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Abstract This paper presents Active Comicing, a prototype sketching system that provides enhanced
frame interpolation capability for freehand drawing animation. In this system, the user draws sev-
eral 2D freeform strokes interactively on multiple frames, and the system automatically constructs
stroke-to-stroke interpolation frames. To compose a comprehensive and coherent least-distorting
interpolation, we assume input stroke has ghost points, which are additional points defined on stroke
edges, and define affine transformations. In addition, the system semi-automatically guides the tem-
plate motion of each stroke. For example, if the user draws an arrow, the system assigns the stroke
moves in the direction of the arrow. To assign template motion, we compute the stroke similarity
between the user’s input and stroke information from a database. With this method, it is possi-
ble to generate stroke animation on each frame without stroke interpolation. By combining these
techniques, the user can generate freehand animations easily and quickly.

Keywords: As-Rigid-As-Possible Stroke Interpolation, Stroke Matching, Interactive Drawing

1 Introduction

2D freehand animation enables viewers to intuitively experience artistry and feeling. Among these
techniques, GIF animation (e.g., LINE’s stamp and Twitter icon) has attracted worldwide attention in
social networks. To present a worldview using 2D freehand animation, anime-like techniques such
as flip books and motion comics are employed. However, the creation of 2D freehand animations
has always been a time-consuming and skill-demanding process. Software such as Adobe Photoshop
provides some assistance by creating animations from a small number of key frames and generating
in-between frames automatically. For example, animation software might deform a shape using
handles or transform simple geometric primitives. However, creating the numerous key-frames of
animation, such as those in a flip book, requires significant skill and time.

Conversely, the cartoon animation industry tends to shift traditional hand-drawn techniques to a
pipeline using parameterized 3D models. Although a 3D model technique reduces production costs,
this approach comes at the expense of well-established cartoon animation values, such as character
and expression. These models may diminish freedom, expressiveness, and the artist’s commitment
to the characters. It is difficult to parameterize the freedoms of pencil and paper. In short, many
amateur animators, including children, find it difficult to create freehand drawing animation.
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Our goal is to create new shape from freehand drawing 2D shapes, sketched onto a drawing interface.
In this paper, we present Active Comicing, a sketch-based interface that allows users to interpolate
freehand drawing strokes without a skeleton (i.e., graffiti animation). Figure 1 shows a freehand
stroke animation on a display-integrated tablet. Specifically, we have implemented a freehand stroke
interpolation method, based on As-Rigid-As-Possible Stroke Interpolation, which does not require
editing commands or special interaction modes. To address the vertex correspondence problem, in
which correspondence between input strokes must be established, our system constructs a simple
layer structure. To reduce the distortion of the in-between shapes, we compute the orientation in-
formation for stroke vertices (stroke triangulation). Moreover, this system allows users to edit the
animation path of each stroke using a template motion database. As a result, we can easily create a
simple 2D freehand drawing animation.

The reminder of this paper is organized as follows. Related works are reviewed in Section 2. We
discuss the user interface in Section 3, and describe the main ideas underlying the proposed method’s
algorithms in Section 4. In Section 5, we describe the implementation details of our prototype
system. We conclude the paper and discuss limitations and future work in Section 6.

Figure 1: Prototype drawing system with Active Comicing, on a display-integrated tablet.

2 Related Works

Recently, 3D computer graphics researchers have proposed generating 3D models from 2D draw-
ings. In particular, Teddy [1] inflates the stroke region surrounded by a silhouette. River et al. [2]
propose a method to create 2.5D models, which are hand-drawn illustration style models. Although
their method can automatically estimate the depth information of each polygon section, users must
configure Z-ordering and create each section from scratch. It is difficult to parameterize freehand
drawings created with pencil and paper.

Drawing is simple tool that reflects the artist’s creative sense. Pencil lines or brush coloring can
express rich emotions or subtle charms. Live2D [4] can create rich animations based on standard
linear interpolation (point-to-point interpolation) while keeping the original charms intact. However,
it is necessary to determine the character pose on the frame or redraw some or all of the strokes in
the model manually. In addition, significant time is required to create a mesh structure and edit mesh
deformations. Cambell [5] and Baxter [6] propose intuitive approaches, whereby line drawings are
interpolated in a pose-space with reduced dimensions. This method enables the subspace of a pose
to be browsed. Unfortunately, it is limited to line drawings with the same number of lines, and may
give unnatural results because curves are linearly interpolated.
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While physically based simulations such as the mass-spring model [7] can also be used for this
purpose, it tends to be slow and produces unstable shapes. Wang’s approach [8] enables image
deformation based on meshless rigid shape matching [10]. Moreover, Sykora et al. [12] apply this
approach to elasticity-inspired character registration. With this method, it is possible to register
images undergoing large free-form deformations and appearance variations. Unfortunately, they
cannot directly obtain pixel or sub-pixel precision, because they embed the image into a coarse
lattice. Although this method can apply a multi-scale extension, increasing the number of squares
makes the overall iterative process ineffective.

In shape interpolation research, As-Rigid-As-Possible Shape Interpolation approaches (ARAP) have
been studied [13][14][15][16][17][18]. These methods enable the volume of the stroke’s interior
to be maintained and produce more plausible animations by using triangle mesh structures. Fur-
thermore, Baxter [19] has extended this method to examples-way rigid interpolation. However, this
system uses polygonal boundary-based triangulation; that is, it focuses only on similarity shape
morphing. In addition, it is difficult to edit the mapping of each stroke. Alexa [23] propose lapla-
cian coordinate for shape interpolation; however, the morphing results have shirinkage. Sederberg
[26] exploits intrinsic blending on a basis of interpolating the respective vertex angles and edge
length. Moreover, Whited [27] develops BetweenIT, a technique for stroke interpolation from two
key frames. This technique combines stroke motions constructed from logarithmic spiral vertex tra-
jectories with stroke deformations based on curvature averaging and twisting warps. This system
provides a context in which the user can guide the system in a natural manner to produce quality re-
sults efficiently. However, this system only focuses on tight in-betweens, which are drawn between
two key frames that are very similar in shape.

Other approaches have processed more general shapes by considering deformations of a template
model. For example, Igarashi’s Spatial Keyframing [28] animates 3D objects composed of skele-
tons. Moreover, applying motion capture data to a single character image based on a skeleton has
been studied [29][30]. However, the range of deformation is limited with these approaches. In
addition, these approaches do not specify how handles should be interpolated to achieve plausible
interpolations. In contrast, Sumner’s [31] Mesh Inverse Kinematics system interpolates between
multiple meshes. However, a non-linear inverse kinematics approach is not browsed directly.

To summarize, previous animation techniques and tools have restrictions on the types of input strokes
that can be used for similarity stroke morphing, and it is necessary to redraw some or all of the
strokes in the model. Therefore, we propose a method to interpolate freehand-drawing strokes. The
proposed method is of great value, and can create a simple animation interactively.

Figure 2: System overview.
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3 User Interface

Active Comicing’s physical user interface utilizes traditional 2D input devices such as a standard
mouse and pen tablet. Figure 2 shows an overview of our system. In drawing mode, a user draws
several 2D freeform strokes interactively on some key frames. This system has various user drawing
functions such as image (e.g., jpg image file) loading functions and key frame copy function. The
user can also redraw some or all of the strokes on each frame. Moreover, using onion skinning,
the user can make decisions on how to create key frames based on the previous key frames in the
sequence.

A stroke consists of a sequence of points on the plane, which we call stoke vertices. The stroke
vertices are interpolated using a centripetal Catmull-Rom spline. In editing mode, the user can
transform the strokes to edit the xy-coordinate of each stroke vertex; this translation is performed
by dragging the mouse. The system automatically assigns labeling numbers (or layer number) to the
strokes on each key frame based on the stroke order. The input strokes on one frame spatially cor-
respond to those on another frame based on the labeling number; stroke-to-stroke correspondences
are defined. Moreover, the user can edit the layering order by dragging and dropping layers with the
mouse.

The user can easily generate a freehand stroke animation as a GIF image, using the provided anima-
tion timeline in animation mode.

4 Algorithm

In this section, we introduce the algorithm that creates the stroke animation between frames. As-
Rigid-As-Possible Stroke Interpolation is described in Section 4.1; template motion blending is dis-
cussed in Section 4.2.

4.1 Stroke Interpolation Method

To interpolate two frames, the corresponding strokes have to have the same number of stroke vertices.
The source strokes are first resampled to the number of target stoke vertices n equidistantly. Let
P = (p⃗0, · · · , p⃗n) be the source stroke and Q = (q⃗0, · · · , q⃗n) be the target stroke.

For 2D interpolation technique, Sederberg [25] proposes a solution to the vertex correspondence
problem, and the vertex path problem is dealt with in Sederberg [26] method, which interpolates
the edge lengths and the angles between consecutive edges of polygonal curves. To ensure these
blended strokes are closed without local self-intersection, they set to an equality constraint of the
end positions by tweaking the edge length only; however, the final morphing results are dependent
on the computation order of dihedral angels and edge length. Moreover, they cannot add some
constraints, and extend this method to an invariant interpolation under similarity transformation, i.e.,
rotation and scale. Most shape interpolation and deformation studies have focused on 2D or 3D
triangle mesh because the affine transformation of each triangle polygon can be computed easily.
However, this approaches focus only on triangle mesh structure and do not determine a vertex path
for stroke interpolation. Baxter et al. [19] apply a Delaunay triangulation to 2D stroke vertices,
and then deform the Delaunay triangles based on ARAP. Unfortunately, the Delaunay triangulation
approach is focused only on a closed stroke, and is less intuitive for interpolations between closed
strokes. Specifically, it is difficult to define an affine transformation based on the source and the
target stroke vertices only.
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Figure 3: Configuration of stroke, vertex (red) and ghost vertex (cyan).

Therefore, we assume that a each stroke vertex v⃗i has a ghost vertex v⃗ig ∈ R2, which is placed on a
certain distance along normal direction of each adjacent edge (as shown in Figure 3). Representing
the ghost vertex is mainly inspired by Umetani’s ghost point approach [32] and Sumner’s surface
tetrahedra [33]. Using the ghost vertex, we generate the triangles of the source and the target strokes
in order to compute a unique affine transformation of each edge. For the corresponding triangle in
each stroke shape, the system first computes the ghost vertex v⃗g of each stroke vertex (R90 denotes
rotation matrix by 90 degrees):

v⃗i
g = v⃗i +R90

(
⃗vi+1 − ⃗vi−1

2

)
(1)

where R90 =

(
0 −1
1 0

)

As the result, the source and the target stroke can consist of a chain of triangles. Then, we focus
on ARAP interpolation of local and global linear transformation. An affine mapping represented
by matrix A transforms the source into the target triangle. The matrix A is parameterized by time
t ∈ R such that A(0.0) = I (identity matrix) and A(1.0) = A. We next deal with the 2D in-
terpolation of the entire input strokes (the source and the target triangles). To compute a global
transformation Bi(t) based on local translation Ai(t), we use Kaji’s local error function using the
polar decomposition and the exponential map [16] as follows:

Ai(t) = Rt
θ · exp(t logS) (2)

ER
i (Ai(t), Bi(t)) = min

s,δ∈R
∥sRδAi(t)−Bi(t)∥2F (3)

where Rδ is a rotation matrix, and s is scale value. This equation measures how different Ai(t) and
Bi(t) are as affine transformations of ith triangle. With the local error functions for each triangle, we
combine them into a single global error function. If a local affine transformation can be formed by
reflections, we exclude an error value of local triangle distortion from the global error function. The
global error function is a positive definite quadratic form. Instead, in-between parameter t requires
the solution of a linear system of equations.

In addition, using the ghost vertex, we can unify the stroke’s global orientation into a counterclock-
wise orientation. We compute a sign area S as follows:

S =
1

2

∑
i

(vixv(i+1)y − v(i+1)xviy) (4)
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Figure 4: Comparison. (a) Intrinsic shape interpolation [26] with t = 0.5. (b) Laplacian
morphing [23]. (c) Our method.

This computation gives a positive signed area S for a simple stroke (non-self-intersecting polygon)
(S > 0) when the vertices are oriented counterclockwise around the polygon, and negative (S <
0) when oriented clockwise. However, this equation cannot be applied to complex strokes (self-
intersecting polygon). It is necessary to split the complex strokes into several simple strokes.

For interpolating the line weight and RGBA color information of each stroke, we used standard
linear interpolation. The system allows us to set the in-between parameter t for linear and interactive
interpolation of each stroke shape. The acceptability of the computation time depends on the shape
and the desired application. Figure 4 illustrates the resulting transformations from a source to a
target shape. For comparison, Figure 4(a) shows Sederberg’s method [26] of each vertex coordinate
with t = 0.5, and Figure 4(b) shows laplacian morphing method [23]. Our transformation (ARAP
with ghost vertex) is depicted in Figure 4(c). The results show that we have successfully reduced
distortions in stroke shape transformations. In addition, we can incorporate some constraints into
the global error function.

4.2 Template Motion Blending

In this section, we describe a method to animate strokes based on template effects, such as those in
Microsoft PowerPoint. The template effects consist of affine transformations (e.g., translation matrix
T , scaling matrix S, and rotation matrixR) and alpha blending.This system is formed with the origin
at the centroid vertices of each stroke. By setting the stroke motion matrix (e.g., the animation path),
we can interactively edit the results of the stroke animation.

In addition, we attempt to synthesize the template effects automatically. For example, when the
user draws an arrow shape, our system assigns the stroke moves in the direction of the arrow. First,
we assume that the user assigns the same effect to similar shape strokes. Therefore, we propose
a technique to compute the similarity between strokes, and recommend optimum template effects
based on the stroke database, which contains sets of stroke and template effect. We compute the
degree of similarity between the input stroke v⃗ and the database stroke d⃗, and present template
effects of highly similar strokes from the database. In image processing research, stroke similarity
has been proposed. Ip et al. [34] propose affine-invariant stroke features based on stroke area
and angle information. Because a single shape signature (in the form of a nineteenth-dimension
histogram) records the stroke area and angle information, their similarity between stroke shapes can
be computed efficiently using a signature difference. However, this approach, known as histogram
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intersection, does not consider stroke’s global orientation, and has difficulty representing complex
stroke shapes. Therefore, to compute stroke similarities, we use rigid shape matching [8] [10] based
on the centroid position of the input stroke ⃗vcm and the database stroke ⃗dcm. We define the quadratic
error function between the stroke vertices p⃗i(= v⃗i − ⃗vcm) and q⃗i(= d⃗i − ⃗dcm) as follows:

E =
∑
i

|p⃗i − sR · q⃗i|2 (5)

R = ApqS
−1 = Apq(

√
AT

pqApq)
−1

Apq =
∑
i

p⃗i · q⃗iT

where n is the number of stroke vertices, s is the normalized value (s =
∑

i |p⃗i|/|q⃗i|). The optimal
rotation R is the rotation portion of Apq = RS; we compute rotation matrix R = ApqS

−1, where
the symmetric portion is S =

√
AT

pqApq . The output value E provides the dissimilarity value
because the value tends to be smaller if two signatures are more similar. However, it is essential
to work to have the same number of vertices in a stroke. In this paper, the database strokes are
resampled to the number of input stoke vertices during pre-processing.

To evaluate the performance of our similarity for stroke retrieval, we perform an experiment. The
experiment is carried out to retrieve relevant strokes based on the users’ sketching of the desired
stroke with a stroke database of 20 strokes. The evaluation of the approach is based on retrieval
accuracy (precision rate). The stroke retrieval results are shown in Table 1. For comparison, we use
Ip’s affine-invariant histogram approach [34]. These results show that our similarity can determine
highly accurate animation template motions. Moreover, we add an editing function for relearning
moving guidance. By adding (k + 1)’s editing data (a set of stroke and template motion) to the
stroke databases, it is possible to obtain a more suitable optimum stroke motion.

Table 1: Stroke Classification Results

Number of strokes Our Approach (%) Ip et al. 2002 (%)
10 90.0 50.0
15 75.0 40.0
20 70.0 35.0

5 Implementation

Our prototype system is written using openFrameworks, an open source C++ toolkit. A 64bit Win-
dows PC (Intel R⃝CoreTM i7-3770 CPU@3.40GHz 8GB RAM; NVIDIA GeForce GT 620M 1GB)
is used. By drawing freehand strokes on some frames (maxnumber = 4), users can easily generate
animation. Although all results are generated at over 30.0 fps, it is difficult to accurately measure
the performance of each computation. Our results are presented in Figures 5 and 6.

The display-integrated tablet version of Active Comicing has been used to create different 2D free-
hand animations, mainly by computer graphics researchers and students. Our prototype system was
also evaluated by users who provided individual feedback: One user stated that the hand drawing
animation capabilities were more impressive and expressive than normal CG animation techniques.
Other users commented that they wanted to upload information results to LINE or Twitter, and that
the system could benefit from a more elastic function for editing stroke shapes. In the future, we
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Figure 5: Selected examples of deformable stroke animation, ‘muscle training,’ produced
by our technique. (a) t = 0.0 (b) t = 0.25 (c) t = 0.5 (d) t = 0.75 (e) t = 1.0.

Figure 6: Selected examples of deformable stroke animation, ‘girl’s looking back motion,’
produced by our technique. (a) t = 0.0 (b) t = 0.25 (c) t = 0.5 (d) t = 1.0.

plan to include shape deformation functions such as physical simulation in the user interface to create
richer animations.

6 Conclusions and Future works

We have presented a method to interpolate and animate freehand drawing strokes. The prototype
system, Active Comicing, enables the easy creation of simple 2D GIF animations. Moreover, the
results of the stroke animation can be edited according to user preferences by template effects. It is
assumed that the stroke similarity technique could also be applied to character recognition to help
users find and review required freehand information. We intend to apply the proposed approach to
character recognition.

In future work, we plan to increase the number of key-frame, e.g., multi-stroke morphing, and focus
on color interpolation, e.g., color model or gradient color. Moreover, we recognize that sampling
technique based on stroke shape will help users to create richer animations more efficiently. There-
fore, we intend to study these functions. Such functions are applicable to a wide range of situations
in anime production.
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