac{\left(\nu_{0}+\omega\right)}{\gamma^{2}} \phi \boldsymbol{e}_{1}+\left(\tilde{\nu}_{0}+\omega\right) \nabla \operatorname{div} w\right) \\
& +P^{(1)}(\varepsilon \phi) \phi \nabla \phi
\end{aligned}
$$

for $u={ }^{\top}(\phi, w)$, where $\tilde{\nu}_{0}=\nu_{0}+\nu^{\prime}$.
We decompose (5.5) into the P_{j}-parts $(j=1,2)$ and Q-part. Here and in what follows we set

$$
Q=I-P=I-P_{1}-P_{2} .
$$

We take the inner product of (5.5) with $V_{j}^{*}(j=1,2)$ and apply Q to (5.5). Since

$$
\llbracket \partial_{x_{1}}\left(V_{1}+\varepsilon V\right) \rrbracket_{1}=0, \quad \llbracket \partial_{x_{1}}\left(V_{1}+\varepsilon V\right) \rrbracket_{2}=-\alpha,
$$

we find that

$$
\begin{aligned}
\omega \llbracket K_{0} V_{1} \rrbracket_{1}= & -\varepsilon \omega \llbracket K_{0} V \rrbracket_{1}-\llbracket N\left[V_{1}+\varepsilon V\right]\left(V_{1}+\varepsilon V\right) \rrbracket_{1} \\
& +\llbracket G\left(\varepsilon, \varepsilon \omega, V_{1}+\varepsilon V\right) \rrbracket_{1}, \\
\omega \llbracket K_{0} V_{1} \rrbracket_{2}+\alpha \sigma= & -\varepsilon \omega \llbracket K_{0} V \rrbracket_{2}-\llbracket N\left[V_{1}+\varepsilon V\right]\left(V_{1}+\varepsilon V\right) \rrbracket_{2} \\
& +\llbracket G\left(\varepsilon, \varepsilon \omega, V_{1}+\varepsilon V\right) \rrbracket_{2}, \\
\omega Q K_{0} V_{1}+\left(\mathcal{L}_{c_{0}, 0}-\right. & \left.\varepsilon \sigma Q \partial_{x_{1}}+\varepsilon Q N\left[V_{1}+\varepsilon V\right]\right) V \\
=-\varepsilon \omega Q K_{0} V- & Q N\left[V_{1}+\varepsilon V\right] V_{1}+Q G\left(\varepsilon, \varepsilon \omega, V_{1}+\varepsilon V\right) .
\end{aligned}
$$

We thus arrive at the following problem:

$$
\begin{equation*}
T(\varepsilon, \sigma, V) U=\mathcal{F}(\varepsilon, U) \tag{5.6}
\end{equation*}
$$

where

$$
U=^{\top}(\omega, \sigma, V) \in \mathbb{R} \times \mathbb{R} \times X^{2}
$$

Here X^{ℓ} denotes the function space

$$
X^{\ell}=H_{p e r, *}^{\ell} \times\left[H_{p e r}^{\ell+1} \cap H_{p e r, 0}^{1}\right], \quad \ell=1,2,
$$

and, for a given $(\tilde{\sigma}, \tilde{V}) \in \mathbb{R} \times X^{2}, T(\varepsilon, \tilde{\sigma}, \tilde{V})$ is the linear map defined by

$$
\begin{gathered}
T(\varepsilon, \tilde{\sigma}, \tilde{V}): \mathbb{R} \times \mathbb{R} \times Q X^{\ell} \rightarrow \mathbb{R} \times \mathbb{R} \times Q\left(H^{\ell} \times H^{\ell-1}\right), \ell=1,2, \\
T(\varepsilon, \tilde{\sigma}, \tilde{V})=\left(\begin{array}{ccc}
\llbracket K_{0} V_{1} \rrbracket_{1} & 0 & 0 \\
\llbracket K_{0} V_{2} \rrbracket_{1} & \alpha & 0 \\
Q K_{0} V_{1} & 0 & \mathcal{L}_{c_{0}, 0}-\varepsilon \tilde{\sigma} Q \partial_{x_{1}}+\varepsilon Q N\left[V_{1}+\varepsilon \tilde{V}\right]
\end{array}\right) .
\end{gathered}
$$

$\mathcal{F}(\varepsilon, U)$ is the nonlinear map given by

$$
\mathcal{F}(\varepsilon, U)=^{\top}\left(\mathcal{F}_{1}(\varepsilon, U), \mathcal{F}_{2}(\varepsilon, U), \mathcal{F}_{3}(\varepsilon, U)\right) \quad\left(U={ }^{\top}(\omega, \sigma, V)\right)
$$

where

$$
\begin{aligned}
\mathcal{F}_{j}(\varepsilon, U)= & -\varepsilon \omega \llbracket K_{0} V \rrbracket_{j}-\llbracket N\left[V_{1}+\varepsilon V\right]\left(V_{1}+\varepsilon V\right) \rrbracket_{j}+\llbracket G\left(\varepsilon, \varepsilon \omega, V_{1}+\varepsilon V\right) \rrbracket_{j}, \\
& (j=1,2), \\
\mathcal{F}_{3}(\varepsilon, U)= & -\varepsilon \omega Q K_{0} V-Q N\left[V_{1}+\varepsilon V\right] V_{1}+Q G\left(\varepsilon, \varepsilon \omega, V_{1}+\varepsilon V\right) .
\end{aligned}
$$

Concerning $T(\varepsilon, \tilde{\sigma}, \tilde{V})$ we have the following
Proposition 5.3. (i) $\llbracket K_{0} V_{1} \rrbracket_{1}>0$.
(ii) For given $M>0$, there exists $\varepsilon_{1}>0$ such that if $|\varepsilon| \leq \varepsilon_{1}$ and $|\tilde{\sigma}|+\|\tilde{V}\|_{X^{2}} \leq$ M, then $\mathcal{L}_{c_{0}, 0}-\varepsilon \tilde{\sigma} Q \partial_{x_{1}}+\varepsilon Q N\left[V_{1}+\varepsilon \tilde{V}\right]$ has a bounded inverse from $Q\left(H_{\text {per }, *}^{\ell} \times H_{\text {per }}^{\ell-1}\right)$ to $Q X^{\ell}(\ell=1,2)$.
(iii) Under the assumption of (ii), $T(\varepsilon, \tilde{\sigma}, \tilde{V})$ has a bounded inverse from $\mathbb{R} \times \mathbb{R} \times$ $Q\left(H_{\text {per }, *}^{\ell} \times H_{\text {per }}^{\ell-1}\right)$ to $\mathbb{R} \times \mathbb{R} \times Q X^{\ell}(\ell=1,2)$, and it holds that for $U={ }^{\top}(\tilde{\eta}, \sigma, V)$,

$$
\left\|T(\varepsilon, \tilde{\sigma}, \tilde{V})^{-1} U\right\|_{\mathbb{R} \times \mathbb{R} \times X^{\ell}} \leq C_{1}\|U\|_{\mathbb{R} \times \mathbb{R} \times H^{\ell} \times H^{\ell-1}}, \quad \ell=1,2 .
$$

We will give a proof of Proposition 5.3 (ii) and (iii) in section 6, and a proof of (i) will be given in section 8 .

As for $\mathcal{F}(\varepsilon, U)$, using Sobolev inequalities, we have the following estimates by a straightforward computation.

Proposition 5.4. For given $M \in\left(0, \frac{\gamma^{2}}{2 C_{S}}\right]$, there exists $\varepsilon_{2}>0$ such that if $|\varepsilon| \leq \varepsilon_{2}$, $\|U\|_{\mathbb{R} \times \mathbb{R} \times X^{2}} \leq M$ and $\left\|U^{(j)}\right\|_{\mathbb{R} \times \mathbb{R} \times X^{2}} \leq M(j=1,2)$, then the following estimates hold:

$$
\begin{gathered}
\|\mathcal{F}(\varepsilon, U)-\mathcal{F}(0,0)\|_{\mathbb{R} \times \mathbb{R} \times H^{2} \times H^{1}} \leq C(M) M|\varepsilon| \\
\left\|\mathcal{F}\left(\varepsilon, U^{(1)}\right)-\mathcal{F}\left(\varepsilon, U^{(2)}\right)\right\|_{\mathbb{R} \times \mathbb{R} \times H^{1} \times H^{0}} \leq C(M) \mid \varepsilon\| \| U^{(1)}-U^{(2)} \|_{\mathbb{R} \times \mathbb{R} \times X^{1}}
\end{gathered}
$$

where $C(M)>0$ is a nondecreasing continuous function of M.

5.5 Iteration

The desired solution branch in Theorem 4.1 can now be obtained by an iteration argument.

We define $U^{(n)}={ }^{\top}\left(\omega^{(n)}, \sigma^{(n)}, V^{(n)}\right)(n \geq 1)$ in the following way. $U^{(1)}$ is the solution of

$$
\begin{aligned}
T(0,0,0) U^{(1)} & =\mathcal{F}(0,0) \\
& ={ }^{\top}\left(\llbracket F\left(0, V_{1}\right) \rrbracket_{1}, \llbracket F\left(0, V_{1}\right) \rrbracket_{2}, Q F\left(0, V_{1}\right)\right) .
\end{aligned}
$$

Note that $F\left(0, V_{1}\right)=-N\left[V_{1}\right] V_{1}+G\left(0,0, V_{1}\right)$. By Propositions 5.3 we have

$$
\begin{equation*}
\left\|U^{(1)}\right\|_{\mathbb{R} \times \mathbb{R} \times X^{2}} \leq C_{1}\|\mathcal{F}(0,0)\|_{\mathbb{R} \times \mathbb{R} \times H^{2} \times H^{1}}<\infty . \tag{5.7}
\end{equation*}
$$

We set

$$
\begin{equation*}
M=2 C_{1}\|\mathcal{F}(0,0)\|_{\mathbb{R} \times \mathbb{R} \times H^{2} \times H^{1}} . \tag{5.8}
\end{equation*}
$$

Let $\varepsilon>0$ satisfy $|\varepsilon| \leq \min \left\{\varepsilon_{1}, \varepsilon_{2}, \frac{1}{2 C_{1} C(M)}\right\}$. Then for $n \geq 2$ we can define $U^{(n)}$ by the solution of

$$
\begin{equation*}
T\left(\varepsilon, \sigma^{(n-1)}, V^{(n-1)}\right) U^{(n)}=\mathcal{F}\left(\varepsilon, U^{(n-1)}\right), \tag{5.9}
\end{equation*}
$$

and $U^{(n)}$ satisfies

$$
\left\|U^{(n)}\right\|_{\mathbb{R} \times \mathbb{R} \times X^{2}} \leq M
$$

for all $n \geq 1$. In fact, assume that $\left\|U^{(n-1)}\right\|_{\mathbb{R} \times \mathbb{R} \times X^{2}} \leq M$. Then, $\mathcal{F}\left(\varepsilon, U^{(n-1)}\right) \in$ $\mathbb{R} \times \mathbb{R} \times Q\left(H_{p e r, *}^{2} \times H_{p e r}^{1}\right)$, and thus, Proposition 5.3 implies that (5.9) has a solution $U^{(n)} \in \mathbb{R} \times \mathbb{R} \times X^{2}$. Furthermore, since

$$
T\left(\varepsilon, \sigma^{(n-1)}, V^{(n-1)}\right) U^{(n)}=\mathcal{F}(0,0)+\left(\mathcal{F}\left(\varepsilon, U^{(n-1)}\right)-\mathcal{F}(0,0)\right)
$$

and $|\varepsilon| \leq \min \left\{\varepsilon_{1}, \varepsilon_{2}, \frac{1}{2 C_{1} C(M)}\right\}$, we see from Propositions 5.3 and 5.4 that

$$
\left\|U^{(n)}\right\|_{\mathbb{R} \times \mathbb{R} \times X^{2}} \leq \frac{M}{2}+C_{1} C(M) M|\varepsilon| \leq M
$$

Therefore, with this observation and (5.7), we conclude by induction that $\left\|U^{(n)}\right\|_{\mathbb{R} \times \mathbb{R} \times X^{2}} \leq$ M for all $n \geq 1$.

We next prove that $\left\{U^{(n)}\right\}$ is a Cauchy sequence in $\mathbb{R} \times \mathbb{R} \times X^{1}$. We set

$$
\mathcal{D} V={ }^{\top}\left(0,0, \partial_{x_{1}} V\right), \quad \mathcal{N}_{Q}[\tilde{V}] V=^{\top}(0,0, Q N[\tilde{V}] V) .
$$

Since

$$
\begin{aligned}
T(\varepsilon, & \left.\sigma^{(n)}, V^{(n)}\right) U^{(n+1)}-T\left(\varepsilon, \sigma^{(n-1)}, V^{(n-1)}\right) U^{(n)} \\
= & T\left(\varepsilon, \sigma^{(n)}, V^{(n)}\right)\left(U^{(n+1)}-U^{(n)}\right)-\varepsilon\left(\sigma^{(n)}-\sigma^{(n-1)}\right) \mathcal{D} V^{(n)} \\
& +\varepsilon^{2} \mathcal{N}_{Q}\left[V^{(n)}-V^{(n-1)}\right] V^{(n)},
\end{aligned}
$$

we have

$$
\begin{aligned}
& T\left(\varepsilon, \sigma^{(n)}, V^{(n)}\right)\left(U^{(n+1)}-U^{(n)}\right) \\
& =\varepsilon\left(\sigma^{(n)}-\sigma^{(n-1)}\right) \mathcal{D} V^{(n)}-\varepsilon^{2} \mathcal{N}_{Q}\left[V^{(n)}-V^{(n-1)}\right] V^{(n)} \\
& \quad+\left(\mathcal{F}\left(\varepsilon, U^{(n)}\right)-\mathcal{F}\left(\varepsilon, U^{(n-1)}\right)\right),
\end{aligned}
$$

and by Propositions 5.3 and 5.4,

$$
\begin{aligned}
&\left\|U^{(n+1)}-U^{(n)}\right\|_{\mathbb{R} \times \mathbb{R} \times X^{1}} \\
& \leq C_{1}\left\{\left|\varepsilon \left\|\sigma^{(n)}-\sigma^{(n-1)}\left|\left\|\partial_{x_{1}} V^{(n)}\right\|_{H^{1} \times H^{0}}+|\varepsilon|^{2}\left\|Q N\left[V^{(n)}-V^{(n-1)}\right] V^{(n)}\right\|_{H^{1} \times H^{0}}\right.\right.\right.\right. \\
&\left.+\left\|\mathcal{F}\left(\varepsilon, U^{(n)}\right)-\mathcal{F}\left(\varepsilon, U^{(n-1)}\right)\right\|_{\mathbb{R} \times \mathbb{R} \times H^{1} \times H^{0}}\right\} \\
& \leq C_{1}\left\{C M \left|\varepsilon\left\|\sigma^{(n)}-\left.\sigma^{(n-1)}|+C M| \varepsilon\right|^{2}\right\| V^{(n)}-V^{(n-1)} \|_{X^{1}}\right.\right. \\
&\left.+C(M)|\varepsilon|\left\|U^{(n)}-U^{(n-1)}\right\|_{\mathbb{R} \times \mathbb{R} \times X^{1}}\right\} \\
& \leq \frac{1}{2}\left\|U^{(n)}-U^{(n-1)}\right\|_{\mathbb{R} \times \mathbb{R} \times X^{1}}
\end{aligned}
$$

if $|\varepsilon| \leq \frac{1}{2 C_{1}(2 C M+C(M))}$. It then follows that there exists $\varepsilon_{0}>0$ such that if $|\varepsilon| \leq \varepsilon_{0}$, then $\left\{U^{(n)}\right\}$ is a Cauchy sequence in $\mathbb{R} \times \mathbb{R} \times X^{1}$. We thus conclude if $|\varepsilon| \leq \varepsilon_{0}$, there exists $U={ }^{\top}(\omega, \sigma, V) \in \mathbb{R} \times \mathbb{R} \times X^{2}$ satisfying

$$
T(\varepsilon, \sigma, V) U=\mathcal{F}(\varepsilon, U)
$$

With this $U={ }^{\top}(\omega, \sigma, V)$, setting

$$
\nu=\nu_{0}+\varepsilon \omega, \quad u=\varepsilon V_{1}\left(x_{1}-c t, x_{2}\right)+\varepsilon^{2} V\left(x_{1}-c t, x_{2}\right), \quad c=c_{0}+\varepsilon \sigma,
$$

we have the desired traveling wave solutions.
To complete the proof of Theorem 4.1, it remains to prove Proposition 5.3.

6 Proof of Proposition 5.3 (ii), (iii)

In this section we give a proof of Proposition 5.3 (ii), (iii).
By a perturbation argument for $\alpha \ll 1$, one can compute $u_{ \pm 1}$ and $u_{ \pm 1}^{*}$ to see assertion (i) $\llbracket K_{0} V_{1} \rrbracket_{1}>0$ for $\alpha \ll 1$. See section 8 for the proof of (i). If assertion (ii) holds, then $T(\varepsilon, \tilde{\sigma}, \tilde{V})$ has a bounded inverse $T(\varepsilon, \tilde{\sigma}, \tilde{V})^{-1}$ which is given by

$$
T(\varepsilon, \tilde{\sigma}, \tilde{V})^{-1}=\left(\begin{array}{cc}
\mathscr{A}^{-1} & 0 \\
-\mathscr{L}(\varepsilon, \tilde{\sigma}, \tilde{V})^{-1} \mathscr{B} \mathscr{A}^{-1} & \mathscr{L}(\varepsilon, \tilde{\sigma}, \tilde{V})^{-1}
\end{array}\right)
$$

where

$$
\left.\begin{array}{c}
\mathscr{A}=\left(\begin{array}{ll}
\llbracket K_{0} V_{1} \rrbracket_{1} & 0 \\
\llbracket K_{0} V_{2} \rrbracket_{2} & \alpha
\end{array}\right), \\
\mathscr{B}=\left(Q K_{0} V_{1}\right. \\
0
\end{array}\right), \quad \begin{gathered}
\mathscr{L}(\varepsilon, \tilde{\sigma}, \tilde{V})=\mathcal{L}_{c_{0}, 0}-\varepsilon \tilde{\sigma} Q \partial_{x_{1}}+\varepsilon Q N\left[V_{1}+\varepsilon \tilde{V}\right] .
\end{gathered}
$$

Therefore, in the rest of this section we will prove assertion (ii), i.e, $\mathscr{L}(\varepsilon, \tilde{\sigma}, \tilde{V})$ has a bounded inverse.

6.1 Basic estimates

From now on, we simply write $N[\tilde{w}] u$ for $N[\tilde{u}] u$ with $\tilde{u}={ }^{\top}(\tilde{\phi}, \tilde{w})$:

$$
N[\tilde{w}] u={ }^{\top}(\operatorname{div}(\phi \tilde{w}), 0), \quad u=^{\top}(\phi, w) .
$$

In this subsection we establish basic a priori estimates of solution u to

$$
\begin{equation*}
\lambda u+L u+N[\tilde{w}] u=F, \quad u \in X^{\ell} \tag{6.1}
\end{equation*}
$$

where \tilde{w} is a given function in $H_{p e r}^{3} \cap H_{p e r, 0}^{1}$ with $\tilde{w}(x) \in \mathbb{R}^{2}$ and $\lambda \in \mathbb{C}$ is a parameter.
We introduce some notations. We define the new norm $\|\|\cdot\|\|_{2}$ of $L_{p e r}^{2}$ by

$$
\|u u\|_{2}=\left(\frac{1}{\gamma^{2}}\|\phi\|_{2}^{2}+\|w\|_{2}^{2}\right)^{\frac{1}{2}}
$$

for $u=^{\top}(\phi, w)$. We also define $D[w]$ and $\dot{\phi}_{\lambda}$ by

$$
D[w]=\nu\|\nabla w\|_{2}^{2}+\tilde{\nu}\|\operatorname{div} w\|_{2}^{2}
$$

and

$$
\dot{\phi}_{\lambda}=\lambda \phi+v_{s}^{1} \partial_{x_{1}} \phi+\operatorname{div}(\phi \tilde{w}),
$$

respectively. For operators A and B, we denote by $[A, B]$ the commutator of A and B :

$$
[A, B] f=A(B f)-B(A f)
$$

We will prove the following
Proposition 6.1. There exists a number Λ satisfying $0<\Lambda \leq \frac{1}{2} \frac{\gamma^{2}}{\nu+\tilde{\nu}}$ such that if $\operatorname{Re} \lambda \geq-\Lambda$, then

$$
\begin{align*}
& (\operatorname{Re} \lambda+\Lambda)^{2}\|u\|_{2}^{2}+(\operatorname{Re} \lambda+\Lambda)\left\|\partial_{x} u\right\|_{2}^{2}+\left\|\partial_{x}^{2} w\right\|_{2}^{2}+|\lambda|^{2}\|u\|_{2}^{2}+\left\|\dot{\phi}_{\lambda}\right\|_{H^{1}}^{2} \tag{6.2}\\
& \leq C\left\{\|F\|_{H^{1} \times L^{2}}^{2}+\|\tilde{w}\|_{H^{3}}\left(1+\|\tilde{w}\|_{H^{3}}\right)\|\phi\|_{H^{1}}^{2}+\|w\|_{2}^{2}+\|\phi\|_{H^{-1}}^{2}\right\} \\
& (\operatorname{Re} \lambda+\Lambda)^{2}\|u\|_{2}^{2}+(\operatorname{Re} \lambda+\Lambda)\left(\left\|\partial_{x} u\right\|_{2}^{2}+\left\|\partial_{x}^{2} \phi\right\|_{2}^{2}+\left\|\partial_{x_{1}}^{2} w\right\|_{2}^{2}+|\lambda|^{2}\|u\|_{2}^{2}\right) \\
& +\left\|\partial_{x}^{2} w\right\|_{2}^{2}+\left\|\partial_{x}^{3} w\right\|_{2}^{2}+|\lambda|^{2}\|\nabla u\|_{2}^{2}+\left\|\dot{\phi}_{\lambda}\right\|_{H^{2}}^{2} \\
& \leq C\left\{\|F\|_{H^{2} \times H^{1}}^{2}+|\lambda|^{2}\|F\|_{2}^{2}+\|\tilde{w}\|_{H^{3}}\left(1+\|\tilde{w}\|_{H^{3}}\right)\left(\|\phi\|_{H^{2}}^{2}+|\lambda|^{2}\|\phi\|_{2}^{2}\right)\right. \tag{6.3}\\
& \left.\quad+\|w\|_{2}^{2}+\|\phi\|_{H^{-1}}^{2}\right\} .
\end{align*}
$$

To prove Proposition 6.1, we will employ the following Bogovskii lemma.

Lemma 6.2. ([2]) There exists a bouded operator $\mathcal{B}: L_{\text {per }, *}^{2} \rightarrow H_{p e r, 0}^{1}$ such that

$$
\begin{gathered}
\operatorname{div} \mathcal{B} g=g, \quad g \in L_{\text {per,* }}^{2} \\
\|\nabla \mathcal{B} g\|_{2} \leq C_{B}\|g\|_{2}
\end{gathered}
$$

where C_{B} is a positive constant depending only on α. Furthermore, if $g=\operatorname{div} \boldsymbol{g}$ with $\boldsymbol{g}={ }^{\top}\left(g^{1}, g^{2}\right)$ satisfying $\left.g^{1}\right|_{x_{1}=-\frac{\pi}{\alpha}}=\left.g^{1}\right|_{x_{1}=\frac{\pi}{\alpha}},\left.g^{2}\right|_{x_{2}=0,1}=0$, then

$$
\begin{gathered}
\operatorname{div} \mathcal{B}(\operatorname{div} \boldsymbol{g})=\operatorname{div} \boldsymbol{g} \\
\|\mathcal{B}(\operatorname{div} \boldsymbol{g})\|_{2} \leq C_{B}\|\boldsymbol{g}\|_{2}
\end{gathered}
$$

An outline of the proof of Lemma 6.2 will be given in Section 7. We will also employ the Poincaré inequalities

$$
\|\phi\|_{2} \leq C\|\nabla \phi\|_{2}, \quad\|w\|_{2} \leq\|\nabla w\|_{2}
$$

for $\phi \in H_{p e r, *}^{1}$ and $w \in H_{p e r, 0}^{1}$, and the Sobolev inequality

$$
\|f\|_{\infty} \leq C\|f\|_{H^{2}}
$$

for $f \in H_{p e r}^{2}$. Here C is a positive constant depending only on α.
We begin with the following L^{2} energy estimates.
Proposition 6.3. There exists a positive number Λ_{0} such that the following inequalities hold uniformly for $\operatorname{Re} \lambda \geq \Lambda_{0}$.

$$
\begin{align*}
& \left(\operatorname{Re} \lambda+\Lambda_{0}\right)|\lambda|^{2 k}\left|\left\|\left.u\left|\|_{2}^{2}+\frac{1}{4}\right| \lambda\right|^{2 k} D[w]\right.\right. \\
& \quad \leq C|\lambda|^{2 k}\left\{\left|\left\|F\left|\left\|_{2}\right\|\|u \mid\|_{2}+\left\|\partial_{x_{2}} v_{s}^{1}\right\|_{\infty}\|w\|_{2}^{2}+\frac{\nu}{\gamma^{4}}\|\phi\|_{H^{-1}}^{2}+\frac{\|\tilde{w}\|_{H^{3}}}{\gamma}\|\phi\|_{2}\| \| u \|_{2}\right\}\right.\right.\right. \tag{6.4}
\end{align*}
$$

for $k=0,1$,

$$
\begin{array}{rl}
(\operatorname{Re} \lambda+ & \left.\frac{1}{2} \Lambda_{0}\right)\|\|u\|\|_{2}^{2}+\frac{1}{8} D[w]+\frac{\nu+\tilde{\nu}}{32 \gamma^{4}}\left\|\dot{\phi}_{\lambda}\right\|_{2}^{2} \\
\leq C & C\left\{\left(\frac{1}{\gamma^{2} \Lambda_{0}}+\frac{\nu+\tilde{\nu}}{\gamma^{4}}\right)\left\|f^{0}\right\|_{2}^{2}+\frac{1}{\nu}\|f\|_{H^{-1}}^{2}+\frac{\|\tilde{w}\|_{H^{3}}}{\gamma^{2}}\left(1+\frac{\|\tilde{w}\|_{H^{3}}}{\nu}\right)\|\phi\|_{2}^{2}\right. \\
& \left.+\left\|\partial_{x_{2}} v_{s}^{1}\right\|_{\infty}\|w\|_{2}^{2}+\frac{\nu}{\gamma^{4}}\|\phi\|_{H^{-1}}^{2}\right\} \\
(\operatorname{Re} \lambda & \left.+\frac{1}{2} \Lambda_{0}\right)\left\|\partial_{x_{1}}^{j} u\right\|\left\|_{2}^{2}+\frac{1}{16} D\left[\partial_{x_{1}}^{j} w\right]+\frac{\nu+\tilde{\nu}}{32 \gamma^{4}}\right\| \partial_{x_{1}}^{j} \dot{\phi}_{\lambda} \|_{2}^{2} \\
\leq C & \left\{\left(\frac{1}{\gamma^{2} \Lambda_{0}}+\frac{\nu+\tilde{\nu}}{\gamma^{4}}\right)\left\|\partial_{x_{1}}^{j} f^{0}\right\|_{2}^{2}+\frac{1}{\nu}\left\|\partial_{x_{1}}^{j} f\right\|_{H^{-1}}^{2}+\frac{\|\tilde{w}\|_{H^{3}}}{\gamma^{2}}\left(1+\frac{\|\tilde{w}\|_{H^{3}}}{\nu}\right)\|\phi\|_{H^{j}}^{2}\right. \\
& \left.+\left\|\partial_{x_{2}} v_{s}^{1}\right\|_{\infty}\left\|\partial_{x_{1}}^{j} w\right\|_{2}^{2}+\frac{\nu}{\gamma^{4}}\left\|\partial_{x_{1}}^{j} \phi\right\|_{H^{-1}}^{2}\right\} \tag{6.6}
\end{array}
$$

for $j=1,2$.

Proof. We follow the argument in [6]. We take the weighted inner product of (6.1) with u. Since

$$
\operatorname{Re}\langle L u, u\rangle=D[w]+\operatorname{Re}\left\{-\frac{\nu}{\gamma^{2}}\left(\phi, w^{1}\right)+\left(\partial_{x_{2}} v_{s}^{1} w^{2}, w^{1}\right)\right\}
$$

and

$$
\frac{1}{\gamma^{2}} \operatorname{Re}(\operatorname{div}(\phi \tilde{w}), \phi)=\frac{1}{2 \gamma^{2}}\left(\operatorname{div} \tilde{w},|\phi|^{2}\right),
$$

we have

$$
\begin{align*}
\operatorname{Re} \lambda\left\|\|u\|_{2}^{2}+D[w]=\right. & \operatorname{Re}\langle F, u\rangle-\operatorname{Re}\left\{\frac{1}{2 \gamma^{2}}\left(\operatorname{div} \tilde{w},|\phi|^{2}\right)-\frac{\nu}{\gamma^{2}}\left(\phi, w^{1}\right)+\left(\partial_{x_{2}} v_{s}^{1} w^{2}, w^{1}\right)\right\} \\
\leq & |\langle F, u\rangle|+\frac{\nu}{\gamma^{2}}\|\phi\|_{H^{-1}}\|\nabla w\|_{2}+\left\|\partial_{x_{2}} v_{s}^{1}\right\|_{\infty}\|w\|_{2}^{2} \\
& +\frac{1}{2 \gamma^{2}}\|\operatorname{div} \tilde{w}\|_{\infty}\|\phi\|_{2}^{2} . \tag{6.7}
\end{align*}
$$

We next introduce a new inner product $\left(\left(u_{1}, u_{2}\right)\right)$ defined by

$$
\left(\left(u_{1}, u_{2}\right)\right)=\left\langle u_{1}, u_{2}\right\rangle-\delta\left[\left(w_{1}, \mathcal{B} \phi_{2}\right)+\left(\mathcal{B} \phi_{1}, w_{2}\right)\right]
$$

for $u_{j}={ }^{\top}\left(\phi_{j}, w_{j}\right)(j=1,2)$. Here δ is a positive number to be determined later. Note that $((u, u))^{\frac{1}{2}}$ is equivalent to $\|u\|_{2}$ if $\delta \leq \frac{1}{2 C_{B} \gamma}$. We also write the density and velocity components of $L u$ as $(L u)_{d}$ and $(L u)_{v}$, respectively, i.e., $L u={ }^{\top}\left((L u)_{d},(L u)_{v}\right)$. Then, by Lemma 6.2,

$$
\begin{aligned}
\left((L u)_{v}, \mathcal{B} \phi\right)= & \nu(\nabla w, \nabla \mathcal{B} \phi)+\tilde{\nu}(\operatorname{div} w, \operatorname{div} \mathcal{B} \phi)-(\phi, \operatorname{div} \mathcal{B} \phi) \\
& -\frac{\nu}{\gamma^{2}}\left(\phi \boldsymbol{e}_{1}, \mathcal{B} \phi\right)-\left(v_{s}^{1} w, \partial_{x_{1}} \mathcal{B} \phi\right)+\left(\partial_{x_{2}} v_{s}^{1} w^{2} \boldsymbol{e}_{1}, \mathcal{B} \phi\right) \\
= & \nu(\nabla w, \nabla \mathcal{B} \phi)+\tilde{\nu}(\operatorname{div} w, \phi)-\|\phi\|_{2}^{2} \\
& -\frac{\nu}{\gamma^{2}}\left(\phi \boldsymbol{e}^{1}, \mathcal{B} \phi\right)-\left(v_{s}^{1} w, \partial_{x_{1}} \mathcal{B} \phi\right)+\left(\partial_{x_{2}} v_{s}^{1} w^{2} \boldsymbol{e}_{1}, \mathcal{B} \phi\right) .
\end{aligned}
$$

Applying Lemma 6.2 again, we have

$$
\begin{align*}
-\operatorname{Re}\left((L u)_{v}, \mathcal{B} \phi\right) \geq & \|\phi\|_{2}^{2}-\nu C_{B}\|\nabla w\|_{2}\|\phi\|_{2}-\tilde{\nu}\|\operatorname{div} w\|_{2}\|\phi\|_{2} \\
& -\frac{\nu}{\gamma^{2}}\|\phi\|_{H^{-1}}\|\nabla \mathcal{B} \phi\|_{2}-\left\|v_{s}^{1}\right\|_{C^{1}}\left(\|w\|_{2}+\|w\|_{H^{-1}}\right)\|\nabla \mathcal{B} \phi\|_{2} \\
\geq & \frac{3}{4}\|\phi\|_{2}^{2}-C\left\{\nu^{2} C_{B}^{2}\|\nabla w\|_{2}^{2}+\tilde{\nu}^{2}\|\operatorname{div} w\|_{2}^{2}\right. \\
& \left.-\frac{\nu^{2} C_{B}^{2}}{\gamma^{4}}\|\phi\|_{H^{-1}}^{2}-C_{B}^{2}\left\|v_{s}^{1}\right\|_{C^{1}}^{2}\|\nabla w\|_{2}^{2}\right\} . \tag{6.8}
\end{align*}
$$

Since $(L u)_{d}=\operatorname{div}\left(\phi v_{s}+\gamma^{2} w+\phi \tilde{w}\right)$, we see from Lemma 6.2 that

$$
\begin{align*}
\left|\left(\mathcal{B}(L u)_{d}, w\right)\right| & \leq C_{B}\left\|\phi v_{s}+\gamma^{2} w+\phi \tilde{w}\right\|_{2}\|w\|_{2} \\
& \leq C_{B}\left(\left\|v_{s}^{1}\right\|_{\infty}+\|\tilde{w}\|_{\infty}\right)\|\phi\|_{2}\|w\|_{2}+C_{B} \gamma^{2}\|\nabla w\|_{2}^{2} \\
& \leq \frac{1}{4}\|\phi\|^{2}+C\left\{\left(C_{B}^{2}\left\|v_{s}^{1}\right\|_{\infty}^{2}+C_{B} \gamma^{2}\right)\|\nabla w\|_{2}^{2}+C_{B}\|\tilde{w}\|_{H^{3}}\|\phi\|_{2}\|w\|_{2}\right\} . \tag{6.9}
\end{align*}
$$

Taking $\delta>0$ such that $\delta \leq \delta_{1}$ with $\delta_{1}=\min \left\{\frac{1}{2 C_{B} \gamma}, \frac{1}{16 C C_{B}^{2} \nu}, \frac{\nu}{16 C C_{B}^{2}\left\|v_{s}\right\|_{C^{1}}^{2}}, \frac{\nu}{16 C C_{B} \gamma^{2}}, \frac{1}{2 C \tilde{\nu}}\right\}$, we deduce from (6.7)-(6.9) that

$$
\begin{align*}
& \operatorname{Re} \lambda((u, u))+\frac{1}{2} D[w]+\frac{\delta}{2}\|\phi\|_{2}^{2} \\
& \leq C\left\{|\langle F, u\rangle|+\delta\left(|(f, \mathcal{B} \phi)|+\left|\left(\mathcal{B} f^{0}, w\right)\right|\right)\right. \tag{6.10}\\
& \left.+\frac{\nu}{\gamma^{4}}\|\phi\|_{H^{-1}}^{2}+\left\|\partial_{x_{2}} v_{s}^{1}\right\|_{\infty}\|w\|_{2}^{2}+\frac{\|\tilde{w}\|_{H^{3}}}{\gamma}\|\phi\|_{2}\| \| u\| \|_{2}\right\} .
\end{align*}
$$

By using the Poincaré inequalities, (6.4) follows from (6.10). As for (6.5), we have

$$
\begin{aligned}
& |\langle F, u\rangle|+\delta\left(|(f, \mathcal{B} \phi)|+\left|\left(\mathcal{B} f^{0}, w\right)\right|\right) \\
& \quad \leq \frac{1}{\gamma^{2}}\left\|f^{0}\right\|_{2}\|\phi\|_{2}+\|f\|_{H^{-1}}\|\nabla w\|_{2}+\delta\left\{\|f\|_{H^{-1}}\|\nabla \mathcal{B} \phi\|_{2}+\left\|\mathcal{B} f^{0}\right\|_{2}\|w\|_{2}\right\} \\
& \quad \leq \frac{\delta}{4}\|\phi\|_{2}^{2}+\frac{\nu}{16}\|\nabla w\|_{2}^{2}+C\left\{\left(\frac{1}{\delta \gamma^{2}}+\frac{\nu}{\gamma^{4}}\right)\left\|f^{0}\right\|_{2}^{2}+\frac{1}{\nu}\|f\|_{H^{-1}}^{2}\right\}, \\
& \quad \frac{\|\tilde{w}\|_{H^{3}}}{\gamma}\|\phi\|_{2}\| \| u\left\|_{2} \leq \frac{16 C\|\tilde{w}\|_{H^{3}}}{\gamma^{2}}\left(1+\frac{\|\tilde{w}\|_{H^{3}}}{\nu}\right)\right\| \phi\left\|_{2}^{2}+\frac{\nu}{32 C}\right\| \nabla w \|_{2}^{2}
\end{aligned}
$$

and

$$
\left\|\dot{\phi}_{\lambda}\right\|_{2}^{2}=\left\|-\gamma^{2} \operatorname{div} w+f^{0}\right\|_{2}^{2} \leq 2\left\{\gamma^{4}\|\operatorname{div} w\|_{2}^{2}+\left\|f^{0}\right\|_{2}^{2}\right\} .
$$

Combining these inequalities with (6.10), we obtain (6.5). As for (6.6), we observe that

$$
\partial_{x_{1}}^{j}(L u)_{d}=\operatorname{div}\left(\partial_{x_{1}}^{j} \phi v_{s}+\gamma^{2} \partial_{x_{1}}^{j} w+\partial_{x_{1}}^{j} \phi \tilde{w}+\left[\partial_{x_{1}}^{j}, \tilde{w}\right] \phi\right)
$$

and

$$
\left\|\operatorname{div}\left(\left[\partial_{x_{1}}^{j}, \tilde{w}\right] \phi\right)\right\|_{2}+\left\|\left[\partial_{x_{1}}^{j}, \tilde{w}\right] \phi\right\|_{2} \leq C\|\tilde{w}\|_{H^{3}}\|\phi\|_{H^{j}} \quad(j=1,2) .
$$

Therefore, as in the case of (6.4) and (6.5), we can obtain (6.6). This completes the proof.
Proposition 6.4. There holds the inequality

$$
\begin{align*}
& \operatorname{Re} \lambda D[w]+\frac{1}{2}|\lambda|^{2}\left|\|u \mid\|_{2}^{2}\right. \\
& \leq C \tag{6.11}\\
& \quad\left\{\left\lvert\,\|f\|_{2}^{2}+\frac{\left\|v_{s}^{1}\right\|_{\infty}^{2}}{\gamma^{2}}\left\|\partial_{x_{1}} \phi\right\|_{2}^{2}+\frac{\|\tilde{w}\|_{H^{3}}^{2}}{\gamma^{2}}\|\nabla \phi\|_{2}^{2}+\frac{\nu^{2}}{\gamma^{4}}\|\phi\|_{2}^{2}\right.\right. \\
& \left.\quad+\left(\left\|v_{s}^{1}\right\|_{C^{1}}^{2}+\gamma^{2}\right)\|\nabla w\|_{2}^{2}\right\} .
\end{align*}
$$

Proof. We take the inner product of (6.1) with λu. Then the real part of the resulting equation yields

$$
\begin{aligned}
|\lambda|^{2}\|| | u \mid\|_{2}^{2}+\operatorname{Re} \lambda D[w]= & \operatorname{Re}\left\{\frac{\bar{\lambda}}{\gamma^{2}}\left(f^{0}, \phi\right)+\bar{\lambda}(f, w)-\frac{\bar{\lambda}}{\gamma^{2}}\left(v_{s}^{1} \partial_{x_{1}} \phi, \phi\right)\right. \\
& -\frac{\bar{\lambda}}{\gamma^{2}}(\operatorname{div}(\phi \tilde{w}), \phi)-\bar{\lambda}(\operatorname{div} w, \phi)+\bar{\lambda}(\phi, \operatorname{div} w) \\
& \left.+\frac{\nu}{\gamma^{2}} \bar{\lambda}\left(\phi, w^{1}\right)-\bar{\lambda}\left(v_{s}^{1} \partial_{x_{1}} w, w\right)-\bar{\lambda}\left(\partial_{x_{2}} v_{s}^{1} w^{3}, w^{1}\right)\right\} .
\end{aligned}
$$

By a direct computation, the right-hand side is bounded by

$$
\begin{aligned}
& \frac{|\lambda|^{2}}{2} \left\lvert\,\|u\|_{2}^{2}+C\left\{\|\mid\| f\left\|_{2}^{2}+\frac{\left\|v_{s}^{1}\right\|_{\infty}^{2}}{\gamma^{2}}\right\| \partial_{x_{1}} \phi\left\|_{2}^{2}+\frac{\|\tilde{w}\|_{H^{3}}^{2}}{\gamma^{2}}\right\| \nabla \phi\left\|_{2}^{2}+\frac{\nu^{2}}{\gamma^{4}}\right\| \phi \|_{2}^{2}\right.\right. \\
& \left.+\left(\left\|v_{s}^{1}\right\|_{C^{1}}^{2}+\gamma^{2}\right)\|\nabla w\|_{2}^{2}\right\} .
\end{aligned}
$$

We thus obtain the desired estimate. This completes the proof.
Proposition 6.5. Let j and k be integers satisfying $0 \leq j+k \leq 1$. Then there holds the inequality

$$
\begin{align*}
\mid \operatorname{Re} \lambda+ & \left.\frac{\gamma^{2}}{\nu+\tilde{\nu}} \right\rvert\,\left\|\partial_{x_{1}}^{j} \partial_{x_{2}}^{k+1} \phi\right\|_{2} \\
\leq C & \left\{\left\|\partial_{x_{1}}^{j} \partial_{x_{2}}^{k+1} f^{0}\right\|_{2}+\frac{\gamma^{2}}{\nu+\tilde{\nu}}\left\|\partial_{x_{1}}^{j} \partial_{x_{2}}^{k} f^{2}\right\|_{2}\right. \\
& +\left\|\partial_{x_{2}} v_{s}^{1}\right\|_{C^{k}}\left\|\partial_{x_{1}}^{j+1} \phi\right\|_{H^{k}}+\|\tilde{w}\|_{H^{3}}\|\phi\|_{H^{j+k+1}} \\
& \left.+\frac{\gamma^{2}}{\nu+\tilde{\nu}}\left(|\lambda|\left\|\partial_{x_{1}}^{j} \partial_{x_{2}}^{k} w\right\|_{2}+\nu\left\|\partial_{x_{1}}^{j+1} \partial_{x_{2}}^{k} \nabla w\right\|_{2}+\left\|v_{s}^{1}\right\|_{C^{k}}\left\|\partial_{x_{1}}^{j+1} w\right\|_{H^{k}}\right)\right\} \tag{6.12}
\end{align*}
$$

Furthermore, if $\operatorname{Re} \lambda \geq-\frac{1}{2} \frac{\gamma^{2}}{\nu+\tilde{\nu}}$, then

$$
\begin{align*}
& \left\|\partial_{x_{1}}^{j} \partial_{x_{2}}^{k+1} \dot{\phi}_{\lambda}\right\|_{2} \\
& \leq C \\
& \leq
\end{align*} \begin{array}{ll}
& \left\|\partial_{x_{1}}^{j} \partial_{x_{2}}^{k+1} f^{0}\right\|_{2}+\frac{\gamma^{2}}{\nu+\tilde{\nu}}\left\|\partial_{x_{1}}^{j} \partial_{x_{2}}^{k} f^{2}\right\|_{2} \\
& +\left\|\partial_{x_{2}} v_{s}^{1}\right\|_{C^{k}}\left\|\partial_{x_{1}}^{j+1} \phi\right\|_{H^{k}}+\|\tilde{w}\|_{H^{3}}\|\phi\|_{H^{j+k+1}} \tag{6.13}\\
& \left.+\frac{\gamma^{2}}{\nu+\tilde{\nu}}\left(|\lambda|\left\|\partial_{x_{1}}^{j} \partial_{x_{2}}^{k} w\right\|_{2}+\nu\left\|\partial_{x_{1}}^{j+1} \partial_{x_{2}}^{k} \nabla w\right\|_{2}+\left\|v_{s}^{1}\right\|_{C^{k}}\left\|\partial_{x_{1}}^{j+1} w\right\|_{H^{k}}\right)\right\} .
\end{array}
$$

Proof. Applying $\partial_{x_{1}}^{j} \partial_{x_{2}}^{k+1}$ to the first component of equation (6.1), we have

$$
\begin{align*}
& \lambda \partial_{x_{1}}^{j} \partial_{x_{2}}^{k+1} \phi+v_{s}^{1} \partial_{x_{1}} \partial_{x_{1}}^{j} \partial_{x_{2}}^{k+1} \phi+\operatorname{div}\left(\left(\partial_{x_{1}}^{j} \partial_{x_{2}}^{k+1} \phi\right) \tilde{w}\right)+\gamma^{2} \partial_{x_{1}}^{j} \partial_{x_{2}}^{k+2} w^{2} \\
& =\partial_{x_{1}}^{j} \partial_{x_{2}}^{k+1} f^{0}-\left\{\left[\partial_{x_{2}}^{k+1}, v_{s}^{1}\right] \partial_{x_{1}}^{j+1} \phi+\operatorname{div}\left(\left[\partial_{x_{1}}^{j} \partial_{x_{2}}^{k+1}, \tilde{w}\right] \phi\right)+\gamma^{2} \partial_{x_{1}}^{j+1} \partial_{x_{2}}^{k+1} w^{1}\right\} . \tag{6.14}
\end{align*}
$$

We also apply $\partial_{x_{1}}^{j} \partial_{x_{2}}^{k}$ to the third component of equation (6.1) to obtain

$$
\begin{align*}
& -(\nu+\tilde{\nu}) \partial_{x_{1}}^{j} \partial_{x_{2}}^{k+2} w^{2}+\partial_{x_{1}}^{j} \partial_{x_{2}}^{k+1} \phi \\
& =\partial_{x_{1}}^{j} \partial_{x_{2}}^{k} f^{2}-\left\{\lambda \partial_{x_{1}}^{j} \partial_{x_{2}}^{k} w^{2}-\nu \partial_{x_{1}}^{j+2} \partial_{x_{2}}^{k} w^{2}-\tilde{\nu} \partial_{x_{1}}^{j+1} \partial_{x_{2}}^{k+1} w^{1}+\partial_{x_{2}}^{k}\left(v_{s}^{1} \partial_{x_{1}}^{j+1} w^{2}\right)\right\} \tag{6.15}
\end{align*}
$$

By adding (6.14) and $\frac{\gamma^{2}}{\nu+\tilde{\nu}} \times(6.15)$ we obtain

$$
\begin{equation*}
\lambda \partial_{x_{1}}^{j} \partial_{x_{2}}^{k+1} \phi+\frac{\gamma^{2}}{\nu+\tilde{\nu}} \partial_{x_{1}}^{j} \partial_{x_{2}}^{k+1} \phi+v_{s}^{1} \partial_{x_{1}} \partial_{x_{1}}^{j} \partial_{x_{2}}^{k+1} \phi+\operatorname{div}\left(\left(\partial_{x_{1}}^{j} \partial_{x_{2}}^{k+1} \phi\right) \tilde{w}\right)=H \tag{6.16}
\end{equation*}
$$

where

$$
\begin{aligned}
H= & \partial_{x_{1}}^{j} \partial_{x_{2}}^{k+1} f^{0}+\frac{\gamma^{2}}{\nu+\tilde{\nu}} \partial_{x_{1}}^{j} \partial_{x_{2}}^{k} f^{2}-\left\{\left[\partial_{x_{2}}^{k+1}, v_{s}^{1}\right] \partial_{x_{1}}^{j+1} \phi+\operatorname{div}\left(\left[\partial_{x_{1}}^{j} \partial_{x_{2}}^{k+1}, \tilde{w}\right] \phi\right)\right\} \\
& -\frac{\gamma^{2}}{\nu+\tilde{\nu}}\left\{\lambda \partial_{x_{1}}^{j} \partial_{x_{2}}^{k} w^{2}-\nu \partial_{x_{1}}^{j+2} \partial_{x_{2}}^{k} w^{2}+\nu \partial_{x_{1}}^{j+1} \partial_{x_{2}}^{k+1} w^{1}+\partial_{x_{2}}^{k}\left(v_{s}^{1} \partial_{x_{1}}^{j+1} w^{2}\right)\right\} .
\end{aligned}
$$

Taking the inner product of (6.16) with $\partial_{x_{1}}^{j} \partial_{x_{2}}^{k+1} \phi$, we have $\operatorname{Re} \lambda\left\|\partial_{x_{1}}^{j} \partial_{x_{2}}^{k+1} \phi\right\|_{2}^{2}+\frac{\gamma^{2}}{\nu+\tilde{\nu}}\left\|\partial_{x_{1}}^{j} \partial_{x_{2}}^{k+1} \phi\right\|_{2}^{2}=-\frac{1}{2}\left(\operatorname{div} \tilde{w},\left|\partial_{x_{1}}^{j} \partial_{x_{2}}^{k+1} \phi\right|^{2}\right)+\operatorname{Re}\left(H, \partial_{x_{1}}^{j} \partial_{x_{2}}^{k+1} \phi\right)$, from which estimate (6.12) is obtained. As for (6.13), we rewrite (6.16) as

$$
\partial_{x_{1}}^{j} \partial_{x_{2}}^{k+1} \dot{\phi}_{\lambda}=-\frac{\gamma^{2}}{\nu+\tilde{\nu}} \partial_{x_{1}}^{j} \partial_{x_{2}}^{k+1} \phi+\tilde{H}
$$

where

$$
\tilde{H}=H+\left[\partial_{x_{2}}^{k+1}, v_{s}^{1}\right] \partial_{x_{1}}^{j+1} \phi+\operatorname{div}\left(\left[\partial_{x_{1}}^{j} \partial_{x_{2}}^{k+1}, \tilde{w}\right] \phi\right) .
$$

This, together with (6.12), yields (6.13). This completes the proof.
We next prepare the following estimate for the Stokes system to estimate the higher order derivatives.

Lemma 6.6. Let $(\phi, w) \in H_{p e r, *}^{k+1} \times\left[H_{p e r}^{k+2} \cap H_{p e r, 0}^{1}\right]$ be a solution of

$$
\begin{gathered}
\operatorname{div} w=h^{0}, \\
-\Delta w+\nabla \phi=h
\end{gathered}
$$

for $\left(h^{0}, h\right) \in H_{p e r, *}^{k+1} \times H_{p e r}^{k}$. Then

$$
\left\|\partial_{x}^{k+2} w\right\|_{2}+\left\|\partial_{x}^{k+1} \phi\right\|_{2} \leq C\left\{\left\|h^{0}\right\|_{H^{k+1}}+\|h\|_{H^{k}}\right\} .
$$

See, e.g., $[3,13]$ for the proof. Applying Lemma 6.6 we have the following
Proposition 6.7. Let j and k be integers satisfying $0 \leq j+k \leq 1$. Then

$$
\begin{align*}
& \left\|\partial_{x}^{k+2} \partial_{x_{1}}^{j} w\right\|_{2}+\frac{1}{\nu}\left\|\partial_{x}^{k+1} \partial_{x_{1}}^{j} \phi\right\|_{2} \\
& \leq C \tag{6.17}\\
& \leq
\end{align*}
$$

Proof. We apply $\partial_{x_{1}}^{j}$ to (6.1) and write the resulting equation as

$$
\begin{gathered}
\operatorname{div} \partial_{x_{1}}^{j} w=\frac{1}{\gamma^{2}} \partial_{x_{1}}^{j} h^{0}, \\
-\Delta \partial_{x_{1}}^{j} w+\nabla\left(\frac{1}{\nu} \partial_{x_{1}}^{j} \phi\right)=\frac{1}{\nu} \partial_{x_{1}}^{j} h,
\end{gathered}
$$

where

$$
\begin{gathered}
h^{0}=f^{0}-\dot{\phi}_{\lambda}, \\
h=f-\left\{\lambda w-\frac{\tilde{\nu}}{\gamma^{2}} \nabla h^{0}-\frac{\nu}{\gamma^{2}} \phi \boldsymbol{e}_{1}+v_{s}^{1} \partial_{x_{1}} w+\partial_{x_{2}} v_{s}^{1} w^{2} \boldsymbol{e}_{1}\right\} .
\end{gathered}
$$

Applying Lemma 6.6 we have the desired estimate. This completes the proof.
The following proposition follows from the first equation of (6.1).
Proposition 6.8. There holds the inequality

$$
\begin{equation*}
|\lambda|\left\|\partial_{x}^{k} \phi\right\|_{2} \leq C\left\{\left\|\partial_{x}^{k} f^{0}\right\|_{2}+\left\|v_{s}^{1}\right\|_{C^{k}}\left\|\partial_{x_{1}} \phi\right\|_{H^{k}}+\|\tilde{w}\|_{H^{3}}\left\|\partial_{x} \phi\right\|_{H^{k}}+\gamma^{2}\left\|\partial_{x}^{k} \operatorname{div} w\right\|_{2}\right\} \tag{6.18}
\end{equation*}
$$

for $k=0,1$.
We are now in a position to prove Proposition 6.1.
Proof of Proposition 6.1. Observe first that $\left\|\partial_{x_{1}} g\right\|_{H^{-1}} \leq\|g\|_{2}$. We see from (6.4) with $k=0$ that

$$
\begin{align*}
& \left(\operatorname{Re} \lambda+\Lambda_{0}\right)^{2}\| \| u\| \|_{2}^{2} \\
& \quad \leq C\left\{\|\mid\| F\| \|_{2}^{2}+\left\|\partial_{x_{2}} v_{s}^{1}\right\|_{\infty}^{2}\|w\|_{2}^{2}+\frac{\nu^{2}}{\gamma^{6}}\|\phi\|_{H^{-1}}^{2}+\frac{\|\tilde{w}\|_{H^{3}}^{2}}{\gamma^{2}}\|\phi\|_{2}^{2}\right\} . \tag{6.19}
\end{align*}
$$

We compute (6.19) $+(6.5)+b_{1} \times\left.(6.6)\right|_{j=1}$. Taking b_{1} suitably small, we see that if $\operatorname{Re} \lambda>-\Lambda_{0} / 2$, then

$$
\begin{align*}
& \left(\operatorname{Re} \lambda+\frac{1}{2} \Lambda_{0}\right)^{2}\|u\|_{2}^{2}+\left(\operatorname{Re} \lambda+\frac{1}{2} \Lambda_{0}\right)\left\|\partial_{x_{1}} u\right\|_{2}^{2}+\sum_{j=0}^{1}\left(D\left[\partial_{x_{1}}^{j} w\right]+\left\|\partial_{x_{1}}^{j} \dot{\phi}_{\lambda}\right\|_{2}^{2}\right) \tag{6.20}\\
& \leq C\left\{\|F\|_{H^{1} \times L^{2}}^{2}+\|\tilde{w}\|_{H^{3}}\left(1+\|\tilde{w}\|_{H^{3}}\right)\|\phi\|_{H^{1}}^{2}+\|w\|_{2}^{2}+\|\phi\|_{H^{-1}}^{2}\right\} .
\end{align*}
$$

We next consider (6.20) $+b_{2} \times(6.11)$. Taking b_{2} suitably small, we see that there exists a positive number Λ_{1} such that if $\operatorname{Re} \lambda>-\Lambda_{1}$, then

$$
\begin{align*}
& \left(\operatorname{Re} \lambda+\Lambda_{1}\right)^{2}\|u\|_{2}^{2}+\left(\operatorname{Re} \lambda+\Lambda_{1}\right)\left(\left\|\partial_{x_{1}} \phi\right\|_{2}^{2}+\left\|\partial_{x} w\right\|_{2}^{2}\right) \\
& \quad+D\left[\partial_{x_{1}} w\right]+|\lambda|^{2}\|u\|_{2}^{2}+\sum_{j=0}^{1}\left\|\partial_{x_{1}}^{j} \dot{\phi}_{\lambda}\right\|_{2}^{2} \tag{6.21}\\
& \quad \leq C\left\{\|F\|_{H^{1} \times L^{2}}^{2}+\|\tilde{w}\|_{H^{3}}\left(1+\|\tilde{w}\|_{H^{3}}\right)\|\phi\|_{H^{1}}^{2}+\|w\|_{2}^{2}+\|\phi\|_{H^{-1}}^{2}\right\} .
\end{align*}
$$

We then compute $(6.21)+b_{3} \times\left\{\left.(6.12)\right|_{j=k=0}+\left.(6.13)\right|_{j=k=0}\right\}^{2}$. Taking b_{3} suitably small, we see that there exists a positive number Λ_{2} such that if $\operatorname{Re} \lambda>-\Lambda_{2}$, then

$$
\begin{align*}
& \left(\operatorname{Re} \lambda+\Lambda_{2}\right)^{2}\|u\|_{2}^{2}+\left(\operatorname{Re} \lambda+\Lambda_{2}\right)\left\|\partial_{x} u\right\|_{2}^{2}+D\left[\partial_{x_{1}} w\right]+|\lambda|^{2}\|u\|_{2}^{2}+\left\|\dot{\phi}_{\lambda}\right\|_{H^{1}}^{2} \tag{6.22}\\
& \quad \leq C\left\{\|F\|_{H^{1} \times L^{2}}^{2}+\|\tilde{w}\|_{H^{3}}\left(1+\|\tilde{w}\|_{H^{3}}\right)\|\phi\|_{H^{1}}^{2}+\|w\|_{2}^{2}+\|\phi\|_{H^{-1}}^{2}\right\}
\end{align*}
$$

We next compute $(6.22)+b_{4} \times\left\{\left.(6.17)\right|_{j=k=0}\right\}^{2}$. We take b_{4} suitably small to see that there exists a positive number Λ_{3} such that if $\operatorname{Re} \lambda>-\Lambda_{3}$, then

$$
\begin{align*}
& \left(\operatorname{Re} \lambda+\Lambda_{3}\right)^{2}\|u\|_{2}^{2}+\left(\operatorname{Re} \lambda+\Lambda_{3}\right)\left\|\partial_{x} u\right\|_{2}^{2}+\left\|\partial_{x}^{2} w\right\|_{2}^{2}+|\lambda|^{2}\|u\|_{2}^{2}+\left\|\dot{\phi}_{\lambda}\right\|_{H^{1}}^{2} \tag{6.23}\\
& \leq C\left\{\|F\|_{H^{1} \times L^{2}}^{2}+\|\tilde{w}\|_{H^{3}}\left(1+\|\tilde{w}\|_{H^{3}}\right)\|\phi\|_{H^{1}}^{2}+\|w\|_{2}^{2}+\|\phi\|_{H^{-1}}^{2}\right\} .
\end{align*}
$$

This shows (6.2).
Let us prove (6.3). We compute $(6.23)+b_{5} \times\left.(6.6)\right|_{j=2}$. Taking b_{5} suitably small, we see that there exists a positive number Λ_{4} such that if $\operatorname{Re} \lambda>-\Lambda_{4}$, then

$$
\begin{align*}
& \left(\operatorname{Re} \lambda+\Lambda_{4}\right)^{2}\|u\|_{2}^{2}+\left(\operatorname{Re} \lambda+\Lambda_{4}\right)\left(\left\|\partial_{x} u\right\|_{2}^{2}+\left\|\partial_{x_{1}}^{2} u\right\|_{2}^{2}\right) \\
& \quad+\left\|\partial_{x}^{2} w\right\|_{2}^{2}+\left\|\nabla \partial_{x_{1}}^{2} w\right\|_{2}^{2}+|\lambda|^{2}\|u\|_{2}^{2}+\left\|\dot{\phi}_{\lambda}\right\|_{H^{1}}^{2}+\left\|\partial_{x_{1}}^{2} \dot{\phi}_{\lambda}\right\|_{2}^{2} \tag{6.24}\\
& \quad \leq C\left\{\|F\|_{H^{2} \times H^{1}}^{2}+\|\tilde{w}\|_{H^{3}}\left(1+\|\tilde{w}\|_{H^{3}}\right)\|\phi\|_{H^{2}}^{2}+\|w\|_{2}^{2}+\|\phi\|_{H^{-1}}^{2}\right\} .
\end{align*}
$$

We next compute (6.24) $+b_{6} \times\left.(6.4)\right|_{k=1}$. Taking b_{6} suitably small, we see that there exists a positive number Λ_{5} such that if $\operatorname{Re} \lambda>-\Lambda_{5}$, then

$$
\begin{align*}
& \left(\operatorname{Re} \lambda+\Lambda_{5}\right)^{2}\|u\|_{2}^{2}+\left(\operatorname{Re} \lambda+\Lambda_{5}\right)\left(\left\|\partial_{x} u\right\|_{2}^{2}+\left\|\partial_{x_{1}}^{2} u\right\|_{2}^{2}+|\lambda|^{2}\|u\|_{2}^{2}\right) \\
& \quad+\left\|\partial_{x}^{2} w\right\|_{2}^{2}+\left\|\nabla \partial_{x_{1}}^{2} w\right\|_{2}^{2}+|\lambda|^{2}\|\nabla w\|_{2}^{2}+\left\|\dot{\phi}_{\lambda}\right\|_{H^{1}}^{2}+\left\|\partial_{x_{1}}^{2} \dot{\phi}_{\lambda}\right\|_{2}^{2} \\
& \leq C \tag{6.25}\\
& \quad C\left\{\|F\|_{H^{2} \times H^{1}}^{2}+|\lambda|^{2}\|F\|_{2}^{2}+\|\tilde{w}\|_{H^{3}}\left(1+\|\tilde{w}\|_{H^{3}}\right)\left(\|\phi\|_{H^{2}}^{2}+|\lambda|^{2}\|\phi\|_{2}^{2}\right)\right. \\
& \left.\quad+\|w\|_{2}^{2}+\|\phi\|_{H^{-1}}^{2}\right\} .
\end{align*}
$$

We next consider (6.25) $+b_{7} \times\left\{\left.(6.12)\right|_{j=1, k=0}+\left.(6.13)\right|_{j=1, k=0}\right\}^{2}$. Taking b_{7} suitably small, we see that there exists a positive number Λ_{6} such that if $\operatorname{Re} \lambda>-\Lambda_{6}$, then

$$
\begin{align*}
& \left(\operatorname{Re} \lambda+\Lambda_{6}\right)^{2}\|u\|_{2}^{2}+\left(\operatorname{Re} \lambda+\Lambda_{6}\right)\left(\left\|\partial_{x} u\right\|_{2}^{2}+\left\|\partial_{x_{1}}^{2} u\right\|_{2}^{2}+\left\|\partial_{x_{1}} \partial_{x_{2}} \phi\right\|_{2}^{2}+|\lambda|^{2}\|u\|_{2}^{2}\right) \\
& \quad+\left\|\partial_{x}^{2} w\right\|_{2}^{2}+\left\|\nabla \partial_{x_{1}}^{2} w\right\|_{2}^{2}+|\lambda|^{2}\|\nabla w\|_{2}^{2}+\left\|\dot{\phi}_{\lambda}\right\|_{H^{1}}^{2}+\left\|\nabla \partial_{x_{1}} \dot{\phi}_{\lambda}\right\|_{2}^{2} \\
& \leq C\left\{\|F\|_{H^{2} \times H^{1}}^{2}+|\lambda|^{2}\|F\|_{2}^{2}+\|\tilde{w}\|_{H^{3}}\left(1+\|\tilde{w}\|_{H^{3}}\right)\left(\|\phi\|_{H^{2}}^{2}+|\lambda|^{2}\|\phi\|_{2}^{2}\right)\right. \tag{6.26}\\
& \left.\quad+\|w\|_{2}^{2}+\|\phi\|_{H^{-1}}^{2}\right\} .
\end{align*}
$$

It then follows from $(6.26)+b_{8} \times\left\{\left.(6.17)\right|_{j=1, k=0}\right\}^{2}$ with suitably small b_{8} that there exists a positive number Λ_{7} such that if $\operatorname{Re} \lambda>-\Lambda_{7}$, then

$$
\begin{align*}
& \left(\operatorname{Re} \lambda+\Lambda_{7}\right)^{2}\|u\|_{2}^{2}+\left(\operatorname{Re} \lambda+\Lambda_{7}\right)\left(\left\|\partial_{x} u\right\|_{2}^{2}+\left\|\partial_{x_{1}}^{2} u\right\|_{2}^{2}+\left\|\partial_{x_{1}} \partial_{x_{2}} \phi\right\|_{2}^{2}+|\lambda|^{2}\|u\|_{2}^{2}\right) \\
& \quad+\left\|\partial_{x}^{2} w\right\|_{2}^{2}+\left\|\partial_{x}^{2} \partial_{x_{1}} w\right\|_{2}^{2}+|\lambda|^{2}\|\nabla w\|_{2}^{2}+\left\|\dot{\phi}_{\lambda}\right\|_{H^{1}}^{2}+\left\|\nabla \partial_{x_{1}} \dot{\phi}_{\lambda}\right\|_{2}^{2} \\
& \leq C\left\{\|F\|_{H^{2} \times H^{1}}^{2}+|\lambda|^{2}\|F\|_{2}^{2}+\|\tilde{w}\|_{H^{3}}\left(1+\|\tilde{w}\|_{H^{3}}\right)\left(\|\phi\|_{H^{2}}^{2}+|\lambda|^{2}\|\phi\|_{2}^{2}\right)\right. \tag{6.27}\\
& \left.\quad+\|w\|_{2}^{2}+\|\phi\|_{H^{-1}}^{2}\right\}
\end{align*}
$$

We then compute $(6.27)+b_{9} \times\left\{\left.(6.12)\right|_{j=0, k=1}+\left.(6.13)\right|_{j=0, k=1}\right\}^{2}$ and take b_{9} suitably small so that there exists a positive number Λ_{8} such that if $\operatorname{Re} \lambda>-\Lambda_{8}$, then

$$
\begin{align*}
& \left(\operatorname{Re} \lambda+\Lambda_{8}\right)^{2}\|u\|_{2}^{2}+\left(\operatorname{Re} \lambda+\Lambda_{8}\right)\left(\left\|\partial_{x} u\right\|_{2}^{2}+\left\|\partial_{x}^{2} \phi\right\|_{2}^{2}+\left\|\partial_{x_{1}}^{2} w\right\|_{2}^{2}+|\lambda|^{2}\|u\|_{2}^{2}\right) \\
& \quad+\left\|\partial_{x}^{2} w\right\|_{2}^{2}+\left\|\partial_{x}^{2} \partial_{x_{1}} w\right\|_{2}^{2}+|\lambda|^{2}\|\nabla w\|_{2}^{2}+\left\|\dot{\phi}_{\lambda}\right\|_{H^{2}}^{2} \\
& \leq C \tag{6.28}\\
& \quad C\left\{\|F\|_{H^{2} \times H^{1}}^{2}+|\lambda|^{2}\|F\|_{2}^{2}+\|\tilde{w}\|_{H^{3}}\left(1+\|\tilde{w}\|_{H^{3}}\right)\left(\|\phi\|_{H^{2}}^{2}+|\lambda|^{2}\|\phi\|_{2}^{2}\right)\right. \\
& \left.\quad+\|w\|_{2}^{2}+\|\phi\|_{H^{-1}}^{2}\right\} .
\end{align*}
$$

Finally, consider $(6.28)+b_{10} \times\left\{\left.(6.17)\right|_{j=0, k=1}+\left.(6.18)\right|_{k=1}\right\}^{2}$. Taking b_{10} suitably small, we deduce that there exists a positive number Λ_{9} such that if $\operatorname{Re} \lambda>-\Lambda_{9}$, then

$$
\begin{align*}
& \left(\operatorname{Re} \lambda+\Lambda_{9}\right)^{2}\|u\|_{2}^{2}+\left(\operatorname{Re} \lambda+\Lambda_{9}\right)\left(\left\|\partial_{x} u\right\|_{2}^{2}+\left\|\partial_{x}^{2} \phi\right\|_{2}^{2}+\left\|\partial_{x_{1}}^{2} w\right\|_{2}^{2}+|\lambda|^{2}\|u\|_{2}^{2}\right) \\
& \quad+\left\|\partial_{x}^{2} w\right\|_{2}^{2}+\left\|\partial_{x}^{3} w\right\|_{2}^{2}+|\lambda|^{2}\|\nabla u\|_{2}^{2}+\left\|\dot{\phi}_{\lambda}\right\|_{H^{2}}^{2} \\
& \leq C \tag{6.29}\\
& \quad C\left\{\|F\|_{H^{2} \times H^{1}}^{2}+|\lambda|^{2}\|F\|_{2}^{2}+\|\tilde{w}\|_{H^{3}}\left(1+\|\tilde{w}\|_{H^{3}}\right)\left(\|\phi\|_{H^{2}}^{2}+|\lambda|^{2}\|\phi\|_{2}^{2}\right)\right. \\
& \left.\quad+\|w\|_{2}^{2}+\|\phi\|_{H^{-1}}^{2}\right\} .
\end{align*}
$$

We thus obtain (6.3). This completes the proof.

6.2 A priori estimates

We consider

$$
\begin{equation*}
\lambda u+\mathscr{L}(\varepsilon, \tilde{\sigma}, \tilde{V}) u=F, \quad u \in Q X^{\ell} \quad(\ell=1,2) \tag{6.30}
\end{equation*}
$$

where $F \in Q\left(H_{p e r}^{\ell} \times H_{p e r}^{\ell-1}\right)$ and

$$
\mathscr{L}(\varepsilon, \tilde{\sigma}, \tilde{V})=\mathcal{L}_{c_{0}, 0}-\varepsilon \tilde{\sigma} Q \partial_{x_{1}}+\varepsilon Q N\left[V_{1}+\varepsilon \tilde{V}\right]
$$

with $\tilde{\sigma} \in \mathbb{R}$ and $\tilde{V} \in X^{2}$ satisfying $|\tilde{\sigma}|+\|\tilde{V}\|_{X^{2}} \leq M$. In this subsection we show the a priori estimates for solution u of (6.30).

We show the following a priori estimates.

Proposition 6.9. Let $M>0$ and assume that $|\tilde{\sigma}|+\|\tilde{V}\|_{X^{2}} \leq M$. Then there exist $\varepsilon_{3}>0, r_{0}>0, \Lambda>0$ and $\left\{\lambda_{j}\right\}_{j=1}^{K} \subset \mathbb{C}$ with $\left|\lambda_{j}\right| \geq 2 r_{0}$ such that if $|\varepsilon| \leq \varepsilon_{3}$ and

$$
\lambda \in \Sigma_{0}=\left\{\lambda \in \mathbb{C} ; \operatorname{Re} \lambda \geq-\Lambda,\left|\lambda-\lambda_{j}\right| \geq r_{0}, j=1, \cdots, K\right\}
$$

the solution $u \in Q X^{1}$ of (6.30) satisfies the estimate

$$
\begin{equation*}
(\operatorname{Re} \lambda+\Lambda)^{2}\|u\|_{2}^{2}+(\operatorname{Re} \lambda+\Lambda)\left\|\partial_{x} u\right\|_{2}^{2}+\left\|\partial_{x}^{2} w\right\|_{2}^{2}+|\lambda|^{2}\|u\|_{2}^{2} \leq C\|F\|_{H^{1} \times L^{2}}^{2} \tag{6.31}
\end{equation*}
$$

uniformly for $\lambda \in \Sigma_{0}$. In addition, if $u \in Q X^{2}$, then

$$
\begin{align*}
& (\operatorname{Re} \lambda+\Lambda)^{2}\|u\|_{2}^{2}+(\operatorname{Re} \lambda+\Lambda)\left(\left\|\partial_{x} u\right\|_{2}^{2}+\left\|\partial_{x}^{2} \phi\right\|_{2}^{2}+|\lambda|^{2}\|u\|_{2}^{2}\right) \tag{6.32}\\
& \quad+\left\|\partial_{x}^{2} w\right\|_{H^{1}}^{2}+|\lambda|^{2}\|\nabla u\|_{2}^{2} \leq C\left\{\|F\|_{H^{2} \times H^{1}}^{2}+|\lambda|^{2}\|F\|_{2}^{2}\right\}
\end{align*}
$$

uniformly for $\lambda \in \Sigma_{0}$.
We note that $0 \in \Sigma_{0}$.
Proof. We first introduce frequency cut off operators. We expand $f \in L_{\text {per }}^{2}$ into the Fourier series $f=\sqrt{\frac{\alpha}{2 \pi}} \sum_{k \in \mathbb{Z}} f_{k}\left(x_{2}\right) e^{i \alpha k x_{1}}$. We define $\Pi_{\leq N}$ and $\Pi_{\geq N}$ by

$$
\Pi_{\leq N} f=\sqrt{\frac{\alpha}{2 \pi}} \sum_{|k| \leq N} f_{k}\left(x_{2}\right) e^{i \alpha k x_{1}}
$$

and

$$
\Pi_{\geq N} f=\sqrt{\frac{\alpha}{2 \pi}} \sum_{|k| \geq N} f_{k}\left(x_{2}\right) e^{i \alpha k x_{1}}
$$

respectively. $\Pi_{<N}$ and $\Pi_{>N}$ are defined similarly. Observe that they are orthogonal projections on $L_{p e r}^{2}$ and

$$
\begin{equation*}
\|w\|_{2} \leq \frac{1}{\alpha N}\|\nabla w\|_{2}, \quad\|\phi\|_{H^{-1}} \leq \frac{1}{\alpha N}\|\phi\|_{2} \tag{6.33}
\end{equation*}
$$

for $w \in \Pi_{\geq N} H_{p e r}^{1}$ and $\phi \in \Pi_{\geq N} L_{\text {per }}^{2}$ with $N \geq 1$.
We first prove (6.31). We write (6.30) as

$$
\begin{equation*}
\lambda u+\mathcal{L}_{c_{0}, 0} u-\varepsilon \tilde{\sigma} Q J u+\varepsilon Q N[\tilde{w}] u=F . \tag{6.34}
\end{equation*}
$$

Here \tilde{w} is the function defined by

$$
\tilde{w}=-\tilde{\sigma} \boldsymbol{e}_{1}+W_{1}+\varepsilon \tilde{W}
$$

with W_{1} and \tilde{W} being the velocity components of V_{1} and \tilde{V} respectively; and $J u$ and $N[\tilde{w}] u$ are defined by $J u={ }^{\top}\left(0, \partial_{x_{1}} w\right)$ and $N[\tilde{w}] u={ }^{\top}(\operatorname{div}(\phi \tilde{w}), 0)$ for $u=^{\top}(\phi, w)$, respectively. Since $Q=I-P,(6.34)$ is rewritten as

$$
\begin{equation*}
\lambda u+\mathcal{L}_{c_{0}, 0} u+\varepsilon N[\tilde{w}] u=F+\varepsilon \tilde{\sigma} Q J u+\varepsilon P N[\tilde{w}] u . \tag{6.35}
\end{equation*}
$$

Note that

$$
\|Q J u\|_{H^{\ell+1} \times H^{\ell}} \leq C\left\|\partial_{x_{1}} w\right\|_{H^{\ell}} \quad(\ell=0,1)
$$

and

$$
\|P N[\tilde{w}] u\|_{H^{2} \times H^{1}} \leq C\|N[\tilde{w}] u\|_{2} \leq C\|\tilde{w}\|_{H^{3}}\|\phi\|_{H^{1}}
$$

Applying (6.2) with v_{s}, \tilde{w} and F replaced by $v_{s}-c_{0} \boldsymbol{e}_{1}, \varepsilon \tilde{w}$ and $F+\varepsilon \tilde{\sigma} Q J u+\varepsilon P N[\tilde{w}] u$, respectively, we see that

$$
\begin{aligned}
(\operatorname{Re} \lambda & +\Lambda)^{2}\|u\|_{2}^{2}+(\operatorname{Re} \lambda+\Lambda)\left\|\partial_{x} u\right\|_{2}^{2}+\left\|\partial_{x}^{2} w\right\|_{2}^{2}+|\lambda|^{2}\|u\|_{2}^{2} \\
\leq & C\left\{\|F\|_{H^{1} \times L^{2}}^{2}+|\varepsilon|^{2}|\tilde{\sigma}|^{2}\|Q J u\|_{H^{1} \times L^{2}}^{2}+|\varepsilon|^{2}\|P N[\tilde{w}] u\|_{H^{1} \times L^{2}}^{2}+\|w\|_{2}^{2}\right. \\
& \left.+\|\phi\|_{H^{-1}}^{2}+|\varepsilon|\|w\|_{H^{3}}\left(1+|\varepsilon|\|\tilde{w}\|_{H^{3}}\right)\|\phi\|_{H^{1}}^{2}\right\} \\
\leq & C\left\{\|F\|_{H^{1} \times L^{2}}^{2}+\left\|u_{<N}\right\|_{2}^{2}+\frac{1}{\alpha^{2} N^{2}}\left(\left\|\nabla w w_{\geq N}\right\|_{2}^{2}+\left\|\phi_{\geq N}\right\|_{2}^{2}\right)\right. \\
& \left.+|\varepsilon|^{2}|\tilde{\sigma}|^{2}\left\|\partial_{x_{1}} w\right\|_{2}+|\varepsilon|\|\tilde{w}\|_{H^{3}}\left(1+|\varepsilon|\|\tilde{w}\|_{H^{3}}\right)\|\phi\|_{H^{1}}^{2}\right\} .
\end{aligned}
$$

It then follows that there exists $N_{0} \in \mathbb{N}$ such that the inequality

$$
\begin{align*}
& \left(\operatorname{Re} \lambda+\Lambda_{10}\right)^{2}\|u\|_{2}^{2}+\left(\operatorname{Re} \lambda+\Lambda_{10}\right)\left\|\partial_{x} u\right\|_{2}^{2}+\left\|\partial_{x}^{2} w\right\|_{2}^{2}+|\lambda|^{2}\|u\|_{2}^{2} \\
& \quad \leq C\left\{\|F\|_{H^{1} \times L^{2}}^{2}+\left\|u_{<N}\right\|_{2}^{2}+|\varepsilon|^{2}|\tilde{\sigma}|^{2}\left\|\partial_{x_{1}} w\right\|_{2}^{2}\right. \tag{6.36}\\
& \left.\quad+|\varepsilon|\|\tilde{w}\|_{H^{3}}\left(1+|\varepsilon|\|\tilde{w}\|_{H^{3}}\right)\|\phi\|_{H^{1}}^{2}\right\}
\end{align*}
$$

holds with $\Lambda_{10}=\frac{1}{2} \Lambda$ uniformly for $N \geq N_{0}$.
To proceed further, we apply the following result on the spectral distribution proved by Iooss and Padula [6].
Lemma 6.10. ([6]) There exists a constant $\tilde{\Lambda}>0$ with $\tilde{\Lambda} \leq \Lambda_{10}$ such that

$$
\sigma\left(-\mathcal{L}_{c_{0}, 0}\right) \cap\{\lambda ; \operatorname{Re} \lambda \geq-\tilde{\Lambda}\}=\left\{\lambda_{j}\right\}_{j=0}^{K}
$$

where $\lambda_{j}(j=0,1, \cdots, K)$ are eigenvalues of $-\mathcal{L}_{c_{0}, 0}$ with finite multiplicities.
We may assume $N_{0} \geq 2$. Furthermore, by assumption (4.1), we may assume that $\lambda_{0}=0$ and $\lambda_{j} \neq 0$ for $j=1, \cdots, K$. By Lemma 6.10, we see that there is a positive number r_{0} such that

$$
\begin{aligned}
\left|\lambda_{j}-\lambda_{k}\right| & \geq 4 r_{0}, j \neq k, j, k=0,1, \cdots, K, \\
\rho\left(-\left.\mathcal{L}_{c_{0}, 0}\right|_{\Pi_{\leq N_{0}} Q X}\right) \supset \Sigma_{0} & \equiv\left\{\lambda ; \operatorname{Re} \lambda \geq-\tilde{\Lambda},\left|\lambda-\lambda_{j}\right| \geq r_{0}, j=1, \cdots, K\right\}
\end{aligned}
$$

and

$$
\begin{equation*}
(|\lambda|+1)\left\|\left(\lambda+\left.\mathcal{L}_{c_{0}, 0}\right|_{\Pi_{\leq N_{0}} Q X}\right)^{-1} F\right\|_{2} \leq C\|F\|_{2} \tag{6.37}
\end{equation*}
$$

uniformly for $\lambda \in \Sigma_{0}$. Note that $\Sigma_{0} \ni 0$ since $\lambda_{0}=0$.

Let us estimate $\left\|u_{<N}\right\|_{2}$. Applying $\Pi_{<N_{0}}$ to (6.35), we have

$$
\lambda u_{<N_{0}}+\mathcal{L}_{c_{0}, 0} u_{<N_{0}}=F_{<N_{0}}-\varepsilon \Pi_{<N_{0}} N[\tilde{w}] u+\varepsilon \tilde{\sigma} Q J u+\varepsilon P N[\tilde{w}] u .
$$

Here we have used the fact $\Pi_{<N_{0}} P=P$. It then follows from (6.37) that

$$
\begin{align*}
\left\|u_{<N_{0}}\right\|_{2} & \leq C\left\{\left\|F_{<N_{0}}\right\|_{2}+|\varepsilon|\left\|\Pi_{<N_{0}} N[\tilde{w}] u\right\|_{2}+\left|\varepsilon \left\|\tilde{\sigma}\left|\|Q J u\|_{2}+|\varepsilon|\|P N[\tilde{w}] u\|_{2}\right\}\right.\right.\right. \\
& \leq C\left\{\|F\|_{2}+\left|\varepsilon \left\|\tilde{\sigma}\left|\left\|\partial_{x_{1}} w\right\|_{2}+|\varepsilon|\|\tilde{w}\|_{\infty}\|\nabla \phi\|_{2}\right\}\right.\right.\right. \\
& \leq C\left\{\|F\|_{2}+\left|\varepsilon \left\|\tilde{\sigma}\left|\left\|\partial_{x_{1}} w\right\|_{2}+|\varepsilon|\|\tilde{w}\|_{H^{3}}\|\nabla \phi\|_{2}\right\} .\right.\right.\right. \tag{6.38}
\end{align*}
$$

We see from (6.36) and (6.38) that

$$
\begin{align*}
& (\operatorname{Re} \lambda+\tilde{\Lambda})^{2}\|u\|_{2}^{2}+(\operatorname{Re} \lambda+\tilde{\Lambda})\left\|\partial_{x} u\right\|_{2}^{2}+\left\|\partial_{x}^{2} w\right\|_{2}^{2}+|\lambda|^{2}\|u\|_{2}^{2} \tag{6.39}\\
& \quad \leq C\left\{\|F\|_{H^{1} \times L^{2}}^{2}+|\varepsilon|^{2}|\tilde{\sigma}|^{2}\left\|\partial_{x_{1}} w\right\|_{2}^{2}+|\varepsilon|\|\tilde{w}\|_{H^{3}}\left(1+|\varepsilon|\|\tilde{w}\|_{H^{3}}\right)\|\phi\|_{H^{1}}^{2}\right\}
\end{align*}
$$

uniformly for $\lambda \in \Sigma_{0}$. Since $|\tilde{\sigma}| \leq M$ and $\|\tilde{w}\|_{H^{3}} \leq C\left(\left\|V_{1}\right\|_{H^{3}}+M\right)$, we conclude that there exists $\varepsilon_{3}>0$ such that if $|\varepsilon| \leq \varepsilon_{3}$, then

$$
\begin{equation*}
\left(\operatorname{Re} \lambda+\Lambda_{11}\right)^{2}\|u\|_{2}^{2}+\left(\operatorname{Re} \lambda+\Lambda_{11}\right)\left\|\partial_{x} u\right\|_{2}^{2}+\left\|\partial_{x}^{2} w\right\|_{2}^{2}+|\lambda|^{2}\|u\|_{2}^{2} \leq C\|F\|_{H^{1} \times L^{2}}^{2} \tag{6.40}
\end{equation*}
$$

uniformly for $\lambda \in \Sigma_{0}$ with $\Lambda_{11}=\frac{1}{2} \tilde{\Lambda}$. This shows (6.31).
As for (6.32), by (6.3) and (6.40), we have

$$
\begin{aligned}
& \left(\operatorname{Re} \lambda+\Lambda_{11}\right)^{2}\|u\|_{2}^{2}+\left(\operatorname{Re} \lambda+\Lambda_{11}\right)\left(\left\|\partial_{x} u\right\|_{2}^{2}+\left\|\partial_{x}^{2} \phi\right\|_{2}^{2}+|\lambda|^{2}\|u\|_{2}^{2}\right) \\
& \quad+\left\|\partial_{x}^{2} w\right\|_{H^{1}}^{2}+|\lambda|^{2}\|\nabla u\|_{2}^{2} \\
& \leq C\left\{\|F\|_{H^{2} \times H^{1}}^{2}+|\lambda|^{2}\|F\|_{2}^{2}+|\varepsilon|^{2}|\tilde{\sigma}|^{2}\left(\left\|\partial_{x_{1}} w\right\|_{H^{1}}^{2}+|\lambda|^{2}\left\|\partial_{x_{1}} w\right\|_{2}^{2}\right)\right. \\
& \left.\quad+|\varepsilon|\|\tilde{w}\|_{H^{3}}\left(1+|\varepsilon|\|\tilde{w}\|_{H^{3}}\right)\left(\|\nabla \phi\|_{H^{1}}^{2}+|\lambda|^{2}\|\phi\|_{H^{1}}^{2}\right)\right\}
\end{aligned}
$$

uniformly for $\lambda \in \Sigma_{0}$. Therefore, if $|\varepsilon| \leq \varepsilon_{3}$ (by taking ε_{3} smaller if necessary), then

$$
\begin{align*}
& \left(\operatorname{Re} \lambda+\Lambda_{12}\right)^{2}\|u\|_{2}^{2}+\left(\operatorname{Re} \lambda+\Lambda_{12}\right)\left(\left\|\partial_{x} u\right\|_{2}^{2}+\left\|\partial_{x}^{2} \phi\right\|_{2}^{2}+|\lambda|^{2}\|u\|_{2}^{2}\right) \\
& \quad+\left\|\partial_{x}^{2} w\right\|_{H^{1}}^{2}+|\lambda|^{2}\|\nabla u\|_{2}^{2} \tag{6.41}\\
& \quad \leq C\left\{\|F\|_{H^{2} \times H^{1}}^{2}+|\lambda|^{2}\|F\|_{2}^{2}\right\}
\end{align*}
$$

uniformly for $\lambda \in \Sigma_{0}$ with $\Lambda_{12}=\frac{1}{2} \Lambda_{11}$. This completes the proof.

6.3 Invertibility

We finally prove the invertibility of $\mathscr{L}(\varepsilon, \tilde{\sigma}, \tilde{V})$. We first show the existence of solution of (6.30) in $Q X^{\ell}(\ell=1,2)$ for sufficiently large $\lambda>0$.

Proposition 6.11. Let $\ell=1,2$ and assume that $|\varepsilon| \leq \varepsilon_{1}$. There exists $\mu_{0}>0$ such that if $\lambda \geq \mu_{0}$, then for any $F={ }^{\top}\left(f^{0}, f\right) \in Q\left(H_{p e r, *}^{\ell} \times H_{p e r}^{\ell-1}\right)$, there exists a unique solution $u={ }^{\top}(\phi, w) \in Q X^{\ell}$ of (6.30), and $u=^{\top}(\phi, w)$ satisfies

$$
\lambda\|\phi\|_{H^{\ell}}+\sum_{j=0}^{\ell+1} \lambda^{\frac{\ell+1-j}{2}}\left\|\partial_{x}^{j} w\right\|_{2} \leq C\left\|f^{0}\right\|_{H^{\ell}}+C \sum_{j=0}^{\ell-1} \lambda^{\frac{\ell-1-j}{2}}\left\|\partial_{x}^{j} f\right\|_{2}
$$

Proof. We consider (6.35) instead of (6.30). Suppose that $u \in X^{\ell}$ is a solution of (6.35). Then

$$
\lambda u+\mathcal{L}_{c_{0}, 0} u=\varepsilon \tilde{\sigma} Q J u-\varepsilon Q N[\tilde{w}] u+F .
$$

Applying P to both sides, we see that $\lambda P u=0$. Since $\lambda>0$, we have $P u=0$, and hence $u \in Q X^{\ell}$. Therefore, it suffices to show the existence of solution of (6.35) in X^{ℓ}.

Hereafter in the proof, we simply denote the density and velocity components of $P J u=P^{\top}\left(0, \partial_{x_{1}} w\right)\left(u=^{\top}(\phi, w)\right)$ by $P_{d}\left(\partial_{x_{1}} w\right)$ and $P_{v}\left(\partial_{x_{1}} w\right)$ respectively, i.e.,

$$
P J u=P^{\top}\left(0, \partial_{x_{1}} w\right)=^{\top}\left(P_{d}\left(\partial_{x_{1}} w\right), P_{v}\left(\partial_{x_{1}} w\right)\right),
$$

and likewise, we denote the density and velocity components of $P N[\tilde{w}] u=P^{\top}(\operatorname{div}(\phi \tilde{w}), 0)$ with $u=^{\top}(\phi, w)$ by $P_{d}(\operatorname{div}(\phi \tilde{w}))$ and $P_{v}(\operatorname{div}(\phi \tilde{w}))$ respectively, i.e.,

$$
P N[\tilde{w}] u=P^{\top}(\operatorname{div}(\phi \tilde{w}), 0)=^{\top}\left(P_{d}(\operatorname{div}(\phi \tilde{w})), P_{v}(\operatorname{div}(\phi \tilde{w}))\right) .
$$

We write (6.35) as

$$
\begin{align*}
\lambda \phi+\operatorname{div}\left(\left(\tilde{v}_{s}+\varepsilon \tilde{w}\right) \phi\right) & =-\varepsilon \tilde{\sigma} P_{d}\left(\partial_{x_{1}} w\right)+\varepsilon P_{d}(\operatorname{div}(\phi \tilde{w}))-\gamma^{2} \operatorname{div} w+f^{0}, \tag{6.42}\\
\lambda w+A w & =B \phi-\varepsilon \tilde{\sigma} P_{v}\left(\partial_{x_{1}} w\right)+\varepsilon P_{v}(\operatorname{div}(\phi \tilde{w}))+f . \tag{6.43}
\end{align*}
$$

Here $\tilde{v}_{s}=v_{s}-\left(c_{0}+\varepsilon \tilde{\sigma}\right) \boldsymbol{e}_{1} ; A$ denotes the elliptic operator on $L_{p e r}^{2}$ defined by

$$
A w=-\nu \Delta w-\tilde{\nu} \nabla \operatorname{div} w+\tilde{v}_{s}^{1} \partial_{x_{1}} w+\left(\partial_{x_{2}} \tilde{v}_{s}^{1}\right)\left(w \cdot \boldsymbol{e}_{2}\right) \boldsymbol{e}_{1}
$$

with domain $D(A)=H_{p e r}^{2} \cap H_{p e r, 0}^{1} ; B$ is the operator on $H_{p e r}^{1}$ defined by

$$
B \phi=-\nabla \phi+\frac{\nu}{\gamma^{2}} \phi \boldsymbol{e}_{1} .
$$

By [4], there exists $\mu_{1}>0$ such that if $\lambda \geq \mu_{1}$, then, for any $f^{0} \in H_{p e r, *}^{\ell}$, there exists a unique solution $\Phi \in H_{p e r, *}^{\ell}$ of

$$
\begin{equation*}
\lambda \Phi+\operatorname{div}\left(\Phi\left(\tilde{v}_{s}+\varepsilon \tilde{w}\right)\right)=f^{0} \tag{6.44}
\end{equation*}
$$

and Φ satisfies the estimate

$$
\|\Phi\|_{H^{\ell}} \leq \frac{C}{\lambda}\left\|f^{0}\right\|_{H^{\ell}}
$$

We denote by Φ_{λ} the solution map $f^{0} \mapsto \Phi$ for (6.44). Then Φ_{λ} is a bounded linear operator on $H_{p e r, *}^{\ell}$ and

$$
\begin{equation*}
\left\|\Phi_{\lambda} f^{0}\right\|_{H^{\ell}} \leq \frac{C}{\lambda}\left\|f^{0}\right\|_{H^{\ell}} \tag{6.45}
\end{equation*}
$$

It then follows that (6.42) is equivalent to

$$
\begin{equation*}
\Psi_{\lambda} \phi=\Phi_{\lambda}\left(-\varepsilon \tilde{\sigma} P_{d}\left(\partial_{x_{1}} w\right)-\gamma^{2} \operatorname{div} w+f^{0}\right) \tag{6.46}
\end{equation*}
$$

where Ψ_{λ} is the operator defined by

$$
\Psi_{\lambda} \phi=\phi-\varepsilon \Phi_{\lambda} P_{d}(\operatorname{div}(\phi \tilde{w})) .
$$

To solve (6.46), we show that the map $\Psi_{\lambda}: H_{p e r, *}^{\ell} \rightarrow H_{p e r, *}^{\ell}$ has a bounded inverse. By (6.45), we have

$$
\left\|\varepsilon \Phi_{\lambda} P_{d}(\operatorname{div}(\phi \tilde{w}))\right\|_{H^{e}} \leq \frac{|\varepsilon| C}{\lambda}\|\operatorname{div}(\phi \tilde{w})\|_{2} \leq \frac{\varepsilon_{3} C}{\lambda}\left(\left\|V_{1}\right\|_{C^{1}}+M\right)\|\phi\|_{H^{1}}
$$

This implies that if $\lambda \geq \mu_{2}=\max \left\{\mu_{1}, 2 C \varepsilon_{3}\left(\left\|V_{1}\right\|_{C^{1}}+M\right)\right\}$, then $\left\|\varepsilon \Phi_{\lambda} P_{d}(\operatorname{div}(\phi \tilde{w}))\right\|_{H^{\ell}} \leq$ $\frac{1}{2}\|\phi\|_{H^{\ell}}$ for $\ell=1,2$, and hence, $\Psi_{\lambda}: H_{p e r, *}^{\ell} \rightarrow H_{p e r, *}^{\ell}$ has a bounded inverse Ψ_{λ}^{-1}, and Ψ_{λ}^{-1} satisfies

$$
\begin{equation*}
\left\|\Psi_{\lambda}^{-1} \phi\right\|_{H^{\ell}} \leq 2\|\phi\|_{H^{\ell}} \tag{6.47}
\end{equation*}
$$

In terms of Ψ_{λ}^{-1}, the solution ϕ of (6.46) is written as

$$
\begin{equation*}
\phi=\Psi_{\lambda}^{-1} \Phi_{\lambda}\left(-\varepsilon \tilde{\sigma} P_{d}\left(\partial_{x_{1}} w\right)-\gamma^{2} \operatorname{div} w+f^{0}\right), \tag{6.48}
\end{equation*}
$$

and, by (6.45) and (6.47), ϕ satisfies

$$
\begin{equation*}
\|\phi\|_{H^{\ell}} \leq \frac{C}{\lambda}\left\{\|w\|_{H^{\ell+1}}+\left\|f^{0}\right\|_{H^{\ell}}\right\} \tag{6.49}
\end{equation*}
$$

From (6.43) and (6.48), we have

$$
(\lambda+A) w=B_{1}[\tilde{w}] \Psi_{\lambda}^{-1} \Phi_{\lambda}\left(-\varepsilon \tilde{\sigma} P_{d}\left(\partial_{x_{1}} w\right)-\gamma^{2} \operatorname{div} w+f^{0}\right)-\varepsilon \tilde{\sigma} P_{v}\left(\partial_{x_{1}} w\right)+f
$$

with

$$
B_{1}[\tilde{w}] \phi=B \phi+\varepsilon P_{v}(\operatorname{div}(\phi \tilde{w})) .
$$

This is equivalent to

$$
\begin{equation*}
\left(I-\Gamma_{\lambda}\right) w=(\lambda+A)^{-1}\left(B_{1}[\tilde{w}] \Psi_{\lambda}^{-1} \Phi_{\lambda} f^{0}+f\right), \tag{6.50}
\end{equation*}
$$

where Γ_{λ} is the operator defined by

$$
\Gamma_{\lambda} w=(\lambda+A)^{-1}\left(B_{1}[\tilde{w}] \Psi_{\lambda}^{-1} \Phi_{\lambda}\left(-\varepsilon \tilde{\sigma} P_{d}\left(\partial_{x_{1}} w\right)-\gamma^{2} \operatorname{div} w\right)-\varepsilon \tilde{\sigma} P_{v}\left(\partial_{x_{1}} w\right)\right) .
$$

Since A is strongly elliptic, there exists $\mu_{3}>0$ such that if $\lambda \geq \mu_{3}$, then $(\lambda+A)^{-1} f \in$ $H_{p e r}^{\ell+1} \cap H_{p e r, 0}^{1}$ for $f \in H^{\ell-1}$ and it holds that

$$
\begin{equation*}
\sum_{j=0}^{\ell+1} \lambda^{\frac{\ell+1-j}{2}}\left\|\partial_{x}^{j}(\lambda+A)^{-1} f\right\|_{2} \leq C \sum_{j=0}^{\ell-1} \lambda^{\frac{\ell-1-j}{2}}\left\|\partial_{x}^{j} f\right\|_{2} \tag{6.51}
\end{equation*}
$$

Furthermore, for $j=1,2$, we have

$$
\begin{equation*}
\left\|B_{1}[\tilde{w}] \phi\right\|_{H^{j-1}} \leq C\left\{\|\phi\|_{H^{j}}+|\varepsilon|\|\operatorname{div}(\phi \tilde{w})\|_{2}\right\} \leq C\|\phi\|_{H^{j}} \tag{6.52}
\end{equation*}
$$

We now introduce the norm $\|\mid w\|_{(\lambda)}=\sum_{j=0}^{\ell+1} \lambda^{\frac{\ell+1-j}{2}}\left\|\partial_{x}^{j} w\right\|_{2}$ of $H_{p e r}^{\ell+1}$ and show that the map $\Gamma_{\lambda}: H_{p e r}^{\ell+1} \cap H_{p e r, 0}^{1} \rightarrow H_{p e r}^{\ell+1} \cap H_{\text {per }, 0}^{1}$ has a bounded inverse Γ_{λ}^{-1}. By (6.49) with $f^{0}=0$, (6.51) and (6.52), we see that if $\lambda \geq \max \left\{\mu_{3}, 1\right\}$, then

$$
\left\|\mid \Gamma_{\lambda} w\right\|_{(\lambda)} \leq C \sum_{j=0}^{\ell-1} \lambda^{\frac{\ell-1-j}{2}} \frac{1}{\lambda}\|w\|_{H^{j+2}} \leq \frac{C}{\lambda} \sum_{j=0}^{\ell+1} \lambda^{\frac{\ell+1-j}{2}}\left\|\partial_{x}^{j} w\right\|_{2} .
$$

Therefore, there exists $\mu_{4}>0$ such that if $\lambda \geq \mu_{4}$, then

$$
\left\|\left.\left\|\Gamma_{\lambda} w\right\|_{(\lambda)} \leq \frac{1}{2} \right\rvert\,\right\| w \|_{(\lambda)}
$$

and hence, $I-\Gamma_{\lambda}$ has a bounded inverse $\left(I-\Gamma_{\lambda}\right)^{-1}$, and $\left(I-\Gamma_{\lambda}\right)^{-1}$ satisfies the estimate

$$
\left\|\left\|\left(I-\Gamma_{\lambda}\right)^{-1} f\right\|\right\|_{(\lambda)} \leq 2\| \| f \|_{(\lambda)} .
$$

In terms of $\left(I-\Gamma_{\lambda}\right)^{-1}$, the solution $w \in H^{\ell+1} \cap H_{p e r, 0}^{1}$ of (6.50) is given by

$$
w=\left(I-\Gamma_{\lambda}\right)^{-1}(\lambda+A)^{-1}\left(B_{1}[\tilde{w}] \Psi_{\lambda}^{-1} \Phi_{\lambda} f^{0}+f\right)
$$

and w satisfies the estimate

$$
\begin{equation*}
\sum_{j=0}^{\ell+1} \lambda^{\frac{\ell+1-j}{2}}\left\|\partial_{x}^{j} w\right\|_{2} \leq C\left\|f^{0}\right\|_{H^{\ell}}+C \sum_{j=0}^{\ell-1} \lambda^{\frac{\ell-1-j}{2}}\left\|\partial_{x}^{j} f\right\|_{2} \tag{6.53}
\end{equation*}
$$

With this w, we define ϕ by (6.48). Then, by (6.49) and (6.53), we see that $\phi \in H_{p e r, *}^{\ell}$ and it holds that

$$
\lambda\|\phi\|_{H^{\ell}} \leq C\left\{\left\|f^{0}\right\|_{H^{\ell}}+\sum_{j=0}^{\ell-1} \lambda^{\frac{\ell-1-j}{2}}\left\|\partial_{x}^{j} f\right\|_{2}\right\} .
$$

This completes the proof.
We are now in a position to prove Proposition 5.3 (ii).
Proof of Proposition 5.3 (ii). Let $|\varepsilon| \leq \varepsilon_{3}$ and $|\tilde{\sigma}|+\|\tilde{V}\|_{X^{2}} \leq M$. Define the operator \mathscr{L} on $Q\left(H_{\text {per }, *}^{\ell} \times H_{\text {per }}^{\ell-1}\right)(\ell=1,2)$ by

$$
D(\mathscr{L})=Q X^{\ell}
$$

$$
\mathscr{L}=\mathscr{L}(\varepsilon, \tilde{\sigma}, \tilde{V})=\mathcal{L}_{c_{0}, 0}-\varepsilon \tilde{\sigma} Q \partial_{x_{1}}+\varepsilon Q N\left[V_{1}+\varepsilon \tilde{V}\right] .
$$

Set

$$
\Sigma_{1}=\Sigma_{0} \cap\left\{\lambda ;|\lambda| \leq \mu_{0}\right\} .
$$

It follows from Proposition 6.9 that there exists a positive constant C_{2} such that if $\lambda \in \rho(-\mathscr{L}) \cap \Sigma_{1}$, then

$$
\begin{equation*}
\left\|(\lambda+\mathscr{L})^{-1} F\right\|_{X^{\ell}} \leq C_{2}\|F\|_{H^{\ell} \times H^{\ell-1}} \tag{6.54}
\end{equation*}
$$

Assume that $\mu \in \rho(-\mathscr{L}) \cap \Sigma_{1}$. Then, by (6.54), we have

$$
\begin{equation*}
\left\{\lambda ;|\lambda-\mu|<\frac{1}{C_{2}}\right\} \cap \Sigma_{1} \subset \rho(-\mathscr{L}) \tag{6.55}
\end{equation*}
$$

and the estimate (6.54) holds for $\lambda \in \Sigma_{1}$ with $|\lambda-\mu|<\frac{1}{C_{2}}$.
Since Σ_{1} is compact, there exists a finite number of balls $B_{j}\left(j=1, \cdots, N_{1}\right)$ with radius $\frac{1}{2 C_{2}}$ such that $\Sigma_{1} \subset \cup_{j=1}^{N_{1}} B_{j}$. By Proposition 6.11, we have $\lambda_{0} \in \rho(-\mathscr{L}) \cap \Sigma_{1}$, and hence, $\mu_{0} \in B_{j}$ for some j. Since Σ_{1} is connected, we see from (6.55) that $\Sigma_{1} \subset \rho(-\mathscr{L})$. Since $0 \in \Sigma_{1}$, we conclude that $0 \in \rho(-\mathscr{L})$ and the estimate (6.54) holds for $\lambda=0$. This completes the proof.

7 Proof of Lemma 6.2

In this section we give an outline of the proof of Lemma 6.2.
Proof of Lemma 6.2. Let $a=\frac{2 \pi}{\alpha}$. In this section we write $\Omega_{a}=(0, a) \times(0,1)$ instead of Ω_{α}. We set

$$
G_{1}=\left(-\frac{a}{4}, \frac{a}{4}\right), \quad G_{2}=\left(\frac{a}{8}, \frac{7}{8} a\right),
$$

and take $\psi_{1}, \psi_{2} \in C^{\infty}$ satisfying

$$
\begin{aligned}
& \psi_{1} \geq 0, \quad\left(-\frac{3}{16} a, \frac{3}{16} a\right) \subset \operatorname{supp} \psi_{1} \subset G_{1} \\
& \psi_{2} \geq 0, \quad\left(\frac{5}{32} a, \frac{27}{32} a\right) \subset \operatorname{supp} \psi_{2} \subset G_{2} .
\end{aligned}
$$

We define $\eta\left(x_{1}\right)$ by

$$
\eta\left(x_{1}\right)=\sum_{j=1,2, k \in \mathbb{Z}} \psi_{j}\left(x_{1}-a k\right) .
$$

Then $\eta \in C^{\infty}(\mathbb{R}), \eta\left(x_{1}+a\right)=\eta\left(x_{1}\right)$ and $\eta\left(x_{1}\right)>0$ for all $x_{1} \in \mathbb{R}$. Setting

$$
\phi_{j, k}\left(x_{1}\right)=\frac{\psi_{j}\left(x_{1}-a k\right)}{\eta\left(x_{1}\right)},
$$

we see that

$$
\phi_{j, k} \in C_{0}^{\infty}(\mathbb{R}), \quad \operatorname{supp} \phi_{j, k} \subset G_{j}+a k \boldsymbol{e}_{1} \quad(j=1,2, k \in \mathbb{Z})
$$

$$
\begin{gathered}
\phi_{j, k}\left(x_{1}\right)=\frac{\psi_{j}\left(x_{1}-a k\right)}{\eta\left(x_{1}-a k\right)}=\phi_{j, 0}\left(x_{1}-a k\right) \quad(j=1,2, k \in \mathbb{Z}), \\
\sum_{j=1,2, k \in \mathbb{Z}} \phi_{j, k}\left(x_{1}\right)=1 \quad\left(x_{1} \in \mathbb{R}\right) .
\end{gathered}
$$

Let us consider the problem

$$
\operatorname{div} v=f
$$

for a given $f \in C_{p e r, 0}^{\infty}\left(\Omega_{a}\right)$ with $\int_{\Omega_{a}} f(x) d x=0$.
We set $Q_{0}=G_{1} \cup G_{2}$ and define f_{0} by

$$
f_{0}(x)=\phi_{1,0}\left(x_{1}\right) f(x)+\phi_{2,0}\left(x_{1}\right) f(x) \quad\left(x \in Q_{0}\right)
$$

It then follows that $f_{0} \in C_{0}^{\infty}\left(Q_{0}\right)$. Furthermore,

$$
\begin{aligned}
\int_{Q_{0}} f_{0}(x) d x= & \int_{G_{1}} \phi_{1,0}\left(x_{1}\right) f(x) d x+\int_{G_{2}} \phi_{2,0}\left(x_{1}\right) f(x) d x \\
= & \int_{0}^{1}\left(\int_{-\frac{a}{4}}^{0} \phi_{1,0}\left(x_{1}\right) f(x) d x_{1}\right) d x_{2} \\
& +\int_{0}^{1}\left(\int_{0}^{\frac{3}{4} a}\left(\phi_{1,0}\left(x_{1}\right)+\phi_{2,0}\left(x_{1}\right)\right) f(x) d x_{1}\right) d x_{2} \\
& +\int_{0}^{1}\left(\int_{\frac{3}{4} a}^{\frac{7}{8} a} \phi_{2,0}\left(x_{1}\right) f(x) d x_{1}\right) d x_{2} \\
= & \int_{0}^{1}\left(\int_{\frac{3}{4} a}^{a} \phi_{1,0}\left(x_{1}-a\right) f\left(x-a \boldsymbol{e}_{1}\right) d x_{1}\right) d x_{2}+\int_{0}^{1}\left(\int_{0}^{\frac{3}{4} a} f(x) d x_{1}\right) d x_{2} \\
& +\int_{0}^{1}\left(\int_{\frac{3}{4} a}^{\frac{7}{8} a} \phi_{2,0}\left(x_{1}\right) f(x) d x_{1}\right) d x_{2} \\
= & \int_{0}^{1}\left(\int_{\frac{3}{4} a}^{a}\left(\phi_{1,1}\left(x_{1}\right)+\phi_{2,0}\left(x_{1}\right)\right) f(x) d x_{1}\right) d x_{2}+\int_{0}^{1}\left(\int_{0}^{\frac{3}{4} a} f(x) d x_{1}\right) d x_{2} \\
= & \int_{\Omega_{a}} f(x) d x=0 .
\end{aligned}
$$

Therefore, from [3, Theorem III. 3.2] and its proof, we see that there exist $v_{j} \in$ $C_{0}^{\infty}(\mathbb{R})(j=1,2)$ such that $\operatorname{supp} v_{j} \subset G_{j}(j=1,2)$ and $v_{0}=v_{1}+v_{2} \in C_{0}^{\infty}\left(Q_{0}\right)$ satisfies

$$
\begin{gathered}
\operatorname{div} v_{0}=f_{0} \\
\left\|\nabla v_{0}\right\|_{L^{2}\left(Q_{0}\right)} \leq C\left\|f_{0}\right\|_{L^{2}\left(Q_{0}\right)} \leq C\|f\|_{L^{2}\left(\Omega_{a}\right)} .
\end{gathered}
$$

Let \tilde{v}_{0} and \tilde{f}_{0} be the zero extensions of v_{0} and f_{0} on \mathbb{R}^{2}, respectively, and define v by

$$
v(x)=\sum_{k \in \mathbb{Z}} \tilde{v}_{0}\left(x-a k \boldsymbol{e}_{1}\right) .
$$

Then $v \in C_{p e r, 0}^{\infty}$ and

$$
\operatorname{div} v(x)=\sum_{k \in \mathbb{Z}} \operatorname{div} \tilde{v}_{0}\left(x-a k \boldsymbol{e}_{1}\right)=\sum_{k \in \mathbb{Z}} \tilde{f}_{0}\left(x-a k \boldsymbol{e}_{1}\right) .
$$

For $x \in \Omega_{a} \cap G_{1}$, we have

$$
\sum_{k \in \mathbb{Z}} \tilde{f}_{0}\left(x-a k \boldsymbol{e}_{1}\right)=\sum_{j=1,2, k \in \mathbb{Z}} \phi_{j, k}\left(x_{1}\right) f_{0}\left(x-a k \boldsymbol{e}_{1}\right)=\sum_{j=1,2} \phi_{j, 0}\left(x_{1}\right) f(x)=f(x) .
$$

Furthermore, for $x \in\left[\frac{a}{4}, \frac{3}{4} a\right) \times(0,1)$, we have

$$
\sum_{k \in \mathbb{Z}} \tilde{f}_{0}\left(x-a k \boldsymbol{e}_{1}\right)=\sum_{j=1,2, k \in \mathbb{Z}} \phi_{j, k}\left(x_{1}\right) f\left(x-a k \boldsymbol{e}_{1}\right)=\phi_{2,0}\left(x_{1}\right) f(x)=f(x),
$$

and, for $x \in\left[\frac{3}{4} a, a\right) \times(0,1)$, we have

$$
\begin{aligned}
\sum_{k \in \mathbb{Z}} \tilde{f}_{0}\left(x-a k \boldsymbol{e}_{1}\right) & =\sum_{j=1,2, k \in \mathbb{Z}} \phi_{j, k}\left(x_{1}\right) f_{0}\left(x-a k \boldsymbol{e}_{1}\right) \\
& =\phi_{1,1}\left(x_{1}\right) f\left(x-a \boldsymbol{e}_{1}\right)+\phi_{2,0}\left(x_{1}\right) f(x) \\
& =\left(\phi_{1,1}\left(x_{1}\right)+\phi_{2,0}\left(x_{1}\right)\right) f(x)=f(x) .
\end{aligned}
$$

We thus conclude that $\operatorname{div} v(x)=f(x)$ for $x \in \Omega_{a}$. Moreover,

$$
\|\nabla v\|_{L^{2}\left(\Omega_{a}\right)} \leq 2\left\|\nabla v_{0}\right\|_{L^{2}\left(Q_{0}\right)} \leq 2 C\|f\|_{L^{2}\left(\Omega_{a}\right)} .
$$

We next consider the case $f=\operatorname{div} \boldsymbol{g}$ with $\boldsymbol{g}={ }^{\top}\left(g_{1}, g_{2}\right), g_{j} \in C_{p e r}^{\infty}\left(\bar{\Omega}_{a}\right)(j=1,2)$ and $\operatorname{div} \boldsymbol{g} \in C_{p e r, 0}^{\infty}\left(\Omega_{a}\right)$. Following the proofs of [3, Lemma III. 3.5] and [3, Theorem III.3.3], one can show that v_{0} satisfies

$$
\begin{gathered}
\left\|v_{0}\right\|_{L^{2}\left(Q_{0}\right)} \leq C\|\boldsymbol{g}\|_{L^{2}\left(Q_{0}\right)} \leq C\|\boldsymbol{g}\|_{L^{2}\left(\Omega_{a}\right)} \\
\left\|\nabla v_{0}\right\|_{L^{2}\left(Q_{0}\right)} \leq C\left\|f_{0}\right\|_{L^{2}\left(Q_{0}\right)} \leq C\|\operatorname{div} \boldsymbol{g}\|_{L^{2}\left(\Omega_{a}\right)} .
\end{gathered}
$$

It then follows that

$$
\begin{gathered}
\|v\|_{L^{2}\left(\Omega_{a}\right)} \leq C\|\boldsymbol{g}\|_{L^{2}\left(\Omega_{a}\right)}, \\
\|\nabla v\|_{L^{2}\left(\Omega_{a}\right)} \leq C\|\operatorname{div} \boldsymbol{g}\|_{L^{2}\left(\Omega_{a}\right)} .
\end{gathered}
$$

This completes the proof.

8 Proof of Proposition 5.3 (i)

In this section we will give a proof of Proposition 5.3 (i). We denote $\tilde{L}_{\eta, k}$ and $\tilde{L}_{\eta, k}^{*}$ with $k=+1$ by $L(\alpha)$ and $L(\alpha)^{*}$. Then $L(\alpha)$ is expanded as

$$
L(\alpha)=L^{(0)}+\alpha L^{(1)}+\alpha^{2} L^{(2)},
$$

where

$$
\begin{gathered}
L^{(0)}=\left(\begin{array}{ccc}
0 & 0 & \gamma^{2} \partial_{x_{2}} \\
-\frac{\nu}{\gamma^{2}} & -\nu \partial_{x_{2}}^{2} & \partial_{x_{2}} v_{s}^{1} \\
\partial_{x_{2}} & 0 & -(\nu+\tilde{\nu}) \partial_{x_{2}}^{2}
\end{array}\right), \\
L^{(1)}=\left(\begin{array}{ccc}
i v_{s}^{1} & i \gamma^{2} & 0 \\
i & i v_{s}^{1} & -i \tilde{\nu} \partial_{x_{2}} \\
0 & -i \tilde{\nu} \partial_{x_{2}} & i v_{s}^{1}
\end{array}\right), \\
L^{(2)}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \nu+\tilde{\nu} & 0 \\
0 & 0 & \nu
\end{array}\right) .
\end{gathered}
$$

Similarly, $L(\alpha)^{*}$ is expanded as

$$
L(\alpha)^{*}=L^{(0) *}+\alpha L^{(1) *}+\alpha^{2} L^{(2) *},
$$

where

$$
\begin{gathered}
L^{(0) *}=\left(\begin{array}{ccc}
0 & -\nu & -\gamma^{2} \partial_{x_{2}} \\
0 & -\nu \partial_{x_{2}}^{2} & 0 \\
-\partial_{x_{2}} & \partial_{x_{2}} v_{s}^{1} & -(\nu+\tilde{\nu}) \partial_{x_{2}}^{2}
\end{array}\right), \\
L^{(1) *}=\left(\begin{array}{ccc}
-i v_{s}^{1} & -i \gamma^{2} & 0 \\
-i & -i v_{s}^{1} & -i \tilde{\nu} \partial_{x_{2}} \\
0 & -i \tilde{\nu} \partial_{x_{2}} & -i v_{s}^{1}
\end{array}\right), \\
L^{(2) *}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \nu+\tilde{\nu} & 0 \\
0 & 0 & \nu
\end{array}\right) .
\end{gathered}
$$

Lemma 8.1. There exists a positive number r_{1} such that if $\alpha \leq r_{1}$, then $V_{ \pm}$and $V_{ \pm}^{*}$ given in section 5.1 are represented as

$$
V_{+}(x)=\left(v^{(0)}\left(x_{2}\right)+\alpha v^{(1)}\left(x_{2}\right)+O\left(\alpha^{2}\right)\right) e^{i \alpha x_{1}}, \quad V_{-}=\overline{V_{+}},
$$

$$
V_{+}^{*}(x)=\frac{\alpha}{2 \pi}\left(v^{(0) *}\left(x_{2}\right)+\alpha v^{(1) *}\left(x_{2}\right)+O\left(\alpha^{2}\right)\right) e^{i \alpha x_{1}}, \quad V_{-}^{*}=\overline{V_{+}^{*}},
$$

where $v^{(0)}={ }^{\top}\left(\phi^{(0)}, w^{(0), 1}, 0\right)$ with

$$
\phi^{(0)}=1, \quad w^{(0), 1}=\frac{1}{2 \gamma^{2}}\left(-x_{2}^{2}+x_{2}\right),
$$

$v^{(1)}={ }^{\top}\left(\phi^{(1)}, w^{(1), 1}, w^{(1), 2}\right)$ with

$$
\begin{aligned}
\phi_{1}^{(1)}\left(x_{2}\right)= & -i\left(\frac{\nu}{\gamma^{2}}+\frac{\tilde{\nu}}{2 \gamma^{2}}\right)\left(-x_{2}^{2}+x_{2}-\frac{1}{6}\right), \\
w_{1}^{(1), 1}\left(x_{2}\right)= & -i\left(\frac{\nu}{\gamma^{4}}+\frac{\tilde{\tilde{v}}}{2 \gamma^{4}}\right)\left(\frac{1}{12} x_{2}^{4}-\frac{1}{6} x_{2}^{3}+\frac{1}{12} x_{2}^{2}\right) \\
& -\frac{i}{12 \nu \gamma^{2}}\left(\frac{1}{30} x_{2}^{6}-\frac{1}{10} x_{2}^{5}+\frac{1}{12} x_{2}^{4}-\frac{1}{60} x_{2}\right)-\frac{i}{2 \nu}\left(-x_{2}^{2}+x_{2}\right), \\
w_{1}^{(1), 2}\left(x_{2}\right)= & -\frac{i}{\gamma^{2}}\left(-\frac{1}{3} x_{2}^{3}+\frac{1}{2} x_{2}^{2}-\frac{1}{6} x_{2}\right),
\end{aligned}
$$

$v^{(0) *}={ }^{\top}\left(\phi^{(0) *}, 0,0\right)$ with $\phi^{(0) *}=\gamma^{2}$, and $v^{(1) *}={ }^{\top}\left(\phi^{(1) *}, w^{(1), 1 *}, w^{(1), 2 *}\right)$ with

$$
w^{(1), 1 *}=\frac{i \gamma^{2}}{2 \nu}\left(-x_{2}^{2}+x_{2}\right) .
$$

Remark 8.2. Note that we will not use the explicit form of $\phi^{(1) *}$ and $w^{(1), 2 *}$.
Proof. We see from [8, Lemma 5.1] that $v^{(0)}$ and $v^{(0) *}$ are eigenfunctions for eigenvalue 0 of $-L^{(0)}$ and $-L^{(0) *}$, respectively, and the corresponding eigenprojections $\Pi^{(0)}$ and $\Pi^{(0) *}$ are given by

$$
\Pi^{(0)} u=\left\langle\left\langle u, v^{(0) *}\right\rangle\right\rangle v^{(0)}, \quad \Pi^{(0) *} u=\left\langle\left\langle u, v^{(0)}\right\rangle\right\rangle v^{(0) *} .
$$

Let P_{α} be the eigenprojection for λ_{α}. Then

$$
P_{\alpha}=\Pi^{(0)}-\alpha\left(S L^{(1)} \Pi^{(0)}+\Pi^{(0)} L^{(1)} S\right)+O\left(\alpha^{2}\right)
$$

where $S=\left[\left(I-\Pi^{(0)}\right) L^{(0)}\left(I-\Pi^{(0)}\right)\right]^{-1}$. Set $v_{+1}=P_{\alpha} v^{(0)}$. We see that v_{+1} is an eigenfunction for λ_{α} and

$$
v_{+1}=v^{(0)}-\alpha S L^{(1)} v^{(0)}+O\left(\alpha^{2}\right)
$$

Therefore, setting $v^{(1)}=-S L^{(1)} v^{(0)}$, we have the desired expression of $v^{(1)}$ from $[8$, Proposition 6.5], where $S L^{(1)} v^{(0)}$ is computed.

As for V_{+}^{*}, let P_{α}^{*} be the eigenprojection for $\lambda_{\alpha}^{*}=\overline{\lambda_{\alpha}}$. Then

$$
P_{\alpha}^{*}=\Pi^{(0) *}-\alpha\left(S^{*} L^{(1) *} \Pi^{(0) *}+\Pi^{(0) *} L^{(1) *} S^{*}\right)+O\left(\alpha^{2}\right),
$$

where $S^{*}=\left[\left(I-\Pi^{(0) *}\right) L^{(0) *}\left(I-\Pi^{(0) *}\right)\right]^{-1}$. Set $\tilde{v}_{+1}^{*}=P_{\alpha}^{*} v^{(0) *}$. Then \tilde{v}_{+1}^{*} is an eigenfunction for λ_{α}^{*} and

$$
\tilde{v}_{+1}^{*}=v^{(0) *}-\alpha S^{*} L^{(1) *} v^{(0) *}+O\left(\alpha^{2}\right) .
$$

Let us compute $\tilde{v}^{(1) *}=-S^{*} L^{(1) *} v^{(0) *}$ which is the solution of

$$
L^{(0) *} u=-\left(I-\Pi^{(0) *}\right) L^{(1) *} v^{(0) *}, \quad\left\langle\left\langle u, v^{(0)}\right\rangle\right\rangle=0 .
$$

By [8, Proposition 6.3], we have $\left\langle\left\langle L^{(1)} v^{(0)}, v^{(0) *}\right\rangle\right\rangle=\frac{i}{6}$, and hence,

$$
\Pi^{(0) *} L^{(1) *} v^{(0) *}=\left\langle\left\langle L^{(1) *} v^{(0) *}, v^{(0)}\right\rangle\right\rangle v^{(0) *}=\overline{\left\langle\left\langle L^{(1)} v^{(0)}, v^{(0) *}\right\rangle\right\rangle} v^{(0) *}=-\frac{i}{6} v^{(0) *} .
$$

We set $f={ }^{\top}\left(f^{0 *}, f^{1 *}, f^{2 *}\right)=-\left(I-\Pi^{(0) *}\right) L^{(1) *} v^{(0) *}$. By a direct computation we have

$$
f^{0 *}=i \gamma^{2} v_{s}^{1}-\frac{i}{6} \gamma^{2}, \quad f^{1 *}=i \gamma^{2}, \quad f^{2 *}=0
$$

It then follows that

$$
\begin{equation*}
\partial_{x_{2}}^{2} w^{1}=-\frac{i \gamma^{2}}{\nu},\left.\quad w^{1}\right|_{x_{2}=0,1}=0 \tag{8.1}
\end{equation*}
$$

This gives $w^{1}=\frac{i \gamma^{2}}{2 \nu}\left(-x_{2}^{2}+x_{2}\right)$, and then w^{2} and ϕ are given by

$$
\begin{gather*}
\partial_{x_{2}} w^{2}=-\frac{1}{\gamma^{2}}\left(\nu w^{1}+f^{0 *}\right), \tag{8.2}\\
\partial_{x_{2}} \phi=\left(\partial_{x_{2}} v_{s}^{1}\right) w^{1}-(\nu+\tilde{\nu}) \partial_{x_{2}}^{2} w^{2}, \quad \int_{0}^{1} \phi d x_{2}=-\gamma^{2}\left(w^{1}, w^{(0), 1}\right) .
\end{gather*}
$$

Since $\left\langle\left\langle v^{(1)}, v^{(0) *}\right\rangle\right\rangle=\left\langle\left\langle\tilde{v}^{(1) *}, v^{(0)}\right\rangle\right\rangle=0$, we have $\left\langle\left\langle v_{+1}, \tilde{v}_{+1}^{*}\right\rangle\right\rangle=1+O\left(\alpha^{2}\right)$. Therefore, setting $v_{+1}^{*}=\tilde{v}_{+1}^{*} / \overline{\left\langle\left\langle v_{+1}, \tilde{v}_{+1}^{*}\right\rangle\right\rangle}$, we have the desired result. This completes the proof.

We are now in a position to prove Proposition 5.3 (i).
Proof of Proposition 5.3 (i). By Lemma 8.1 and the relation that $-\partial_{x_{2}}^{2} w^{(0), 1}=$ $\frac{1}{\gamma^{2}} \phi^{(0)}$, we have

$$
\begin{aligned}
\llbracket K_{0} V_{1} \rrbracket_{1}= & \alpha^{2}\left\{\left(\partial_{x_{2}} w^{(0), 1}, i w^{(1), 2 *}\right)+\left(-\frac{i}{\gamma^{2}} \phi^{(1)}-i \partial_{x_{2}}^{2} w^{(1), 1}, i w^{(1), 1 *}\right)\right. \\
& \left.-2\left(i \partial_{x_{2}}^{2} w^{(1), 3}, i w^{(1), 2 *}\right)\right\}+O\left(\alpha^{3}\right) \\
= & \alpha^{2}\left\{-\left(w^{(0), 1}, i \partial_{x_{2}} w^{(1), 2 *}\right)-\left(\frac{i}{\gamma^{2}} \phi^{(1)}, i w^{(1), 1 *}\right)-\left(i w^{(1), 1}, i \partial_{x_{2}}^{2} w^{(1), 1 *}\right)\right. \\
& \left.+2\left(i \partial_{x_{2}} w^{(1), 2}, i \partial_{x_{2}} w^{(1), 2 *}\right)\right\}+O\left(\alpha^{3}\right)
\end{aligned}
$$

By using (8.1), (8.2) and Lemma 8.1, we find that

$$
\llbracket K_{0} V_{1} \rrbracket_{1}=\frac{\alpha^{2}}{12 \nu^{2}}\left\{\left(\frac{1}{280}-\gamma^{2}\right)+\frac{\nu^{2}}{10 \gamma^{2}}\right\}+O\left(\alpha^{3}\right)>0
$$

for $\alpha \ll 1$. This completes the proof.
Acknowledgements. Y. Kagei was partly supported by JSPS KAKENHI Grant Number 24340028, 22244009, 24224003 15K13449.

References

[1] M. Bause, J. G. Heywood, A. Novotny and M. Padula, An iterative scheme for steady compressible viscous flow, modified to treat large potential forces, in Mathematical Fluid Mechanics, Recent results and open questions, ed. by J. Neustupa, P. Penel, Birkhäuser, Basel (2001), pp. 27-46.
[2] M. E. Bogovskii, Solution of the first boundary value problem for an equation of continuity of an incompressible medium, Soviet Math. Dokl., 20 (1979), pp. 1094-1098.
[3] G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Vol. 1, Springer-Verlag, New York (1994).
[4] J. G. Heywood and M. Padula, On the steady transport equation, in Fundamental Directions in Mathematical Fluid Mechanics, ed. by G. P. Galdi, J. G. Heywood, R, Rannacher, Birkhäuser, Basel (2000), pp. 149-170.
[5] J. G. Heywood and M. Padula, On the existence and uniqueness theory for steady compressible viscous flow, in Fundamental Directions in Mathematical Fluid Mechanics, ed. by G. P. Galdi, J. G. Heywood, R, Rannacher, Birkhäuser, Basel (2000), pp. 171-189.
[6] G. Iooss and M. Padula, Structure of the linearized problem for compressible parallel fluid flows, Ann. Univ. Ferrara, Sez. VII, 43 (1998), pp. 157-171.
[7] Y. Kagei, Asymptotic behavior of solutions to the compressible Navier-Stokes equation around a parallel flow, Arch. Rational Mech. Anal., 205 (2012), pp. 585-650.
[8] Y. Kagei and T. Nishida, Instability of plane Poiseuille flow in viscous compressible gas, J. Math. Fluid Mech., 17 (2015), pp. 129-143.
[9] S. A. Orszag, Accurate solution of the Orr-Sommerfeld stability equation, J. Fluid Mech., 50 (1971), pp. 689-703.
[10] T. Nishida, M. Padula and Y. Teramoto, Heat convection of compressible viscous fluids: I, J. Math. Fluid Mech., 15 (2013), pp. 525-536.
[11] T. Nishida, M. Padula and Y. Teramoto, Heat convection of compressible viscous fluids. II, J. Math. Fluid Mech., 15 (2013), pp. 689-700.
[12] A. Matsumura and T. Nishida, Initial boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids. Comm. Math. Phys., 89 (1983) , pp. 445-464.
[13] H. Sohr, The Navier-Stokes equations: an elementary functional analytic approach, Birkhäuser, Basel (2001).

List of MI Preprint Series, Kyushu University
 The Global COE Program Math-for-Industry Education \& Research Hub

MI
MI2008-1 Takahiro ITO, Shuichi INOKUCHI \& Yoshihiro MIZOGUCHI
Abstract collision systems simulated by cellular automata
MI2008-2 Eiji ONODERA
The intial value problem for a third-order dispersive flow into compact almost Hermitian manifolds

MI2008-3 Hiroaki KIDO
On isosceles sets in the 4-dimensional Euclidean space
MI2008-4 Hirofumi NOTSU
Numerical computations of cavity flow problems by a pressure stabilized characteristiccurve finite element scheme

MI2008-5 Yoshiyasu OZEKI
Torsion points of abelian varieties with values in nfinite extensions over a p-adic field
MI2008-6 Yoshiyuki TOMIYAMA
Lifting Galois representations over arbitrary number fields
MI2008-7 Takehiro HIROTSU \& Setsuo TANIGUCHI
The random walk model revisited
MI2008-8 Silvia GANDY, Masaaki KANNO, Hirokazu ANAI \& Kazuhiro YOKOYAMA
Optimizing a particular real root of a polynomial by a special cylindrical algebraic decomposition

MI2008-9 Kazufumi KIMOTO, Sho MATSUMOTO \& Masato WAKAYAMA
Alpha-determinant cyclic modules and Jacobi polynomials
MI2008-10 Sangyeol LEE \& Hiroki MASUDA
Jarque-Bera Normality Test for the Driving Lévy Process of a Discretely Observed Univariate SDE

MI2008-11 Hiroyuki CHIHARA \& Eiji ONODERA
A third order dispersive flow for closed curves into almost Hermitian manifolds
MI2008-12 Takehiko KINOSHITA, Kouji HASHIMOTO and Mitsuhiro T. NAKAO
On the L^{2} a priori error estimates to the finite element solution of elliptic problems with singular adjoint operator

MI2008-13 Jacques FARAUT and Masato WAKAYAMA
Hermitian symmetric spaces of tube type and multivariate Meixner-Pollaczek polynomials

Riemann zeta-values, Euler polynomials and the best constant of Sobolev inequality

MI2008-15 Takashi NAKAMURA

Some topics related to Hurwitz-Lerch zeta functions
MI2009-1 Yasuhide FUKUMOTO
Global time evolution of viscous vortex rings
MI2009-2 Hidetoshi MATSUI \& Sadanori KONISHI
Regularized functional regression modeling for functional response and predictors

MI2009-3 Hidetoshi MATSUI \& Sadanori KONISHI

Variable selection for functional regression model via the L_{1} regularization
MI2009-4 Shuichi KAWANO \& Sadanori KONISHI
Nonlinear logistic discrimination via regularized Gaussian basis expansions

MI2009-5 Toshiro HIRANOUCHI \& Yuichiro TAGUCHII

Flat modules and Groebner bases over truncated discrete valuation rings
MI2009-6 Kenji KAJIWARA \& Yasuhiro OHTA
Bilinearization and Casorati determinant solutions to non-autonomous $1+1$ dimensional discrete soliton equations
MI2009-7 Yoshiyuki KAGEI
Asymptotic behavior of solutions of the compressible Navier-Stokes equation around the plane Couette flow

MI2009-8 Shohei TATEISHI, Hidetoshi MATSUI \& Sadanori KONISHI
Nonlinear regression modeling via the lasso-type regularization
MI2009-9 Takeshi TAKAISHI \& Masato KIMURA
Phase field model for mode III crack growth in two dimensional elasticity

MI2009-10 Shingo SAITO

Generalisation of Mack's formula for claims reserving with arbitrary exponents for the variance assumption

MI2009-11 Kenji KAJIWARA, Masanobu KANEKO, Atsushi NOBE \& Teruhisa TSUDA Ultradiscretization of a solvable two-dimensional chaotic map associated with the Hesse cubic curve

MI2009-12 Tetsu MASUDA
Hypergeometric τ-functions of the q-Painlevé system of type $E_{8}^{(1)}$
MI2009-13 Hidenao IWANE, Hitoshi YANAMI, Hirokazu ANAI \& Kazuhiro YOKOYAMA A Practical Implementation of a Symbolic-Numeric Cylindrical Algebraic Decomposition for Quantifier Elimination

MI2009-14 Yasunori MAEKAWA
On Gaussian decay estimates of solutions to some linear elliptic equations and its applications

MI2009-15 Yuya ISHIHARA \& Yoshiyuki KAGEI
Large time behavior of the semigroup on L^{p} spaces associated with the linearized compressible Navier-Stokes equation in a cylindrical domain

MI2009-16 Chikashi ARITA, Atsuo KUNIBA, Kazumitsu SAKAI \& Tsuyoshi SAWABE Spectrum in multi-species asymmetric simple exclusion process on a ring

MI2009-17 Masato WAKAYAMA \& Keitaro YAMAMOTO
Non-linear algebraic differential equations satisfied by certain family of elliptic functions

MI2009-18 Me Me NAING \& Yasuhide FUKUMOTO
Local Instability of an Elliptical Flow Subjected to a Coriolis Force
MI2009-19 Mitsunori KAYANO \& Sadanori KONISHI
Sparse functional principal component analysis via regularized basis expansions and its application

MI2009-20 Shuichi KAWANO \& Sadanori KONISHI
Semi-supervised logistic discrimination via regularized Gaussian basis expansions
MI2009-21 Hiroshi YOSHIDA, Yoshihiro MIWA \& Masanobu KANEKO
Elliptic curves and Fibonacci numbers arising from Lindenmayer system with symbolic computations

MI2009-22 Eiji ONODERA
A remark on the global existence of a third order dispersive flow into locally Hermitian symmetric spaces

MI2009-23 Stjepan LUGOMER \& Yasuhide FUKUMOTO
Generation of ribbons, helicoids and complex scherk surface in laser-matter Interactions

MI2009-24 Yu KAWAKAMI
Recent progress in value distribution of the hyperbolic Gauss map
MI2009-25 Takehiko KINOSHITA \& Mitsuhiro T. NAKAO
On very accurate enclosure of the optimal constant in the a priori error estimates for H_{0}^{2}-projection

MI2009-26 Manabu YOSHIDA
Ramification of local fields and Fontaine's property (Pm)
MI2009-27 Yu KAWAKAMI
Value distribution of the hyperbolic Gauss maps for flat fronts in hyperbolic threespace

MI2009-28 Masahisa TABATA
Numerical simulation of fluid movement in an hourglass by an energy-stable finite element scheme

MI2009-29 Yoshiyuki KAGEI \& Yasunori MAEKAWA
Asymptotic behaviors of solutions to evolution equations in the presence of translation and scaling invariance
MI2009-30 Yoshiyuki KAGEI \& Yasunori MAEKAWAOn asymptotic behaviors of solutions to parabolic systems modelling chemotaxis
MI2009-31 Masato WAKAYAMA \& Yoshinori YAMASAKIHecke's zeros and higher depth determinants
MI2009-32 Olivier PIRONNEAU \& Masahisa TABATA
Stability and convergence of a Galerkin-characteristics finite element scheme oflumped mass type
MI2009-33 Chikashi ARITAQueueing process with excluded-volume effect
MI2009-34 Kenji KAJIWARA, Nobutaka NAKAZONO \& Teruhisa TSUDA Projective reduction of the discrete Painlevé system of type $\left(A_{2}+A_{1}\right)^{(1)}$
MI2009-35 Yosuke MIZUYAMA, Takamasa SHINDE, Masahisa TABATA \& Daisuke TAGAMI Finite element computation for scattering problems of micro-hologram using DtN map
MI2009-36 Reiichiro KAWAI \& Hiroki MASUDA
Exact simulation of finite variation tempered stable Ornstein-Uhlenbeck processes
MI2009-37 Hiroki MASUDAOn statistical aspects in calibrating a geometric skewed stable asset price model
MI2010-1 Hiroki MASUDAApproximate self-weighted LAD estimation of discretely observed ergodic Ornstein-Uhlenbeck processes
MI2010-2 Reiichiro KAWAI \& Hiroki MASUDAInfinite variation tempered stable Ornstein-Uhlenbeck processes with discrete obser-vations
MI2010-3 Kei HIROSE, Shuichi KAWANO, Daisuke MIIKE \& Sadanori KONISHIHyper-parameter selection in Bayesian structural equation models
MI2010-4 Nobuyuki IKEDA \& Setsuo TANIGUCHI
The Itô-Nisio theorem, quadratic Wiener functionals, and 1-solitons
MI2010-5 Shohei TATEISHI \& Sadanori KONISHINonlinear regression modeling and detecting change point via the relevance vectormachine
MI2010-6 Shuichi KAWANO, Toshihiro MISUMI \& Sadanori KONISHISemi-supervised logistic discrimination via graph-based regularization
MI2010-7 Teruhisa TSUDAUC hierarchy and monodromy preserving deformation
MI2010-8 Takahiro ITO
Abstract collision systems on groups

MI2010-9 Hiroshi YOSHIDA, Kinji KIMURA, Naoki YOSHIDA, Junko TANAKA \& Yoshihiro MIWA
An algebraic approach to underdetermined experiments
MI2010-10 Kei HIROSE \& Sadanori KONISHI
Variable selection via the grouped weighted lasso for factor analysis models
MI2010-11 Katsusuke NABESHIMA \& Hiroshi YOSHIDA
Derivation of specific conditions with Comprehensive Groebner Systems
MI2010-12 Yoshiyuki KAGEI, Yu NAGAFUCHI \& Takeshi SUDOU
Decay estimates on solutions of the linearized compressible Navier-Stokes equation around a Poiseuille type flow

MI2010-13 Reiichiro KAWAI \& Hiroki MASUDA
On simulation of tempered stable random variates
MI2010-14 Yoshiyasu OZEKI
Non-existence of certain Galois representations with a uniform tame inertia weight
MI2010-15 Me Me NAING \& Yasuhide FUKUMOTO
Local Instability of a Rotating Flow Driven by Precession of Arbitrary Frequency
MI2010-16 Yu KAWAKAMI \& Daisuke NAKAJO
The value distribution of the Gauss map of improper affine spheres

MI2010-17 Kazunori YASUTAKE

On the classification of rank 2 almost Fano bundles on projective space
MI2010-18 Toshimitsu TAKAESU
Scaling limits for the system of semi-relativistic particles coupled to a scalar bose field

MI2010-19 Reiichiro KAWAI \& Hiroki MASUDA
Local asymptotic normality for normal inverse Gaussian Lévy processes with highfrequency sampling

MI2010-20 Yasuhide FUKUMOTO, Makoto HIROTA \& Youichi MIE
Lagrangian approach to weakly nonlinear stability of an elliptical flow
MI2010-21 Hiroki MASUDA
Approximate quadratic estimating function for discretely observed Lévy driven SDEs with application to a noise normality test

MI2010-22 Toshimitsu TAKAESU
A Generalized Scaling Limit and its Application to the Semi-Relativistic Particles System Coupled to a Bose Field with Removing Ultraviolet Cutoffs

MI2010-23 Takahiro ITO, Mitsuhiko FUJIO, Shuichi INOKUCHI \& Yoshihiro MIZOGUCHI Composition, union and division of cellular automata on groups

[^1]
MI2010-25 Toshimitsu TAKAESU
 On the Essential Self-Adjointness of Anti-Commutative Operators

MI2010-26 Reiichiro KAWAI \& Hiroki MASUDA
On the local asymptotic behavior of the likelihood function for Meixner Lévy processes under high-frequency sampling

MI2010-27 Chikashi ARITA \& Daichi YANAGISAWA
Exclusive Queueing Process with Discrete Time
MI2010-28 Jun-ichi INOGUCHI, Kenji KAJIWARA, Nozomu MATSUURA \& Yasuhiro OHTA Motion and Bäcklund transformations of discrete plane curves

MI2010-29 Takanori YASUDA, Masaya YASUDA, Takeshi SHIMOYAMA \& Jun KOGURE On the Number of the Pairing-friendly Curves

MI2010-30 Chikashi ARITA \& Kohei MOTEGI
Spin-spin correlation functions of the q-VBS state of an integer spin model
MI2010-31 Shohei TATEISHI \& Sadanori KONISHI
Nonlinear regression modeling and spike detection via Gaussian basis expansions
MI2010-32 Nobutaka NAKAZONO
Hypergeometric τ functions of the q-Painlevé systems of type $\left(A_{2}+A_{1}\right)^{(1)}$
MI2010-33 Yoshiyuki KAGEI
Global existence of solutions to the compressible Navier-Stokes equation around parallel flows

MI2010-34 Nobushige KUROKAWA, Masato WAKAYAMA \& Yoshinori YAMASAKI Milnor-Selberg zeta functions and zeta regularizations

MI2010-35 Kissani PERERA \& Yoshihiro MIZOGUCHI
Laplacian energy of directed graphs and minimizing maximum outdegree algorithms
MI2010-36 Takanori YASUDA
CAP representations of inner forms of $S p(4)$ with respect to Klingen parabolic subgroup

MI2010-37 Chikashi ARITA \& Andreas SCHADSCHNEIDER
Dynamical analysis of the exclusive queueing process
MI2011-1 Yasuhide FUKUMOTO\& Alexander B. SAMOKHIN
Singular electromagnetic modes in an anisotropic medium
MI2011-2 Hiroki KONDO, Shingo SAITO \& Setsuo TANIGUCHI
Asymptotic tail dependence of the normal copula
MI2011-3 Takehiro HIROTSU, Hiroki KONDO, Shingo SAITO, Takuya SATO, Tatsushi TANAKA \& Setsuo TANIGUCHI
Anderson-Darling test and the Malliavin calculus
MI2011-4 Hiroshi INOUE, Shohei TATEISHI \& Sadanori KONISHI
Nonlinear regression modeling via Compressed Sensing

MI2011-5 Hiroshi INOUE
Implications in Compressed Sensing and the Restricted Isometry Property
MI2011-6 Daeju KIM \& Sadanori KONISHI
Predictive information criterion for nonlinear regression model based on basis expansion methods

MI2011-7 Shohei TATEISHI, Chiaki KINJYO \& Sadanori KONISHI
Group variable selection via relevance vector machine
MI2011-8 Jan BREZINA \& Yoshiyuki KAGEI
Decay properties of solutions to the linearized compressible Navier-Stokes equation around time-periodic parallel flow
Group variable selection via relevance vector machine
MI2011-9 Chikashi ARITA, Arvind AYYER, Kirone MALLICK \& Sylvain PROLHAC Recursive structures in the multispecies TASEP

MI2011-10 Kazunori YASUTAKE
On projective space bundle with nef normalized tautological line bundle
MI2011-11 Hisashi ANDO, Mike HAY, Kenji KAJIWARA \& Tetsu MASUDA
An explicit formula for the discrete power function associated with circle patterns of Schramm type

MI2011-12 Yoshiyuki KAGEI
Asymptotic behavior of solutions to the compressible Navier-Stokes equation around a parallel flow

MI2011-13 Vladimír CHALUPECKÝ \& Adrian MUNTEAN
Semi-discrete finite difference multiscale scheme for a concrete corrosion model: approximation estimates and convergence

MI2011-14 Jun-ichi INOGUCHI, Kenji KAJIWARA, Nozomu MATSUURA \& Yasuhiro OHTA Explicit solutions to the semi-discrete modified KdV equation and motion of discrete plane curves

MI2011-15 Hiroshi INOUE
A generalization of restricted isometry property and applications to compressed sensing

MI2011-16 Yu KAWAKAMI
A ramification theorem for the ratio of canonical forms of flat surfaces in hyperbolic three-space

MI2011-17 Naoyuki KAMIYAMA
Matroid intersection with priority constraints
MI2012-1 Kazufumi KIMOTO \& Masato WAKAYAMA
Spectrum of non-commutative harmonic oscillators and residual modular forms
MI2012-2 Hiroki MASUDA
Mighty convergence of the Gaussian quasi-likelihood random fields for ergodic Levy driven SDE observed at high frequency

MI2012-3 Hiroshi INOUE
A Weak RIP of theory of compressed sensing and LASSO
MI2012-4 Yasuhide FUKUMOTO \& Youich MIE
Hamiltonian bifurcation theory for a rotating flow subject to elliptic straining field
MI2012-5 Yu KAWAKAMI
On the maximal number of exceptional values of Gauss maps for various classes of surfaces

MI2012-6 Marcio GAMEIRO, Yasuaki HIRAOKA, Shunsuke IZUMI, Miroslav KRAMAR, Konstantin MISCHAIKOW \& Vidit NANDA
Topological Measurement of Protein Compressibility via Persistence Diagrams
MI2012-7 Nobutaka NAKAZONO \& Seiji NISHIOKA
Solutions to a q-analog of Painlevé III equation of type $D_{7}^{(1)}$
MI2012-8 Naoyuki KAMIYAMA
A new approach to the Pareto stable matching problem
MI2012-9 Jan BREZINA \& Yoshiyuki KAGEI
Spectral properties of the linearized compressible Navier-Stokes equation around time-periodic parallel flow

MI2012-10 Jan BREZINA
Asymptotic behavior of solutions to the compressible Navier-Stokes equation around a time-periodic parallel flow

MI2012-11 Daeju KIM, Shuichi KAWANO \& Yoshiyuki NINOMIYA
Adaptive basis expansion via the extended fused lasso
MI2012-12 Masato WAKAYAMA
On simplicity of the lowest eigenvalue of non-commutative harmonic oscillators
MI2012-13 Masatoshi OKITA
On the convergence rates for the compressible
Navier- Stokes equations with potential force
MI2013-1 Abuduwaili PAERHATI \& Yasuhide FUKUMOTO
A Counter-example to Thomson-Tait-Chetayev's Theorem
MI2013-2 Yasuhide FUKUMOTO \& Hirofumi SAKUMA
A unified view of topological invariants of barotropic and baroclinic fluids and their application to formal stability analysis of three-dimensional ideal gas flows

MI2013-3 Hiroki MASUDA
Asymptotics for functionals of self-normalized residuals of discretely observed stochastic processes

MI2013-4 Naoyuki KAMIYAMA
On Counting Output Patterns of Logic Circuits
MI2013-5 Hiroshi INOUE
RIPless Theory for Compressed Sensing

MI2013-6 Hiroshi INOUE
Improved bounds on Restricted isometry for compressed sensing
MI2013-7 Hidetoshi MATSUI
Variable and boundary selection for functional data via multiclass logistic regression modeling

MI2013-8 Hidetoshi MATSUI
Variable selection for varying coefficient models with the sparse regularization
MI2013-9 Naoyuki KAMIYAMA
Packing Arborescences in Acyclic Temporal Networks
MI2013-10 Masato WAKAYAMA
Equivalence between the eigenvalue problem of non-commutative harmonic oscillators and existence of holomorphic solutions of Heun's differential equations, eigenstates degeneration, and Rabi's model

MI2013-11 Masatoshi OKITA
Optimal decay rate for strong solutions in critical spaces to the compressible NavierStokes equations

MI2013-12 Shuichi KAWANO, Ibuki HOSHINA, Kazuki MATSUDA \& Sadanori KONISHI Predictive model selection criteria for Bayesian lasso

MI2013-13 Hayato CHIBA
The First Painleve Equation on the Weighted Projective Space
MI2013-14 Hidetoshi MATSUI
Variable selection for functional linear models with functional predictors and a functional response

MI2013-15 Naoyuki KAMIYAMA
The Fault-Tolerant Facility Location Problem with Submodular Penalties
MI2013-16 Hidetoshi MATSUI
Selection of classification boundaries using the logistic regression
MI2014-1 Naoyuki KAMIYAMA
Popular Matchings under Matroid Constraints
MI2014-2 Yasuhide FUKUMOTO \& Youichi MIE
Lagrangian approach to weakly nonlinear interaction of Kelvin waves and a symmetrybreaking bifurcation of a rotating flow

MI2014-3 Reika AOYAMA
Decay estimates on solutions of the linearized compressible Navier-Stokes equation around a Parallel flow in a cylindrical domain

MI2014-4 Naoyuki KAMIYAMA
The Popular Condensation Problem under Matroid Constraints

MI2014-5 Yoshiyuki KAGEI \& Kazuyuki TSUDA
Existence and stability of time periodic solution to the compressible Navier-Stokes equation for time periodic external force with symmetry

MI2014-6 This paper was withdrawn by the authors.

MI2014-7 Masatoshi OKITA
On decay estimate of strong solutions in critical spaces for the compressible NavierStokes equations

MI2014-8 Rong ZOU \& Yasuhide FUKUMOTO
Local stability analysis of azimuthal magnetorotational instability of ideal MHD flows

MI2014-9 Yoshiyuki KAGEI \& Naoki MAKIO
Spectral properties of the linearized semigroup of the compressible Navier-Stokes equation on a periodic layer

MI2014-10 Kazuyuki TSUDA
On the existence and stability of time periodic solution to the compressible NavierStokes equation on the whole space

MI2014-11 Yoshiyuki KAGEI \& Takaaki NISHIDA
Instability of plane Poiseuille flow in viscous compressible gas
MI2014-12 Chien-Chung HUANG, Naonori KAKIMURA \& Naoyuki KAMIYAMA
Exact and approximation algorithms for weighted matroid intersection
MI2014-13 Yusuke SHIMIZU
Moment convergence of regularized least-squares estimator for linear regression model
MI2015-1 Hidetoshi MATSUI
Sparse regularization for multivariate linear models for functional data
MI2015-2 Reika AOYAMA \& Yoshiyuki KAGEI
Spectral properties of the semigroup for the linearized compressible Navier-Stokes equation around a parallel flow in a cylindrical domain

MI2015-3 Naoyuki KAMIYAMA
Stable Matchings with Ties, Master Preference Lists, and Matroid Constraints
MI2015-4 Reika AOYAMA \& Yoshiyuki KAGEI
Large time behavior of solutions to the compressible Navier-Stokes equations around a parallel flow in a cylindrical domain

MI2015-5 Kazuyuki TSUDA
Existence and stability of time periodic solution to the compressible Navier-StokesKorteweg system on R^{3}

MI2015-6 Naoyuki KAMIYAMA
Popular Matchings with Ties and Matroid Constraints

MI2015-7 Shoichi EGUCHI \& Hiroki MASUDA
Quasi-Bayesian model comparison for LAQ models
MI2015-8 Yoshiyuki KAGEI \& Ryouta OOMACHI
Stability of time periodic solution of the Navier-Stokes equation on the half-space under oscillatory moving boundary condition

MI2015-9 Yoshiyuki KAGEI \& Takaaki NISHIDA
Traveling waves bifurcating from plane Poiseuille flow of the compressible NavierStokes equation

[^0]: ${ }^{1}$ The definition of M in [8] should be corrected as the one defined in this paper; in [8], M is defined as $\mathrm{M}=\sqrt{P^{\prime}\left(\rho_{*}\right)} / V_{0}$; and, in [8, Remark 3.2], the value $\mathrm{M}=8 / \gamma=160$ should be corrected as $\mathrm{M}=1 /(8 \gamma)=2.5$ as in the example given here.

[^1]: MI2010-24 Toshimitsu TAKAESU
 A Hardy's Uncertainty Principle Lemma in Weak Commutation Relations of HeisenbergLie Algebra

