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Abstract. Finding linear classifiers that maximize AUC scores is im-
portant in ranking research. This is naturally formulated as a 1-norm
hard/soft margin optimization problem over pn pairs of p positive and n
negative instances. However, directly solving the optimization problems
is impractical since the problem size (pn) is quadratically larger than the
given sample size (p + n). In this paper, we give (approximate) reduc-
tions from the problems to hard/soft margin optimization problems of
linear size. First, for the hard margin case, we show that the problem is
reduced to a hard margin optimization problem over p + n instances in
which the bias constant term is to be optimized. Then, for the soft mar-
gin case, we show that the problem is approximately reduced to a soft
margin optimization problem over p+n instances for which the resulting
linear classifier is guaranteed to have a certain margin over pairs.

1 Introduction

Learning to rank has been one of the most active areas of research in machine
learning and information retrieval in the past decade, due to increasing demands
in, for example, recommendation tasks and financial risk analysis [5, 13, 8, 4,
21, 6, 19, 2, 14]. Among the problems related to learning to rank, the bipartite
ranking is a fundamental problem, which involves learning to obtain rankings
over positive and negative instances. More precisely, for a given sample consisting
of positive and negative instances, the goal of the bipartite ranking problem is to
find a real-valued function h, which is referred to as a ranking function, with the
following property: For a randomly chosen test pair of positive instance x+ and
negative instance x−, the ranking function h maps x+ to a higher value than
x− with high probability. Thus, a natural measure for evaluating the goodness
of ranking function h is the probability that h(x+) > h(x−), which we call the
AUC of h.

The bipartite ranking problem can be reduced to the binary classification
problem over a new instance space, consisting of all pairs (x+,x−) of positive
and negative instances. More precisely, the problem of maximizing the AUC is
equivalent to finding a binary classifier f of the form of f(x+,x−) = h(x+) −
h(x−) so that the probability that f(x+,x−) > 0 is maximized for a randomly
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chosen instance pair. Several studies including RankSVMs [13, 4] have taken this
approach with linear classifiers as the ranking functions. RankSVMs are justified
by generalization bounds [21, 2] which say that a large margin over pairs of
positive and negative instances in the sample implies a high AUC score under
the standard assumption that instances are drawn i.i.d. under the underlying
distribution.

The reduction approach, however, has a drawback that the sample con-
structed through the reduction is of size pn when the original sample consists of
p positive and n negative instances. This is a quadratic blowup in size.

In this paper, we formulate AUC maximization as 1-norm hard/soft margin
optimization problems1 over pn pairs of p positive and n negative instances. We
show some reduction schemes to 1-norm hard (or soft) margin optimization over
p+n instances which approximate the original problem over pairs. First, for the
hard margin case where the resulting linear classifer is supposed to classfiy all
pairs correctly by some positive margin, we show that the original problem over
pairs is equivalent to the 1-norm hard margin problem over p+n instances with
the bias term.

Second, for the soft margin case, in which the resulting classsfier is allowed to
misclassify a number of pairs, we show reduction methods to 1-norm soft margin
optimization over instances that are guaranteed to have a certain margin over
pairs of instance. When we solve the original problem over pairs, it can be shown
that for any ε s.t. 0 < ε < 1, the solution has a margin of least ρ∗ ≥ γ∗ over
at least (1 − ε)pn pairs, where ρ∗ and γ∗ are optimal solutions of the primal
and dual problems of the original problem. Note that the optimal solutions
ρ∗ and γ∗ depend on ε respectively. On the other hand, for an appropriate
parameter setting, one of our reduction methods guarantees that the resulting
classifier has a margof at least γ∗ for (1−

√
ε)2pn pairs. Note that, this guarantee

might be rather weak, since the guaranteed margin γ∗ is lower than the optimal
margin ρ∗ in general. However, if ρ∗ ≈ γ∗, say, when pairs are close to be
linearly separable, our theoretical guarantee becomes sharper. Also, theoretically
guaranteed reduction methods from AUCmaximization to classification are quite
meaningful since typical methods lack such properties.

We should note that our theoretical guarantee itself is not new. SoftRank-
Boost [15] is proved to have the same guarantee. But our reduction methods
and SoftRankBoost are totally different. SoftRankBoost is designed using the
smooth boosting framework [7, 23, 11, 12, 3]. On the other hand, our methods
are built from an optimization theoretic perspective and provide a much clearer
understanding for underlying optimization problems. In addition, our methods
motivate practical heuristics to further improve AUCs.

In experiments using artificial and real data, the practical heuristics derived
from the analysis achieve AUCs that are almost as high as the original soft

1 In this paper we refer to 1-norm soft margin optimization as a soft margin opti-
mization with 1-norm of the weight vector regularized. Note that sometimes the soft
margin optimization of SVMs with 1-norm of slack valuables optimized is also called
1-norm soft margin optimization.
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margin formulation over pairs while keeping the sample size linear. In addition,
our methods also outperform previous methods including RankBoost [8] and
SoftRankBoost.

There have been a number of studies in this field. Brefeld and Scheffer [4]
and Fung et al. [10] proposed reduction methods from RankSVMs or 2-norm
soft margin optimization over pairs to 2-norm soft margin optimization over
instances. Raykar et al. investigated similar problems in the logisitic regression
framework [18]. These reduction methods, however, do not have theoretical guar-
antees similar to ours. Further, these researches consider soft margin optimiza-
tion problems where 2-norm of the weight vector is regularized. On the other
hand, in our soft margin optimization, 1-norm of the weight vector is regular-
ized. So, the resulting weight vector tends to be sparse, which is useful for feature
selection. Freund et al proposed RankBoost [8], which is an efficient implemen-
tation of AdaBoost [9] over pairs of positive and negative instances and runs in
linear time for a given sample size. Rudin and Schapire further demonstrated
that under certain assumptions, AdaBoost is equivalent to RankBoost [21]. Since
AdaBoost is shown to have at least half of the maximum margin asymptotically
for the 1 norm hard margin optimization(see, e.g., [16, 17]), RankBoost and
AdaBoost also have large margins over pairs. Rudin also proposed the P-Norm
Push, which maximizes a criterion that assigns higher weights to rankings among
top instances [20].

2 Preliminaries

Let X+ and X− be the sets of positive instances and negative instances, respec-
tively. Let X = X+ ∪ X− be the instance space. A distribution D over X is
said to be nontrivial if D has non-zero probability over both positive and nega-
tive instances. Given a non-trivial distribution D, we denote D+ and D− as the
marginal distribution of D over positive and negative instances, respectively. A
ranking function h is any function from X to [−1,+1]. The AUC of hypothesis
h with respect to a non-trivial distribution D over X is given as

AUCD(h) = Pr
x+,x−∼D

{h(x+) > h(x−) | x+ ∈ X+,x− ∈ X−},

where each x+ and x− is drawn independently with respect to D.
Let S be a set of m(= p + n) instances drawn i.i.d. with respect to D,

which includes p positive instances and n negative instances, respectively. Let
S+ = {x+

1 , . . . ,x
+
p } and S− = {x−

1 , . . . ,x
−
n }, be the subsets of positive and

negative instances respectively.
Given ρ > 0, we define

AUCS,ρ(h) =

∑p
i=1

∑n
j=1 I(h(x

+
i )− h(x−

j ) ≥ ρ)

pn
,

where I(·) is the indicator function. The following theorem was presented by
Rudin and Schapire.
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Theorem 1 (Rudin and Schapire [21]) Let F be a set of ranking functions.
Then, for any ε > 0, ρ > 0, for any h ∈ F , the following holds

AUCD(h) ≥ AUCS,ρ(h)− ε (1)

with a probability of at least 1−2N
(
F , ρ

4

)
exp

{
−mε2E2

8

}
, where E is the expec-

tation of I(x+
i ∈ X+,x−

j ∈ X−) when x+
i and x−

j are drawn independently from
D, and N (F , ε) is the covering number of F , which is defined as the minimum
number of balls of radius ε needed to cover F using L∞ norm.

Here, note that the covering number is smaller if ρ is larger. So, a robust approach
to learn a hypothesis with high AUC is to enlarge AUCS,ρ(h) for some large ρ.

2.1 1-norm soft margin over pairs of positive and negative instances

In this paper, we assume a finite set H ={h1, h2, . . . , hN} of ranking functions,
which are functions from X to [−1,+1]. Our hypothesis class F is the set of
convex combination of ranking functions in H, i.e.,

F =

{
f
∣∣∣ f(x) = N∑

k=1

αkhk(x), hk ∈ H,
N∑

k=1

αk = 1, αk ≥ 0

}
.

Now, our goal is to find a linear combination of ranking functions f ∈ F that
has a large margin ρ over pairs of instances in S+ and S−.

More formally, we formulate our problem as optimizing the soft margin over
pairs of positive and negative instances. For convenience, for any q ≥ 1, let Pq

be the q-dimensional probability simplex, i.e., Pq = {p ∈ [0, 1]q |
∑

i pi = 1}.
Then, for positive and negative sets of instances S+ and S−, the set H of ranking
functions, and any fixed ν ∈ {1, . . . , pn}, the 1-norm soft margin optimization
problem is given as follows:

(ρ∗,α∗, ξ∗) = max
ρ,α,ξ

ρ− 1

ν

p∑
i=1

n∑
j=1

ξij (2)

sub.to∑
k

αk(hk(x
+
i )− hk(x

−
j ))/2 ≥ ρ− ξij (i = 1, . . . , p, j = 1, . . . , n),

α ∈ PN ,

ξij ≥ 0 (i = 1, . . . , p, j = 1, . . . , n).

In this problem, the goal is to maximize the margin ρ of the linear combination
α of ranking functions w.r.t. instances as well as to minimize the sum of “losses”
ξij , the quantity by which the target margin ρ is violated. Here ν ∈ {1, . . . , pn}
controls the tradeoff between the two objectives.
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Then, using Lagrangian multipliers, the dual problem is given as

(γ∗,d∗) =min
γ,d

γ (3)

sub.to∑
i,j

dij(hk(x
+
i )− hk(x

−
j ))/2 ≤ γ (k = 1, . . . , N),

0 ≤ dij ≤
1

ν
(i = 1, . . . , p, j = 1, . . . , n),

d ∈ Ppn.

Since the problem is a linear program, by duality, we have ρ∗ − 1
ν

∑
i,j ξ

∗
ij = γ∗.

Furthermore, by using KKT conditions, it can be shown that (see, e.g., [22,
24]), the optimal solution guarantees the number of pairs (x+

i ,x
−
j ) for which∑

k αk(hk(x
+
i ) − hk(x

−
j ))/2 ≤ ρ∗ is at most ν. In other words, setting f =∑

k=1 αkhk, we have that AUCS,ρ∗(f) is at least 1−ν/pn. Thus, solving 1-norm
soft margin optimization pairs is a quite natural approach for improving the
lower bound of AUCD(f).

3 1-norm hard margin optimization over pairs

In this section, we show the equivalence between two hard margin optimization
problems, the 1-norm hard margin problem over pairs and the 1-norm hard
margin problem with bias. The hard margin optimization problem is a special
case of the soft margin problem in that the resulting classifier or ranking function
is supposed to predict all the instances or pairs correctly with a positive margin.

The first problem we consider is the 1-norm hard margin optimization over
pairs of positive and negative instances.

max
ρ,α∈PN

ρ (4)

sub.to

N∑
k=1

αk(hk(x
+
i )− hk(x

−
j ))/2 ≥ ρ (i = 1, . . . , p, j = 1, . . . , n).

The second hard margin problem is the 1-norm hard margin optimization
with bias.
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max
ρ,α∈PN ,b

ρ (5)

sub.to

N∑
k=1

αkhk(x
+
i ) + b ≥ ρ (i = 1, . . . , p),

N∑
k=1

αkhk(x
−
j )) + b ≤ −ρ (j = 1, . . . , n).

In the following, we show that both of these problems are equivalent, in the
sense that we can construct an optimal solution of one problem from an optimal
solution of the other problem.

Theorem 2 Let (ρb,αb, bb) be an optimal solution of the 1-norm hard margin
optimization with bias (5). Then, (ρb,αb) is also an optimal solution of the
1-norm hard margin optimization over pairs (4).

Proof. Let (ρp,αp) be an optimal solution of the 1-norm hard margin optimiza-
tion over pairs. Clearly, (ρb,αb, bb) is a feasible solution of the 1-norm hard
margin optimization over pairs. So, ρb ≤ ρp. Next, we show that the opposite
is true. Let x+ and x− be positive and negative examples for which the margin
of αp is minimized. Note that for the pair (x+,x−) the constraint holds with
equality. Let

bp = −
∑

k αp,k(hk(x
+) + hk(x

−))

2
.

Then, (ρp,αp, bp) is a feasible solution of the 1-norm hard margin optimization
with bias. For any positive instance x+

i , observe that

N∑
k=1

αp,khk(x
+
i ) + bp =

N∑
k=1

αp,k
hk(x

+
i )− hk(x

−)

2
+

N∑
k=1

αp,k
hk(x

+
i )− hk(x

+)

2

≥ ρp +
N∑

k=1

αp,k
hk(x

+
i )− hk(x

−)− (hk(x
+)− hk(x

−))

2

≥ ρp + ρp − ρp = ρp.

A similar inequality holds for negative instances as well. Thus, we have ρp ≤ ρb.
ut

4 Reduction methods from 1-norm soft margin
optimization over pairs

In this section, we propose reduction methods from the 1-norm soft margin
optimization over pairs to that over instances.
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4.1 Our method

We would like to approximate the dual problem of the 1-norm soft margin opti-
mization over pairs (3). The dual problem is concerned with finding a distribution
over pn pairs of positive and negative instances satisfying the linear constraints.
Our key idea is to replace the distribution dij with a product distribution d+i d

−
j ,

where d+, d− are distributions over positive and negative instances, respectively.

Letting dij = d+i d
−
j , observe that

∑
i,j

dij
hk(x

+
i )− hk(x

−
j )

2
=

∑
i,j

d+i d
−
j

hk(x
+
i )− hk(x

−
j )

2

=

∑
i d

+
i hk(x

+
i )

∑
j d

−
j

2
−

∑
j d

−
j hk(x

−
j )

∑
i d

+
i

2

=
∑
i

d+i hk(x
+
i )/2−

∑
j

d−j hk(x
−
j )/2.

Then, we obtain the following problem.

min
d,γ

γ (6)

sub.to
p∑

i=1

d+i hk(x
+
i )/2−

n∑
j=1

d−j hk(x
−
j )/2 ≤ γ (k = 1, . . . , N),

d+ ∈ Pp,d
− ∈ Pn,

0 ≤ d+i d
−
j ≤ 1

ν
(i = 1, . . . , p, j = 1, . . . , n).

Since we restrict distributions to be products of two distributions, the optimal
solution yields a feasible solution of the original problem (2). This problem has
p + n + 1 variables, whereas the original problem has pn + 1 variables. So this
problem would be easier to solve. But, unfortunately, this problem is not convex
since the constraints d+i d

−
j ≤ 1/ν (i = 1, . . . , p, j = 1, . . . , n) are not convex.

Later herein, we propose a method by which to find a local minimum of
this non-convex problem (6). First, however, we show a restricted the problem,
the solution of which has a certain amount of margin over pairs. In order to
avoid non-convex constraints, we fix ν+ and ν− such that ν = ν+ν− and enforce
d+i ≤ 1/ν+ and d−j ≤ 1/ν−. Equivalently, we fix ν− = ν+/ν. As a result, we
obtain the following problem.
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γ̂(ν+) = min
d+,d−,γ

γ (7)

sub.to∑
i

d+i hk(x
+
i )/2−

∑
j

d−j hk(x
−
j )/2 ≤ γ (k = 1, . . . , N),

d+ ∈ Pp,d
− ∈ Pn,

d+i ≤ 1/ν+,

d−j ≤ 1/ν− = ν+/ν.

Note that if we optimize ν+, we obtain the minimum of problem (6), that is,
minν+ γ̂(ν+) = γ∗. Remember, however, that problem (6) is not convex w.r.t.
ν+ (see Fig. 1 for an example). Therefore, it is not straightforward to obtain the
optimum.

On the other hand, for any fixed choice of ν+ and ν−, we can guarantee that
the solution of problem (7) has a certain margin for several pairs.

Theorem 3 Given ν+ and ν−, the solution of problem (7) has a margin of at
least γ∗ for at least pn− ν+n− ν−p+ ν+ν− pairs.

Proof. Using Lagrangian multipliers, it can be shown that the dual problem of
(7) is as follows:

(ρ̂, α̂, b̂, ξ̂
+
, ξ̂

−
) = arg max

α∈PN ,b,ξ+
,ξ−

ρ− 1

2ν+

p∑
i=1

ξ+i − 1

2ν−

n∑
j=1

ξ−j (8)

sub.to

N∑
k=1

αk(hk(x
+
i ) + b ≥ ρ− ξ+i (i = 1, . . . , p),

−
N∑

k=1

αkhk(x
−
j )− b ≥ ρ− ξ−j (j = 1, . . . , n),

ξ+, ξ− ≥ 0.

By using the KKT conditions, ξ̂+i (d̂
+
i − 1/ν+) = 0. Therefore, if ξ̂+i > 0 then

d̂+i = 1/ν+. Similarly, if ξ̂−j > 0 then d̂−j = 1/ν−. Note that there are at most ν+

instances such that d̂+i = 1/ν+. This implies that there are at most ν+ instances

whose corresponding ξ̂+i > 0. Again, similarly, there are at most ν− instances

with ξ̂−j > 0. There are therefore, for at least (p−ν+)(n− ν−) pairs, the margin

of which is at least ρ̂. Finally, by duality, ρ̂− (1/ν+)
∑

i ξ̂
+
i − (1/ν−)

∑
j ξ̂

−
j = γ̂.

Combined with the fact that γ̂ ≥ γ∗, we have ρ̂ ≥ γ∗, which completes the
proof. ut
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We note that problem (8) in the proof is the primal form of the dual problem
(7). In particular, for the choice that ν = εpn, ν+ =

√
εp and ν− =

√
εn, we

obtain the following corollary.

Corollary 4 For ν = εpn, ν+ =
√
εp and ν− =

√
εn, a solution of problem (7)

has a margin of at least γ∗ for (1−
√
ε)2pn pairs.

Here, the lower bound ν/n of ν+ is given so that the upper bound of d−j is at

least 1/n. Note that, the area under the tangent line of d+i = 1/ν+ at ν∗ = ν+c is
always included in the area d+i ≤ 1/ν+. Thus, any feasible solution of problem
(9) is also a feasible solution of problem (6).

4.2 Practical Heuristics

Now we propose a practical method to find a local minimum of problem (6).
Recall that in problem (6), we have non-convex constraints d+i ≤ 1/ν+ when we
regard ν+ as a variable. In order to avoid non-convex constraints, we consider
a tangent line of 1/ν+ at some point ν+ = ν+c . More precisely, we consider the
following problem.

(γ̃, d̃+, d̃−, ν̃+) = arg min
γ,d+,d−,ν+

γ (9)

sub.to
p∑

i=1

d+i hk(x
+
i )/2−

n∑
j=1

d−j hk(x
−
j )/2 ≤ γ (k = 1, . . . , N),

d+ ∈ Pp,d
− ∈ Pn,

d+i ≤ − 1

(ν+c )2
ν+ +

2

ν+c
(i = 1, . . . , p),

d−j ≤ ν+

ν
(j = 1, . . . , n),

ν

n
≤ ν+ ≤ − (ν+c )

2

p
+ 2ν+c .

Here the lower bound ν/n of ν+ is added so that the upper bound of d−j is at

least 1/n. Also, the upper bound of ν+ is given so that the upper bound of d+i
is at least 1/p. Note that, the region under the tangent line of d+i = 1/ν+ at
ν∗ = ν+c is always contained in the region d+i ≤ 1/ν+. Thus, any feasible solution
of problem (9) is also a feasible solution of problem (6).

Now we are ready to describe our heuristics:

1. Given some ν+c , solve problem (9) and get a solution (γ̃, d̃+, d̃−, ν̃+).

2. Given ν+ = ν̃+, solve problem (7) and get a solution (γ̂, d̂+, d̂−).

Observe that the solution (γ̃, d̃+, d̃−) of problem (9) is a feasible solution of
problem (7) given ν+ = ν̃+. Thus, we have γ̂ ≤ γ̃. Furthermore, if we set
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Fig. 1. Illustration of the function γ̂(ν+) for an artificial data set.

0
0

1

d
i
+=1/ν+

ν+

d
i
+

ν+
1

ν+
2

Fig. 2. Illustration of the heuristics. Here ν+
1 = ν+

c and ν+
2 is the solution of problem

(9) given ν+
c .

ν+c = ν̂+, the solution (γ̂, d̂+, d̂−, ν̂+) is a feasible solution of problem (9), so
that the minimum γ̃′ of problem (9) satisfies γ̃′ ≤ γ̂. Therefore, by repeating
this procedure, we can obtain a monotonically decreasing sequence of γ, which
will converge to a local minimum of problem (6). In an algorithmic perspective,
the second step that solves problem (7) seems redundant. However, we add the
second step for numerical stability since problem (7) has simpler constraints.
Fig. 2 illustrates the heuristics.
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5 Experiments

In this section, we present preliminary experimental results. The data sets in-
clude artificial data sets, and real data sets from the UCI Machine Learning
Repository and Reuters.

5.1 Artificial Data

For the first experiment, we used artificial data sets with r-of-k threshold func-
tions as target functions. An r-of-k threshold function f overN Boolean variables
is associated with some set A of k Boolean variables and f outputs +1 if at least
r of the k variables in A are positive and f outputs −1, otherwise. Assume that
the instance space is {+1,−1}N . In other words, the r-of-k threshold function
f is represented as follows

f(x) = sign(
∑
x∈A

x+ k − 2r + 1).

For N = 100, k = 30, and r = 1, 8, 15, we fix r-of-k threshold functions which
determine labels. Then for each set of parameters, we generatem = 1000 random
instances so that ratios of positive and negative instances are 5 : 5, 7 : 3, and
9 : 1 respectively. Finally, we add random noise into labels by changing the label
of each instance with probabilities of 5%, 10%, and 15%. As hypotheses, we
use N Boolean variables themselves and the constant hypothesis which always
outputs +1.

We compare RankBoost [8], SoftRankBoost [15], 1-norm soft margin over
pairs (LP-Pair), and our method. For RankBoost, we set the number of iterations
to be T = 500,5000, and 10000, respectively. For the other methods, we set the
parameter ν = εpn, where ε ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3}. We evaluate each
method by 5-fold cross validation. As shown in Table 1, our method recorded
higher AUCs than the other algorithm for almost the data sets. In addition, in
2, our method achieves especially high AUCs, which are greater than or equal
to those of LP-Pair.

5.2 UCI Data

For the next experiment, we use data sets “hypothyroid”, “ionosphere”, “kr-vs-
kp”, “sick-euthroid”, “spambase” from the UCI Machine Learning Repository[1].
The parameters of each algorithm are the same as in Section 5.1. As shown in
Table 3, our method archives high AUCs for all data sets.

5.3 Reuters Data

Reuters data sets are data of Reuters news (Reuters-217582), which are 10710
articles labeld by topics. We choose 5 major topics and consider 5 binary clas-
sification problems whose objective is to classify if a given article blongs to the

2 http://www.daviddlewis.com/resources/testcollections/reuters21578
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Table 1. AUCs for artificial data sets.

data RankBoost SoftRankBoost LP-Pair our method

r niose 500 5000 10000

1 0.9313 0.9384 0.9378 0.7275 0.9745 0.9818
8 5(%) 0.9251 0.9239 0.9239 0.9325 0.9564 0.9596

15 0.9264 0.9262 0.9262 0.9401 0.952 0.9545

1 0.8777 0.8979 0.8979 0.7391 0.9125 0.994
8 10(%) 0.8857 0.8853 0.8853 0.9043 0.9136 0.9173

15 0.8727 0.8727 0.8727 0.869 0.9043 0.9007

1 0.8102 0.8389 0.8391 0.7442 0.8322 1.0
8 15(%) 0.8371 0.8372 0.8372 0.8793 0.8608 0.8643

15 0.8377 0.8337 0.8337 0.856 0.857 0.8525

Table 2. AUCs for artificial data sets with random noises 5%, 10%, and 15%.

data RankBoost SoftRankBoost LP-Pair our method

p : n r 500 5000 10000

1 0.9177 0.9182 0.9179 0.7661 0.9472 0.9624
7:3 8 0.9018 0.9015 0.9015 0.9318 0.9292 0.9308

15 0.8959 0.8956 0.8956 0.9353 0.9294 0.9271

1 0.7695 0.7742 0.7738 0.7735 0.7924 0.9431
9:1 8 0.7736 0.7736 0.7736 0.7718 0.7818 0.7648

15 0.7247 0.7247 0.7247 0.8266 0.7426 0.7320

Table 3. AUCs for UCI data sets, when N , p, and n stand for the dimension, the
number of positive and negative instances of each data sets, respectively.

data RankBoost SoftRankBoost LP-Pair our method

N p n 1000 5000 10000

hypothyroid 43 151 3012 0.9488 0.9468 0.9468 0.96 0.9511 1.0

ionosphere 34 225 126 0.9327 0.9253 0.9253 0.9917 0.9768 0.9865

kr-vs-kp 73 1669 1527 0.8712 0.8721 0.8721 0.9085 1.0 0.9276

sick-euthroid 43 293 2870 0.7727 0.8706 0.8706 0.7847 1.0 1.0

spambase 57 1813 2788 0.8721 0.7735 0.735 0.9359 1.0 1.0
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topic. We prepare 30838 base classifiers which are decision stumps associated
with words. More precisely, each base classifier anwers 1 if the given article con-
tains the associated word and answers 0, otherwise. The results are summarized
in Table 4. For Reuters date sets, our method shows better performance than
RankBoost, but SoftRankBoost shows better AUCs for some topics (3 out of 5).

Table 4. AUCs for Reuters data sets, where p, and n stand for the number of positive
and negative instances included in each of data sets.

data RankBoost SoftRankBoost our method

topics p n 1000 5000 10000

acq 2327 8383 0.9296 0.9347 0.9347 0.9363 0.9388

crude 592 10118 0.9133 0.9188 0.9203 0.9944 0.9329

earn 3802 6908 0.9567 0.9568 0.9566 0.9952 0.9652

money-fx 743 9967 0.9375 0.9335 0.9318 0.9608 0.9479

trade 529 10181 0.9290 0.9301 0.9291 0.9281 0.9450

5.4 Computation Time

Finally, we examine the computation time of LP-Pair and our method. We use a
machine with four Intel Xeon 5570 2.93-GHz cores and a memory of 32 GByte.
We use the artificial data that are used in Section 5.1, N = 100, k = 10, r = 3.
The sizes of the data sets are m = 100, 500, 1000, 1500, respectively. The ratio
of positive and negative instances is 5 : 5, and we add random noise of 5%. We
set ε = 0.2 for both LP-Pair and our method and evaluate each execution time
by 5-fold cross validation. As is shown in Table 5, clearly our method is clearly
faster than LP-Pair.

6 Conclusion and Future Work

In this paper, we have formulated AUC maximization as hard/soft margin op-
timization problems over pairs of positive and negative instances. In the hard

Table 5. Computation time(sec.).

m LP-Pair our method

100 0.102 0.11

500 24.51 0.514

1000 256.78 0.86

1500 1353 1.76
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margin case, we showed that the original problem over pairs is equivalent to
the 1-norm soft margin problem over p+ n instances with the bias term. In the
soft margin case, we proposed a reduction method for the 1-norm soft margin
optimization problem over instances, which is generally non-convex. Our reduc-
tion method is guaranteed to obtain a certain amount of margin over pairs of
instances. Moreover, we have proposed heuristics that obtains more appropriate
parameters. We have tested this method for artificial and real data. In compar-
ison with other methods, our method achieved high AUCs in the experiments.

In the future, we intend to examine our methods for additional data sets
including very large data sets. In addition, we would like to investigate why our
method and SoftRankBoost sometimes achieve higher AUCs than the 1-norm
soft margin over pairs.
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