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Abstract We present a few computationally tractable models of finite-dimensional Reproducing
Kernel Hilbert Spaces (RKHS) that give a theoretical foundation of the techniques we have devel-
oped to solve several problems in computer graphics. The problems we deal with in this paper are
signal and geometry interpolation/extrapolation as well as solving an inverse problem in animation.
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1 Introduction

This section briefly describes a general regularization problem on a Reproducing Kernel Hilbert
Space (RKHS). In later sections, this general approach will give an alternative formulation to solve
several problems that we have encountered in computer graphics, such as [6, 12, 1, 3, 8].

The RKHS itself is a real-valued function space, and is denoted by H(Ω) or by H for short,
throughout this article. Typically Ω then means a domain in Rk or simply a finite set of num-
bers {1, 2, . . . , N}. In the case of Ω being the finite set, an element of H(Ω) simply means a vector
in RN . The RKHS H(Ω) is associated with its kernel function K. The kernel function K is a real-
valued function defined on Ω×Ω, and is a symmetric, positive semi-definite function. An RKHS is
prescribed completely with the kernel K, which in particular defines the norm of this special Hilbert
space.

Now we consider the following regularization problem in [13]:

min
f∈H


n

i=1

(Li(f)− yi)
2 + αf2K


(1)

where, for 1 ≤ i ≤ n, a real number yi ∈ R and a continuous linear functional Li : H → R are
given, and ·K denotes the norm of H induced by its kernelK. It was proved in [5] that there exists
a minimizer for the regularization problem in (1). In solving this problem for our practical purposes,
it is key to choose a good kernel function. This means to employ an appropriate RKHS, because, for
a given symmetric, positive semi-definite function K, we can construct an RKHS associated with
K.
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As a typical case, where Ω = Rk and Li(f) = f(xi) for given xi ∈ Ω (1 ≤ i ≤ n), we can derive
several types of splines from the above RKHS formulation. For k = 2, for example, the thin plate
spline is connected with the kernel K such that: K(x,y) = φ(x − y), where φ(r) = r2 log r
is called thin plate spline. More generally a rich class of radial basis functions (RBF) can also
be derived from the RKHS formulation, employing the Green’s function for various differential
operators.

Our focus in this article is on a finite-dimensional real-valued RKHS. We first deal with the case
where Ω = {1, 2, . . . , N}. Then the kernel function simply means a symmetric, positive semi-
definite matrix A and the RKHS is therefore the image of A, which is a linear subspace in RN :
A(RN ) := {Ax | x ∈ RN}. In our context, such as for direct manipulation blendshapes for
facial animation [3], the matrix A is the covariance matrix of given prior data. We will show that the
original formulation in [3] is reduced to solving the above regularization problem in the RKHS.

Another RKHS discussed in this article is a finite-dimensional function space, rather than a numer-
ical vector space. This will be used to explain a superresolution technique which is derived from
RBF regression in [8].

2 Mathematical background

In this section we briefly review the definitions and fundamental properties of RKHS (for reference
see [4, 11] or [1]).

Let Ω be an abstract set, and H(Ω) (H , for short) be a Hilbert space consisting of the real-valued
functions defined on Ω, with the inner product  , .

Definition 1 If the function K : Ω × Ω → R satisfies the following conditions1, K is called a
reproducing kernel of H:

1. For any fixed y ∈ Ω, K(x, y) belongs to H as a function of x.

2. For any f ∈ H , we have f(y) = f(x),K(x, y)x .

Definition 2 If Hilbert space H has the kernel K in Definition 1, then H is referred to as a repro-
ducing kernel Hilbert space (RKHS).

Proposition 1. For the reproducing kernel K, we have:

K(y, z) = K(x, y),K(x, z)x, (2)

for any y, z ∈ Ω.

Considering that the inner product in H(Ω) is a symmetric, bilinear form, we get the fundamental
property of the kernel K from the above proposition:

Proposition 2. Let K : Ω × Ω → R be the kernel function of RKHS H(Ω). Then K satisfies the
following properties:

1. K is symmetric: K(x, y) = K(y, x) for any x, y ∈ Ω.

1In condition 2, the inner product  , x means that we get the inner product value of the two functions with
variable x.
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2. K is positive semi-definite 2: For any n ∈ N, (x1, . . . , xn)
T ∈ Ωn and (a1, a2, . . . , an)

T ∈
Rn, we always have

n
i,j=1 aiajK(xi, xj) ≥ 0.

Conversely, if we are given a symmetric, positive semi-definite function K defined on Ω × Ω, the
following theorem holds:

Theorem 1. Suppose that K is a symmetric, positive semi-definite function on Ω × Ω. Then there
exists an RKHS H that has K as its reproducing kernel.

3 RKHS and Bayesian estimates

In this section we first describe the numerical vector space A(RN ) in section 1 as an RKHS. We
will thereafter see how the regularization problem for A(RN ) in section 1 is solved for learning
the prior data of facial animations in [3], where A is the covariance matrix. In this section we set
HA := A(RN ) = {Ax | x ∈ RN}.

3.1 HA as RKHS

We consider the case where Ω = {1, 2, . . . , N}. Any mapping: Ω×Ω → R can then be represented
as a matrix. Let A : Ω × Ω → R be a mapping which is symmetric, positive semi-definite in the
sense of Proposition 2 in section 2. This simply means that A is an N -th order positive semi-definite
symmetric matrix. Considering Theorem in section 2, we can make HA a computationally tractable
RKHS with the given matrix A as its kernel in the following way.

We first note that HA is endowed with an inner product  , , which is given by

f, g = (x, Ay), (3)

where f = Ax, g = Ay ∈ HA, and ( , ) denotes the usual inner product in RN . Actually HA

is a finite-dimensional linear subspace of RN . Let us then check the well-definedness of the above
inner product. Suppose that f = Ax1 = Ax2 and g = Ay1 = Ay2 ∈ HA. We then have:

(x1, Ay1) = (x1, Ay2) = (ATx1,y2)

= (Ax1,y2) = (Ax2,y2) = (x2, Ay2).

This means that the mapping  ,  : HA × HA → R is well-defined by (3). It is easy to see that
this mapping is symmetric, and bilinear. Further, since A is positive semi-definite, it follows that
f, f ≥ 0, for any f ∈ HA. We now denote


f, f by fA. Next we show that fA = 0, if

and only if f = 0. Denoting the rank of A by r, we first note that HA is a linear space spanned by
the eigenvectors ui of A, whose eigen values λi are positive:

f ∈ HA ⇔ f =

r
i=1

ciui, (4)

where λj > 0 for 1 ≤ j ≤ r, and λk = 0 for r < k ≤ N . We can then rewrite f by introducing λi,

f =

r
i=1

ciui =

r
i=1

ci
λi
Aui = A(

r
i=1

ci
λi
ui).

2In section 4 we also consider RKHS for a symmetric, positive definite function.
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According to (3), we thus have

f2A = (

r
i=1

ci
λi
ui , A(

r
j=1

cj
λj

uj))

= (

r
i=1

ci
λi
ui ,

r
j=1

cjuj) =

r
i=1

c2i
λi
. (5)

We note that equation (5) can be understood as the finite dimensional version of the Mercer’s theo-
rem. So any coefficient ci must be 0 (1 ≤ i ≤ r), if fA = 0. We have thus confirmed that the
mapping  ,  is the inner product of HA, and that  · A is its norm.

Since HA is finite-dimensional, it is easy to see that HA is a Hilbert space with the inner product
(3). Finally we see that the given matrix A is the kernel of HA. Let ei(1 ≤ i ≤ N) be the canonical
basis in RN , such that (ei, ej) = δij for 1 ≤ i, j ≤ N . The i-th column vector of A, denoted
also by A(·, i), is then given by Aei, which means that A satisfies condition 1 in Definition 1. Next
suppose that f = Ax ∈ HA, denoted as f = (f1, . . . , fN )T . According to the definition of the
inner product (3), it follows that

fi = (Ax, ei) = f,Aei = f,A(·, i)

This holds for 1 ≤ i ≤ N , which means that A satisfies condition 2 in Definition 1.

3.2 Regularization for direct manipulation blendshapes

Our blendshape facial model will be described with:

f = Bw + f0 (6)

where f is a 3n-dimensional vector containing the components of each of the n vertices or control
points on the face vectorized in some arbitrary order such as xyzxyzxyz... The matrix B ∈ R3n×m

contains the m delta blendshape targets b1,b2, . . . ,bm in its columns using the same component
ordering (see [9] for more details). w ∈ Rm are the blendshape weights, and f0 is the neutral shape
in similarly vectorized form. In the direct manipulation problem, the positions of one or several
vertices from f are constrained or partially constrained with a pin-and-drag operation by the artist.
We then denote a vector consisting of the position-constrained vertices by f for f in (6). From now
on, for an arbitrary 3n dimentional vector v, v means a vector consisting of the components of v that
have the same indices as those of the position-contrained vertices of f . More precisely, considering
(6), let fb = Bwb + f0 and fa = Bwa + f0, where fb is the face model before the constraints and
fa is the constrained result. In concept, we would like to solve the following problem:

min
∆f

L(∆f)−∆m2 (7)

where ∆f = fa − fb, ∆m is the differences of the vertex positions that are constrained by the
artist, and L is the projection that is defined as the diagonal matrix taking 1 as the components corre-
sponding to these constrained vertices. It can be recognized that this is a severely underconstrained
problem – for example, the artist may constrain only one or several vertices (with one vertex cor-
responding to three diagonal elements in L), whereas most diagonal elements in L may take 0. As
a solution to the direct manipulation problem, what we want to find is the weight wa, whereas the
weight wb is known in advance. To make it, we first solve the regularization problem regarding (7)
in the RKHS framework, where we find the minimizer f , rather than the weights. Once we find the
solution to this regularization problem, we can easily get the weights, as is described in [7, 3].
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3.2.1 Learned direct manipulation

A strong and flexible prior would be desired to regularize problem (7). Let us assume that the prior
training data are given, such as the face capture data. We then select the RKHS prior developed in
section 3.1, by choosing the kernel K as the covariance matrix A of the prior data:

A = E[(x− e0)(x− e0)
T ],

where each x is a face vector of the training data, and e0 means the mean shape of the face data.
Since a representation of the unknown function f in terms of the eigenvectors of A was made in
section 1, we will also explore this representation for the data-fitting term in equation (1). We will
see that this choice leads to a particularly simple solution to the direct manipulation problem.

3.2.2 RKHS for data + prior algorithm

To develop this data+prior approach to the direct manipulation problem, we start with a principal
component model. The PCA model will then be denoted

f = Uc+ e0 (8)

where U contains eigenvectors of the data covariance matrix A. The vector c in (8) will be referred
to as the coefficient vector of the eigenvectors (or the coefficients, for short) throughout this report.
In our context, we may assume that U = (u1,u2, . . . ,ur) is a 3n × r matrix containing only the
eigenvectors ui whose eigenvalue λi are all positive for 1 ≤ i ≤ r (thus r would be much smaller
than 3n in practice). In the following discussion we put U := (u1,u2, . . . ,ur).

Now let us denote the expansions of fa and fb in terms of the eigenvectors of A as fa = Uca + e0;
fb = Ucb+e0. Unlike [3], we do not assume that the coefficients ca and cb are zero-mean Gaussian.
Setting ∆f = fa − fb = U(ca − cb) = U∆c, we therefore formulate the problem for unknown
∆f (or ∆c), rather than for ca.

The direct manipulation problem regarding (8) can thus be interpreted through RKHS formulation.
Consider HA = A(R3n), where we wish to solve the following regularization problem:

min
∆f∈HA

L(∆f)−∆m2 + β∆f2A, (9)

where L(∆f) = U∆c in our context and  · A denotes the RKHS norm (5) for HA. This is
therefore equivalent to

min
∆c∈Rr

U∆c−∆m2 + β∆c2Λ (10)

where  ·  is the usual Euclidian norm and the second norm  · Λ is defined for y ∈ Rr as

y2Λ = yTΛ−1y, (11)

having Λ−1 as the r × r diagonal matrix whose diagonal element is λ−1
i for 1 ≤ i ≤ r. According

to section 1, the problem (9) is theoretically solvable and we can make it numerically regarding the
least square problem (10), as shown in [3].

4 RKHS for superresolution

In [8] we discussed RBF (radial basis function) regression of an exponential type. With the known
n training data points pk, we denote the data to be interpolated by a vector f0 = (f1, f2, . . . , fn)

T .
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We then assume that the RBF regression at a location p has the form f(p) =
n

k=1 wkG(p −
pk), where G() is a radial function of exponential type. So we want to decide the weights w =
(w1, w2, . . . , wn) such that f(pk) = fk for 1 ≤ k ≤ n. The n × n matrix G0, whose (i, j)
component given by Gij ≡ G(pi − pj), is positive definite, symmetric, and therefore invertible.
In matrix-vector notation, the regression can thus take the following form:

f(p) = rTw = rTG−1
0 f0, (12)

where r = (G(p− p1), G(p− p2), . . . , G(p− pn))T .

The superresolution technique in [8] is motivated by the above expression (12). Having a station-
ary stochastic process in mind, we now consider r as a vector of cross-covariances indexed by the
difference between the location p and the locations of the data points pi, instead of the r defined
above in (12), r = (C(p − p1), C(p − p2), . . . , C(p − pn))T . We also replace G0 by
a covariance matrix C0, whose (i, j) component is given by C(pi − pj). Assuming that the
covariance function C(∆) is known for all offsets ∆ and that C0 is invertible, we thus have the
following superresolution scheme:

f(p) = rTC−1
0 f0. (13)

This is an extension of the RBF regression (12) in that we can treat a wider class of the ”kernel”
functions (or the covariance functions) with (13). See [8] for numerical illustrations about this
extension.

In this section we will give an RKHS framework for this scheme.

4.1 Finite dimensional function space having a reproducing kernel

Let Hn(Ω) (Hn, for short) be a finite-dimensional real-valued function space, having {hi(p)}1≤i≤n

as its basis:

f ∈ Hn ⇔ f(p) =

n
i=1

wihi(p). (14)

where the coefficients {wi}1≤i≤n are uniquely determined according to the choice of the basis.

Suppose that an n × n positive definite symmetric matrix S is given, while denoting its (i, j) com-
ponent by sij : S ≡ [sij ]. Then, for any element f(p) =

n
i=1 wihi(p) in Hn, we define the norm

 · Hn with:

f2Hn
=


i,j

sijwiwj

≡ (w,Sw) (15)

where we put w = (w1, w2, . . . , wn)
T . We then note that putting hi,hjHn := sij induces the

inner product in Hn, which is denoted by  , Hn . We thus get the following (see [11]):

Proposition 3. Denoting S−1 by [tij ], let us define K : Ω× Ω → R as

K(p,q) :=

i,j

tijhi(p)hj(q). (16)

Then K is the reproducing kernel of Hn(Ω).
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Actually it is easy to see the above K in (16) satisfies conditions 1 and 2 in the definition of the
reproducing kernel (Definition 1 in section 2). For instance, we have, for any f ∈ Hn,

f ,K(·,q)Hn = 

i

wihi,

k

(

j

tkjhj(q))hkHn

=

i


j


k

witkjhi,hkHnhj(q)

=

i,j,k

witjkskihj(q)

=

i,j

wi(

k

tjkski)hj(q) =

i,j

wiδjihj(q)

=

i

wihi(q)

= f(q).

This means that the above K satisfies condition 2 in Definition 1.

Finally it should be noted that we can select an arbitrary positive definite symmetric matrix S for
the definition of  · Hn in (15) and therefore the kernel K in (16), independent of the choice of the
basis {hi(p)}1≤i≤n.

4.2 The finite dimensional RKHS for superresolution

We have shown that Hn(Ω) is a finite dimensional RKHS. A very nice feature of this formulation
is that, once we can specify the basis functions {hi(p)}1≤i≤n for a practical situation, the RKHS is
computationally tractable, so that we can numerically solve the regularization problem in section 1.

We now go back to the superresolution scheme (13), where we consider hi(p) := C(p − pi) for
1 ≤ i ≤ n, having Ω = Rk. We may assume that {hi(p)}1≤i≤n is a linearly independent system
with the covariance matrix C0 being invertible. This assumption is actually quite reasonable for
our practical situations in computer graphics (see [2, 8], for instance). We can therefore deal with a
variety of regularization problems on Hn. We may then have C0 as a choice of S in (15).

On one hand, when we consider only the regression problem in this section, it is easily solved in
Hn. This is because the condition

f(pi) ≡
n

j=1

wjhj(pi) = fi , for 1 ≤ i ≤ n

simply means that f0 = C0w, which leads to

f(p) =
n

j=1

wjhj(p) ≡
n

j=1

wjC(p− pj)

= rTw = rTC−1
0 f0.

This is equal to the superresolution form (13).
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5 Concluding remark

The general idea of formulating inverse problems as a sum of data and prior, or data and smoothness
terms, has been independently discovered in several different fields. There are both probabilistic
and deterministic formulations [10]. This paper describes a finite-dimensional RKHS framework
that can encompass both probabilistic (section 3.2.2) and deterministic (section 4.2) formulations
for regularizing an inverse problem.

The generality of this framework is illustrated by defining finite-dimensional RKHS formulations for
several example problems in computer graphics: signal and geometry interpolation/extrapolation,
and solving an inverse problem in animation. We are currently exploring further applications of
RKHS, such as those for rendering and texturing problems.
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