Synthesis of TiO$_2$ Particles by Self-Hydrolysis Process under the Existence of Additives

Mizue, Kei  
Department of Applied Chemistry, Faculty of Engineering, Kyushu University

Inada, Miki  
Department of Applied Chemistry, Faculty of Engineering, Kyushu University

Enomoto, Naoya  
Department of Applied Chemistry, Faculty of Engineering, Kyushu University

Hojo, Junichi  
Department of Applied Chemistry, Faculty of Engineering, Kyushu University

http://hdl.handle.net/2324/15452

出版情報: International Korea-Japan Seminar on Ceramics. 25, pp.170-173, 2008-11
バージョン: accepted
権利関係:
Synthesis of TiO₂ Particles by Self-Hydrolysis Process under the Existence of Additives

Kei Mizue, Miki Inada, Naoya Enomoto and Junichi Hojo
Department of Applied Chemistry, Faculty of Engineering, Kyushu University
744 Motooka, Nishi-ku, Fukuoka, 819-0395 JAPAN
E-mail: jhojo@cstf.kyushu-u.ac.jp

Abstract

TiO₂ nanoparticles were synthesized by self-hydrolysis of TiOCl₂ and the crystalline phase and morphology were controlled by addition of HCl. When 0.1M TiOCl₂ was heated at 100°C for 24h, the XRD peaks of anatase were detected on the precipitate. By addition of 4M HCl, the XRD peaks of anatase disappeared, and brookite and rutile were detected. These results suggest that addition of HCl promotes dissolution-reprecipitation reaction and leads to brookite and rutile formation.

Keywords: Titania, Nanoparticles, Hydrothermal reaction, Additive

1. Introduction

Titania (TiO₂) is used for photocatalyst and many researchers have studied the synthesis method. TiO₂ has three polymorphs which are rutile, anatase and brookite. Each of them have different physical and chemical property, which depends on particle size and morphology. Therefore, there are great demands for control of the crystalline phase and morphology to enhance the performance.

The authors have tried to synthesize TiO₂ particles by self-hydrolysis of TiOCl₂ and proposed the formation mechanism consisting of three steps as follows: (1) deprotonation of [Ti(OH)₂•4H₂O]²⁻ and formation of [Ti(OH)₄•2H₂O], (2) condensation of [Ti(OH)₄•2H₂O] and nucleation of TiO₂ and (3) crystalline growth of TiO₂ by dissolution-reprecipitation. In the condensation, TiO₆ octahedra are arranged and form hydrous TiO₂ sol or crystalline nucleus. It was revealed that hydrous TiO₂ sol formed at the early stage of reaction and crystalline growth of rutile occurred with time by dissolution-reprecipitation of hydrous TiO₂ sol.

In this research, we studied the effect of HCl addition to control the crystalline phase by self-hydrolysis process.

2. Experimental Procedure

TiO₂ was synthesized by self-hydrolysis of TiOCl₂. The aqueous solution of TiCl₄ (16-17% Ti) was diluted with deionized water to 2M TiOCl₂, and stored in a refrigerator. The stored solution was further diluted with deionised water, and HCl was added to the solution in an ice-water bath with stirring. The concentration of TiOCl₂ was 0.1M. After 30 minutes stirring, the solution was put into a glass flask (300ml) equipped with a reflux condenser, and heated at 50-100°C for 0.5-24h in an oil bath. The precipitate was separated by centrifugation. The produced powder was washed with deionized water and dried at 50°C for 5h. The products were characterized by XRD and SEM. The change in conversion of TiOCl₂ to TiO₂ was determined from change in conversion of Ti ion in supernatant solution after centrifugation. The supernatant solution was colored by addition of H₂O₂ forming the complex with Ti.
ions, and the adsorption spectrum was measured at $\lambda=408.90\text{nm}$.

3. Results and Discussion

3.1 Effect of HCl addition

Crystalline phase of TiO$_2$ was controlled by the addition of HCl. The 0.6-4M HCl was added to 0.1M TiOCl$_2$ solution and heated at 100$^\circ$C for 24h. The XRD patterns and SEM images of the products are shown in Figs.1 and 2, respectively. Without HCl addition, XRD patterns of anatase only were detected, which were assigned to hydrous TiO$_2$ sol. By addition of 0.6M HCl, intensity of anatase peaks decreased and rutile peaks were detected. Furthermore at 4M HCl, anatase peaks disappeared and brookite peaks were detected with rutile. It was observed on SEM images that agglomerates of nanoparticles grew dispersively by HCl addition. Figure3 shows the change in conversion of TiOCl$_2$ to TiO$_2$ at each HCl concentration. Without HCl addition, the conversion became 100% rapidly in about 10min. On the other hand, reaction rate became slow with increase of HCl concentration. In this study, the change in conversion of TiOCl$_2$ to TiO$_2$ was determined from change in conversion of Ti ion colored by H$_2$O$_2$ addition. The colored ion should be derived from $[\text{Ti(OH)}_2\text{(H}_2\text{O)}_2]^{2+}$. From these results, it was suggested that the deprotonation was retarded by HCl addition. As a result, HCl addition retarded the formation of hydrous TiO$_2$ sol and promoted rutile and brookite formation by dissolution-reprecipitation.

![Fig.1 XRD patterns of products synthesized from 0.1M TiOCl$_2$ for 24h with (a) no addition, (b) 0.6M and (c) 4M HCl addition; O: rutile, ◆: brookite, ◇: anatase.](image1)

![Fig.2 SEM images of products synthesized from 0.1M TiOCl$_2$ at 24h with (a) no addition and (b) 4M HCl addition.](image2)
3.2 Influence of reaction time

The influence of reaction time was investigated when 4M HCl was added. The XRD patterns and SEM images of the products are shown in Figs.4 and 5, respectively. On XRD, anatase and rutile phases appeared at early stage of the reaction. The anatase peaks was assigned to hydrous TiO₂ sol. The intensity of anatase peaks decreased with time and that of brookite peaks increased until 24h. In addition, the intensity of brookite peaks decreased and rutile peaks were rather enhanced at 72h. On SEM images, agglomerate particles were observed at 1h, and fine particles dispersed and acicular particles grew with time. According to the change in XRD patterns, it is found that the fine particles are brookite phase and the acicular particles are rutile phase. These results indicate that crystalline growth occurred with time in order of brookite and rutile.

At the early stage of the reaction, hydrous TiO₂ formed and nucleation of rutile occurred. From change in conversion of TiOCl₂ to TiO₂ (Fig.3), the conversion became constant, leading to ripening stage after 8h. Under the ripening, addition of HCl promoted dissolution of TiO₂, and hydrous TiO₂ dissolved and reprecipitated slowly. As a result, nucleation and crystal growth of brookite progressed by rearrangement of Ti₆ octahedra. The reason may be that the structure of hydrous TiO₂ is similar to brookite rather than rutile. Moreover, crystalline growth of rutile occurred with time by dissolution-reprecipitation of brookite, because rutile phase is thermodynamically stable.

![XRD patterns of products synthesized from 0.1M TiOCl₂ by addition of 4M HCl at 100°C for (a) 1h, (b) 24h and (c) 72h; ○:rutile, ◆:brookite, ●:anatase.](image)
4. Conclusions

TiO$_2$ nanoparticles were prepared by self-hydrolysis of TiOCl$_2$ under the existence of HCl. HCl addition retarded the formation of hydrous TiO$_2$ sol and promoted the nucleation of rutile, because of slow deprotonation. Moreover when 4M HCl was added, dissolution-reprecipitation of TiO$_2$ was promoted, which leads to brookite and rutile growth.

References