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A relation between the size of term and the number 

of reduction steps in lambda calculus computations 

(Sachio Hirokawa) 

1. Introduction 

If a term has a normal form, there are many ways to obtain 

its normal form. There could be many reduction paths starting 

f ram the gi ve.n term to its norma 1 farm. Then the length varies 

according to the paths and so does the size of the paths. We 

understand the size of a path to be the maximum size of the terms 

in the path. It is considered as the memory size needed by the 

computation (to obtain the normal form, i.e. the value of the 

input term). 

The time optimal reduction stragies are studied in [4], [6], 

and an efficient implementation method of reduction is shown in 

[ 1]. As for the size, some works has been done in [ 3] and [5], 

but they ~re concerning to the combinatory reduction systems and 

the formulation of the problem is dif ferrent from the one in this 

paper. This paper studies a relation, which is stated precisely 

in the next section, between the length and the size of reduction 

paths. 

The motivation of the problem comes from the fact [2] that 

we cannot optimize both the length and the size at the same time 

in general. The term C"/\.xy. pxx(yI))((/\x.pxx)A)I is such an 
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example [2], where the size of A is supposed to be very large. In 

fact, the fastest computation of the term requires'much more 

memory size than any other computation. (See the reduction graph 

of the term in Figure 1.1) We might recognize this fact due to a 

kind of "time-space tradeoff" in lambda calculus computations. 

Figure 1.1 ( ~ 11 ~f:t.) 

In the paper the author gives a solution to a problem, set 

by T. Adachi, whether there exists a term which actually has the 

time-space tradeoff in its reduction process. In other words, 

whether there exists a term satisfying the condition such that 

the faster a computation of the term, the more memory it 

requires. The main theorem shows that only the trivial terms 

satisfy the condition. Here "trivial" means that the length of 

reduction of the term is constant and independent on the choice 

of the reduction path. 

The general notions and terminology are referred to [2]. 

2. Formulation of the problem in lambda calculus 

In this section, we _give a formulation of time-space 

tradeoff problem in lambda calculus computations. And we also 

give the precise definitions specific to this paper. 

Definition 2.1 The size IMlof A -term Mis defined inductively as 

follows: lxl 1, I (Ax A) I = IAI + 4,· I (A B) I = IAI + IBI + 2. 

The size of a term is the number of symbols in the term 
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including parenthesis and lambda. Note that the size of any 

redex, say ( Ox.M)N), is larger than 7. 

Definition 2.2 Let (J :M 0 --> M1 --> ... --> Mn be a reduction 

path. Then the length of <r is n and denoted by lo!. The size of a-

the path is the maximum size of the terms in the path represented 

by I crl 

Definition 2.3 Given a term M, the set of all reduction paths of 

M to its normal form is represented by R(M). If M has no normal 

form, the set R(M) is empty. 

Sometimes we call a path in R(M) normalizing path. 

Definition 2.4 A term Mis said to be TST if its reduction paths 

satisfy the following condition: 

(TST) if l~I < l~I then l~I < l~I for all in R (M). 

We study this condition as a formulation of time-space 

tradeoff in lambda calculus computations. This condition can be 

read that if we want to get faster algorithm we have to have more 

momory size. Or it can be read that if one reduction is faster 

than another one, then the efficiency is achieved only by the 

larger memory size. 

Example 2.1 It is not the case that any term satisfies the 

condition whenever it has a nor ma 1 form. For example, consider 

the term M = KI(w 3 w3 ), where K=;\xy.x, I= 'f\X.x and w3 =i\x.xxx. 

Figure 2.1 is the reduction graph of the term. 
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Figure 2.1 ( ~,, ~fx',) 

It is easy to see that for any n in N there exists a normalizing 

reduction longer than n. And the size of the reduction increases 

as the length becomes longer. So the condition is not satisfied. 

Example 2.2 We construct the terms Mn inductively, by 

= p, 

( A x . Mn xx ) W, 

where W= x.xx. Then we can see that Mn is a TST term as follows. 

Take an arbitrary path Cf.. in R(M) and consider the redexes 

contracted through the reduction. Every such a redex is the 

unique residual of a redex in Mn. Therefore Card(R(M))=n and we 

have = n. Hence Mn satisfies the condition TST. See Figure 2.2 

for the case of n ~ 3. 

Fugure 2.2 

However, these examples are trivial ones. In fact every path of 

Mn has the same length (and the same size). Thus the condition 

TST was fulfilled trivially. 

Then a question arises naturally. Is there any example in 

which time-space tradeoff really occurs, i.e., which satisfies 

the condition TST non-trivially? The answer is "No", and it is 

proved in section 4. 
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3. Structure of the reduction graph of TST term - -- ---
At the beginning we analyse the structure of the reduction 

graph of TST term. 

Theorem 3.1 There is no cycle in the reduction graph of a TST 

term, if the term has a normal form. 

Proof Let M be a TST term and suppose that there is a reduction 
o<o d C(~ 

c y c 1 e in the graph. Let it be et. : M - - > > N - - > > N - - > > L , where 

Ill ~ 1 and·L is the normal form of M. Then consider the 

reduction f3 =a. 0+ 1 + o +c.< l· We have l~I = l~I + lol > !ct.I, 

and I~ I = lo I . These contradict to TST Q.E.D. 

As for theorem 3.2 below, note that even if a term has a 

normal form, it is not necessarily that every reduction path 

starting from the term is of finite length. There could be an 

infinite reduction of the term in general. 

Theorem 3.2 If a TST term has a normal, then the length of the 

normalizing path is uniformly bounded by some constant. 

Proof Suppose tat the theorem is not true for a TST term M. Then 

for each non-negative integer n there is a normalizing path n 

longer than n. Since every n has no cycle, by theorem 3.1, the 

reduction n consists of more than n distinct terms. Therefore 

sup{ I ~nl n = 0,1, ... } =co. Then take a shortest normalizing 

path ex. For some large n, we have l~I < I ~ n I and lo I < I f3n 1-
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These contradict to the condition TST for M. Q.E.D. 

As we see later in section 4, the length of the normalizing 

paths is not only uniformly bounded but also constant. 

Theorem 3.3 If a TST term has a normal form, then there is no 

infinite reduction path of the term. 

Proof Suppose that a TST term M has an infinite reduction 

M =Mo--> Mi--> M2 --> ... -->Mn--> ... , 

and a normal form N. By the Church-Rosser theorem, every Mn is 

reducible to N by some reduction n· Then the reduction Mo -->> 

Mn followed by n is a normalizing path longer than n. This 

contradits to the uniformly bondedness of the length. Q.E.D. 

Lemma 3.4 Let M be a TST term having a normal form and CJ.. , f3 be 

reductions in the reduction graph of M. If both reductions st~rt 

from the same term and terminate at the other same term, then 

we have I CJ.I < I~ I = == > 1131 < I cq . 

Proof Let P and Q be the initial and the terminal point of the 

reductions respectively and N be a normal form of M. Then there 

are reductions a- and p such that a- :M -->> P and p :Q -->> N. 

Consider the reductions CJ. o= 0- + <::J.. + ? and ~ o= O" + (3 + P in 

R(M). Then we have l~ol - l~ol = ldl - l~I· By the condition 

TST forc<a and~ ,the theorem holds. Q.E.D. 
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4. Main result 

In this section the main result (theorem 4.3) is proved for 

lambda terms. It says that only the trivial terms are TST.Here, 

"trivial" means that the length of the reductions (i.e., the 

computation time) is constant and is independent on the choice of 

the reduction method. It includes the case that the term has no 

normal form. 

Lemma 4.1 Let M be a TST term having a normal form, and let a, p 

be coiniti~l one step reductions in the reduction graph of the 

TSTterm M.Then both sides of the elementary diagramof and 

are of 1 ength 2. 

Proof Let P be the initial point of a- and p , and 1 et Q be 

the terminating point of the elementary diagram. Let cf= 0-/p , 

p' = ? /0 and let fi 1 , !:i 2 be the redexes contracted by <rand f 

respectively. (See Figure 4.1.) 

Figure 4.1 

Without loss of generality we can assume thatLl 2 lies left of 

Lh in P. Then the residual of ~ 2 
unique. Therefore I p' I = 1. 

relative to () is 

Now it suffices to show that I ()
1

1 = 1. First suppose that 
, 

I GI = 0. Then we have I pl = 1 < I (J + P'I = 2. Since M is TST, we 

have I? I > IO' + p' I. However, we have another inequality: 

l?I = max{IPI, IOI}~ max{IPI, lal, IP1I} = l<r+ r' 1. 
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These lead to a contadiction. Therefore I a-'I~ 1. 

Next suppose that I <ii ~2. Then P has the form C[ (),x.A)B] for 

some context C[ ] , where (/\x.A)B =L'.1 2 and~ 1 is in B. Then A has 

the free occurrences of x more than twice. Let m (?2) be the 

number of the free occurrences of x in A. Since I p+ <r'I > 3 > 

lcr-+p'I 2' we hav-e I o-+p'I < IP+<r'I, by TST. Therefore 

we have the following inequalities: I Pl < IP1l 1 IQI < I Pi 1. On 

the other hand we can evaluate IP I IP1I and IQ I 

directly as fol lows: 

IP I I C [ ( ;>.x. A ) B ] I = IAI + I Bl + 6 + k, 

IP1I I c [ ( ]\.X • A ) B , ] I = IAI + I B, I + 6 + k, 

IQI I C[A[x:=B']] I= IAI - m + m I B'I + k, 

where k is a constant and B' is obtained from B by the 

contraction of By 

IQI < IP1 I, we have (m-1) IB'I < m + 6. Since m > 2, IB'I < 

(m + 6)/(m-1) = 1 + 7/(m-1) ~ 8. Therefore I BI ~ 7. However, B 

contains a redex ', so IBI > 7. A contradiction. Therefore lcr'l 
1. Q.E.D. 

Theorem 4.2 Let M be a TST term, and let N be a term reducible 

from M. If there is a normalizing path of N with length k, then 

the length of every normalizing reduction path of N to its normal 

form is k. 

Proof By induction on k. 

Base Step: k=O. 

Then N is in normal form. So the theorem holds trivially. 
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Inductio Step: (See Figure 4.2.) 

Figure 4. 2 (~'I ~l'v) 

By the assumption of the theorem, there is a reduction 

of N to its normal form L such that l<rl = k+l. Let it be of the 

following form 
0-o <is, "Co -c .. 

~ :N --> Nl -->> L. Let -C:N --> N2 -=> L be an 

<io arbitrary path of N to L. Then by lemma 4.1, both sides N --> N1 
~; ~o 0-: 
--> N3 and N --> N2 --> N3 of the elementary diagram of ~o and 

1:Q are of leng·th 2. Therefore I0-0 I= lio I = 1. By the Church-Rosser 

theorem, there is a reduction p: N3 -->> L. By induction 

hypo the s i s f or N 1 , we have I-Co + p I = k. There f ore I PI = k - 1 . 

Thus we have lrr0 +?I = k. Then by induction hypothesis for N2 , 

we have l-c1.I = k. Thus li:I = li:o +1:11 =k+l. Q.E.D. 

Recall that a normalizing path is a reduction path starting 

from a given term and terminating at its normal form. 

Theorem 4.3 (Main theorem) A term is TST if and only if every 

normalizing path has the same length. 

Proof "If-part" is trival. When the term has no normal form, th~ 

set of all normalizing paths is empty. Then the theorem is 

trivial. So we can assume that the term has a normal form. Note 

that every normalizing path starts from the given term and 

terminates at its normal form. Therefore they are of the same 

1 ength by theorem 4. 2. Q.E.D. 
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5. Combinatory reduction system 

In this section we consider the problem in combinatory 

reduction system[ ]. The size of a term is defined as follows. 

Definition 5.1 IMI if M is a basic combinator, 

I { M N) I = + + 2. 

Other definitions in the previous sections,including the TST 

term, are applied to combinatory reduction system without any 

modification. 

Table 5 .1 Ci11 ~ft) 

As the basic combinators we have e.g., the ones in table 

5.1. In the table, every combinator is classified into two types. 

For every combinator of each type, the right hand side of the 

reduction rule has the following property. 

type I Every argument occurs on at most one occasion. 

type II There exists some argument which occurs more than 

two times . 

. The last culumn of the table shows the increase of the size of 

the term by the reduction. 

If we read the proof of lemma 5.1, below, we can see that 

the restriction of the basic combinators to the ones in the table 

is not necessary. For example, the following condition for the 

reduction rules is sufficient. Every basic combinators of type II 

does not decrease the size of the term. 
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First we prove the lemma 4.1 for the cornbinatory reduction 

system. 

Lemma 5.1 Let M be a TST term of a cornbina tory reductin sys tern 

and let a-, p be coinitial one step reductions in the reduction 

graph of the term. Then both sides of the elementary diagram of 

(j and t> are of length 2. 

Proof See Figure Figure 4.1. The proof is almost same except the 

last paragraph. So it suffices to derive a contradiction form the 

as s urn pt ion that I er' I ~ 2 . Su pp o s e t ha t I a-' I ? 2 . Then 6 2 i s type 

II. Since p' is the reduction of the residual of Li 2 , it does 

not decrease the size. Thus we have I P1 I < IQ I . Therefore the 

following inequality holds: 

I O" + P , I = max { IP I ' IP1I ' IQI } 

max{ IP I IQI 

~ I fl + (J , I . 
While we have another inequality I p+<r'I < lcr+ p'I by the 

condition TST and the inequality I er+ P 'I < 

contradiction. Therefore lcr'I = 1 . Q.E.D. 

P + er' I • A 

Theorem 5.2 A term in cornbinatory reduction system is TST if and 

only if every normalizing path has the same length. 

Proof By lemma 5.1, we can prove the theorem similarly to theorem 

4.3. Q.E.D. 
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n=O 

M 1 = (ix.pxx)<iJ 

l 
n=2 

n=3 

M2 <iJw (ix.M 1 <iJwXX)<iJ (ix.(ix.p<iJwXX)<iJXX)~ 

1 ~-+-/--. l 
M 1 wUJww (ix.pwwwwxx)w Cix.pwwxx)ww<iJ 

Figure 2.2 
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reduction rule increase of 

the size 

KLM 
_ _, 

L -( ll M ll + 5) 

IL --1 L -3 

BLMN -~ L (MN} -3 
.-

CLMN -~ LNM -3 

SLMN -4 LN(MN) ll M II - l 

WLM --7 LMM m MI( - 1 

JLMNO 
_ _, LM(LON) - II L II - 1 

tLMNO -~ L(MO) (NO) no 11 - ·1 . 
-

!LMNO ~-1 L (MN) (MO) .n~n - 1 
.. 

Table 5.1 
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