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Chapter 1

Introduction

1.1 Background

In recent years we have witnessed an explosion in the number of multimedia data in personal
archives, social media and content-sharing web sites, such as Flickr, Facebook and Instagram.
For example, Flickr has more than two billion images with millions of newly uploaded photos
per day. Indeed, given the speed at which new data is released, the traditional manner of
manually indexing and searching in such large archives would be prohibitive with extremely
high cost. Therefore, how to efficiently manage and access to large archives in a user-oriented
and semantically meaningful way is a challenging problem.

In order to automatically index the archive images with the goal of providing easy and
efficient access to users, it is necessary to automatically generate text descriptions for the
images to describe the corresponding visual contents [1]. This supposes to build systems that
can bridge the semantic gap between low-level visual features and high-level semantics. To
illustrate this fact, let us consider an important computer vision problem, namely automatic
image annotation. Given an unseen image, the goal of automatic image annotation is to
predict multiple textual labels describing that image. The candidates of labels are extracted
from the texts surrounding the images in the web pages, and the meanings of the labels can
range from specific object categories or general patterns, as illustrated in Fig. 1.1, and the
images are usually obtained from photo sharing web sites, e.g. Flickr, Picasa and etc.

Note that the image annotation problem is different from the image classification problem
[2–4], which aims to assign a single category label exclusively to one image. In contrast,
image annotation is the task of assigning multiple labels to a single image. Thus, image
annotation is a more generic but difficult problem than classification problem, since we need
to consider relationships between labels during annotation.
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animals, bird, lake,
river, sea, water

plant life, sky, 
structures, tree

female, indoor, night, 
people, portrait

Fig. 1.1 Examples of images with manually annotated labels.

During the last decade, there are large efforts to develop various models, such as gen-
erative models [5], topic models [6–8], discriminative models [9–11] and nearest neighbor
(NN) based models [12–15] (more technical details of these models are described in Chapter
3), have been proposed to tackle the image annotation problem. Among these models, the
topic model can be considered as the pioneering work for modeling co-occurrences of visual
pixels and textual words. Since the topic model is initially derived from the natural language
processing community to cluster and to classify textual documents, it is a natural way to
model the words associated to the images.

However, previous topic models based on Latent Dirichlet Allocation (LDA) [6] are
all under Dirichlet assumption, where the topic proportions of an image are generated
independently, and the presence of one topic is not correlated with the presence of others.
Indeed, the annotation words of an image usually have correlation, and the correlation
ought to be incorporated in the topic correlations. Thus, how to efficiently capture the topic
correlations in the LDA based topic models is an important issue to be investigated.

Furthermore, in the problem setting of image annotation, the ground truth labels (tags)
assigned to the images are assumed to be compact and perfect. However, the ground truth
labels of the images are assigned by human annotators manually without rigorous supervision.
Due to unconsciousness and misconception of the annotators, the tag assignments of the
training images tends to be ambiguous, incomplete and even imprecise. Therefore, the dataset
can be considered as weakly labeled. Given the weakly labeled dataset for training, it would
misguide the learning procedure and result in an unstable annotation model. Therefore, how
to overcome the defection in the training images and how to learn a stable annotation model
is a primary issue to be tackled in practical scenario.

In addition, if we consider image annotation as searching for a set of tags corresponding
to a given image, a promising application of image annotation could be searching for a set
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of images using a query string (e.g. as is done with Google Image search), which can be
considered as a reverse process of image annotation. When we consider image data and
text data (tags or documents) come from two different modalities, the so-called cross-modal
retrieval is a more general problem that covers both of the image annotation problem and
its reverse process. Unlike the image annotation problem that usually focuses on the one-
way from unimodal images to unimodal texts, for the cross-modal retrieval problem, the
mutual associations between the different modalities need to be stressed. Due to the distinct
statistical properties and semantic gap between the different modalities of images and texts,
the most difficult problem of cross-modal retrieval is how to eliminate the heterogeneity
between modalities to facilitate effective cross-modal matching.

1.2 Objective of this research

In this thesis, firstly the author will focus on the traditional image annotation problem, and
particular interests are focused on developing effective topic models to tackle this problem.
Secondly, the author analyzes the statistical properties of user-provided ground truth labels
(also called “tags”) of training images in the image annotation problem, and investigate how
the quality of the ground truth labels affects the annotation results. Thirdly, the author extends
the image annotation problem to a more general issue of cross-modal retrieval considering
mutual associations of images and texts. The major problems that are explored in the thesis
can be summarized as follows.

• How to efficiently capture the topic correlations in the LDA based topic models to
improve the annotation performance.

• How to learn a robust annotation model given training images in weakly labeled
dataset.

• How to eliminate the heterogeneity between different modalities to facilitate effective
cross-modal retrieval.

With respect to the first problem, to directly model correlation between topics when
generating the topic proportions for a given image, the author uses logistic normal distribution
proposed in the correlated topic model (CTM) [16] instead of the Dirichlet assumption to
capture the topic correlations. Then, the author extends the idea of modeling topic correlations
from popular LDA based models to CTM based models. In the proposed CTM based models,
topics are now correlated with each other to mix the topic proportions for one image. The
author presents a comprehensive comparison between CTM based and LDA based models
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on three benchmark datasets, illustrating the superior annotation performance of proposed
CTM based models on image annotation task, by means of propagating topic correlation
among image features and annotation words.

For the second problem, the author invesigates a practical issue of image annotation in
weakly labeled datasets that are collected from Internet. To make this problem simple, the
author first addresses a special case of image annotation with incomplete labeling, where
the multiple objects in each training image are not fully labeled. The author leverages the
structured output learning method to boost the performance of conventional one-versus-all
support vector machine (OVA-SVM) [9] classifiers, and proposes an image specific structured
loss function which is more appropriate to explore the dependency of predicted multiple
labels. Experimental evaluation demonstrates that the proposed method is efficient to handle
the issue of incomplete labeling, and it performs superior than several existing methods on
image annotation task.

After discussing the special case above, the author considers a more general case of tag
completion with defective tag assignments, where ground truth tags cover both incomplete
and noisy situations. The author proposes an image-tag re-weighting scheme and formulates
a re-weighted empirical loss term, which is more efficient for optimization in tag completion
problem under defective tag assignments. In particular, the weighted penalty of pairwise
image-tag is derived from image-image similarities and tag-tag associations, which ensures
that missing and noisy tags have discriminant importance rather than identical importance in
previous works. Experimental evaluations verify that using proposed re-weighting scheme
achieves superior tag completion results on various degree of incomplete and noisy settings.

For the third problem, specifically, the author casts the cross-modal retrieval tasks such
as text-to-image search and image-to-text search to modeling images and associated text
through latent subspace learning. To handle the diversities of different modalities of data,
the author develops a novel framework that consists of two procedures: (1) a coupled
dictionary learning method is first developed to generate homogeneous sparse representations
for different modalities by associating and jointly updating their dictionaries; (2) a coupled
feature mapping scheme is then used to project the derived sparse representations from
different modalities into a common subspace in which cross-modal retrieval can be performed.
Experiments on a variety of cross-modal retrieval tasks demonstrate that the proposed
framework outperforms the state-of-the-art approaches.
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Fig. 1.2 Structure of the thesis.

1.3 Structure of this thesis

The structure of this thesis is as follows (see Fig. 1.2). The background and objective of
the thesis are given in this chapter. In Chapter 2 “Modeling the topic correlation of images
and texts via latent topic model,” the author presents the details of the proposed CTM based
topic models for image annotation task. This work has been published in [17, 18]. In
Chapter 3 “Exploring image-label associations in incompletely labeled datasets,” the author
proposes a new scheme to model the image-label associations and embeds the scheme in
several existing approaches that are designed for the issue of weakly labeling. This work
has been published in [19]. In Chapter 4 “Tag completion by image-tag re-weighting with
defective tag assignments,” the author extends several existing tag completion methods by
re-weighting image-tag associations for the issue of defective tag assignments. This work has
been published in [20]. In Chapter 5 “Cross-modal learning for images and texts,” the author
turns to a more general problem of cross-modal retrieval and develops a novel framework to
learning effective subspace from multimodal data of images and texts. This work has been
published in [21]. Finally, in Chapter 6, the author concludes the thesis and presents the
future works.





Chapter 2

Modeling topic correlation of images and
texts via latent topic model

2.1 Introduction

Automatic image annotation is an active and challenging problem in computer vision research.
Given an unseen image with no caption, the goal of image annotation is to predict relevant
textual words from a word vocabulary to describe the visual contents of that image.

The primary work in this chapter is built on the special case of latent topic models. The
concept of latent topic is introduced to reduce original higher dimensional image feature
space and annotation word space to lower dimensional topic space, under the assumption
that each image feature and annotation word can exhibit multiple components of “topics.”
Previous LDA based topic models for image annotation are all under Dirichlet assumption:
topic proportions of an image are randomly drawn from a Dirichlet distribution [6]. Under
Dirichlet assumption, each topic proportion is assigned independently, which leads to an
unrealistic limitation that the presence of one topic is not correlated with the presence of
others. Actually, annotation words of an image have correlation upon image content, which
could be modeled by topic correlations. To the author’s knowledge, there have been no
attempt in the past which directly considers topic correlation in annotation problem. Inspired
by the pioneering work of CTM [16], which produces correlated topic proportions for words
in one document using logistic normal mapping, the author adopts the methodology of CTM
and extends it to the image annotation task.

The main contributions of the work in this chapter are threefold. First, the author makes
the first trial to extend CTM to image annotation problem, and redesigns the popular LDA
based topic models such as correspondence LDA (corrLDA) [22], supervised LDA with



8 Modeling topic correlation of images and texts via latent topic model

17: sky, mountain, road, trees, field
34: road, car, sky, trees, water
1: sky, road, trees, buildings, sidewalk
42: road, buildings, car, sidewalk, trees
43: sky, trees, field, mountain, water

(a) (Left) mixture of “topics” generated from corrCTM, (Right) topic index and repre-
sentative words in each topic.

47: mountain, stone, trees, sky, clouds
17: sky, mountain, rock, trees, water
35: road, water, sky, field, buildings
48: road, water, mountain, sky, rock
33: tree, road, water, sky, buildings

(b) (Left) mixture of “topics” generated from corrLDA, (Right) topic index and repre-
sentative words in each topic.

Fig. 2.1 Modeling topic correlation to formulate semantically compact topic.

binary response (sLDA-bin) [8] as CTM based models: corrCTM and sCTM-bin, respectively.
In the proposed two CTM based models, topic correlation is explicitly incorporated. Second,
the author derives a general mean-field variational algorithm for parameter estimation in
these CTM based models. Third, the author makes an informative comparison of annotation
performance between the proposed CTM based and previous LDA based models through
standard measure criteria, which is rarely provided in previous works [8, 22–24].

Through the experiments, it can be observed that modeling topic correlation has two
promising advantages that improve annotation performance. Firstly, image would be assigned
with correlated topics, each topic tends to be semantically compact and represented by more
co-occurred words. For example, in Fig. 2.1 the topic representation in the proposed cor-
rCTM and previous corrLDA models are different, and the final annotation words predicted
by corrCTM are {“sky,” “trees,” “buildings,” “road,” “sidewalk”}, which are more precise
than {“sky,” “mountain,” “water,” “rock,” “trees”} by corrLDA. Secondly, images share
similar empirical topic proportions would have similar visual content and related annota-
tion words in proposed sCTM-bin model, whereas this internal correlation is overlooked in
previous sLDA-bin, visualized example can be seen in Fig. 2.6.

In the next section, the author discusses the related work of topic models in the field
of image annotation, and then takes two typical CTM based topic models: corrCTM and
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sCTM-bin, for instance, to depict a general framework of modeling topic correlation in the
CTM based models.

2.2 Related work

Topic models have been widely applied and developed in the natural language processing
community, such as text classification, clustering, sentimental analysis and etc. The represen-
tative methods include Latent Semantic Analysis (LSA) [7], probabilistic Latent Semantic
Analysis (pLSA) [25], and LDA [6]. They are effective at discovering the underlying topics in
text documents, and at modeling more than single words. Topic models have been extended
to the image domain by replacing text words with image descriptors. The resulting models
have been applied to image recognition. For example, in [26], LDA was used to classify 13
scene categories of images.

When applying the topic model to image annotation problem, unlike the original topic
models that contend with the problem of unimodal text, here we need to consider two
modalities (image and words). The essential problem in applying the topic models to image
annotation task is how to define latent variables (topics) to associate images and words, and
then develop efficient algorithm to estimate these variables [27]. A seminal work of Blei et
al. proposed two association models: Gaussian Multinomial LDA (GM-LDA) and corrLDA,
which extend the basic LDA model to learn the joint distribution of texts and image features.
In order to capture the correlations between the two modalities, the two models use a set of
shared latent variables to represent the underlying causes of cross-correlations in the two
modalities. Specifically, GM-LDA samples the latent variables of each region feature and
word using a multinomial distribution specific to each sample. Parameters of multinomial
distributions are sampled with a Dirichlet distribution, which is tuned with a hyper parameter.
With this model, it is possible to represent multiple region features and words within a
sample as a mixture of multiple topics. This property makes the model highly expressive. To
overcome this drawback, in corrLDA each word direclty shares a hidden topic variable with
a randomly selected image region, it achieved better performance than GM-LDA.

Motivated by the success of corrLDA model, later several approaches have been proposed
to extend it. Wang et al. [24] proposed a supervised LDA (sLDA) model that can perform
image annotation and image classification simultaneously. In sLDA, a linear regression
module is added to corrLDA, in order to allow a real-valued response variable (class category)
to be predicted from the empirical topic proportions of an image. Putthividhya et al. [8]
then extended the sLDA model to handle a multi-variate binary response variables of the
annotation data, their model is called sLDA-bin and compares favorably with corrLDA
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on image annotation task. Moreover, unlike the corrLDA that shares a set of latent topics
between images and words, a new scheme of correlating separate latent topics of images and
words by a regression module is introduced in [23], and this model is termed topic regression
multi-modal LDA (trmmLDA).

In general, for the image annotation problem, previous LDA based topic models can be
categorized into two types: 1) C-type, which builds correspondence between each image
feature and each annotation word. Each annotation word is restricted to be associated with
one specific image feature, and this type includes corrLDA, sLDA and trmmLDA; 2) R-type,
which treats empirical topic proportions of whole image as a reduced dimensional “feature
vector,” annotation words as discrete response values. Then the regression models (linear
Gaussian regression or logistic regression) are used to predict annotations. This type contains
sLDA-bin. In the next section, the author selects typical LDA based models: corrLDA in
C-type and sLDA-bin in R-type, and extend them to the proposed CTM based models, which
are termed corrCTM and sCTM-bin, respectively.

2.3 Proposed models

2.3.1 Data representation and notation

The data representation and notation follow the instruction from statistical text document
analysis, and each image is represented as a bag of “codewords.” Given a training set of
images with annotation words, the following notations are used. Each image is a collection of
M visual feature codewords, denoted as v = {v1:M}, where vm is a unit-basis vector of size Vs

with exactly one non-zero entry representing the index of current visual feature in the visual
feature dictionary of size Vs. Similarly, for one image annotated with N words w = {w1:N},
each word wn is denoted as a unit-basis vector of size Vt , where only one element takes
value 1 and 0 otherwise, and Vt is the word dictionary size. Thus, a collection of D training
image-word pairs can be denoted as {v1:D,w1:D}.

2.3.2 Modeling topic correlation in LDA based topic models

The LDA model is a generative model for a collection of exchangeable discrete data. LDA
has been mainly used to model text corpora, where the notion of exchangeability corresponds
to the “bag of words” assumption that is commonly employed in such model.

Later, the model of correspondence latent Dirichlet allocation (corrLDA) was extended
from LDA model. The corrLDA finds conditional relationship between latent topic represen-
tations of sets of image regions and sets of words. In the corrLDA model, each image and its
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(a) Graphical representation. (b) Generative procedure.

Fig. 2.2 Illustration of the corrLDA model. Note that in (a), gray circles represent observed
variables, white circles represent latent variables.

corresponding words (label) are represented as a pair (v,w), where v and w represents the
feature vectors of image regions and words. The region feature vectors are assumed to be
distributed as a multivariate Gaussian distribution with diagonal covariance, and the words
are assumed to be distributed as a multinomial distribution over the vocabulary. Moreover,
different words or different regions in an image can come from different topics, and the
words or the image as a whole can be viewed as combination of multiple “topics.”

Let θ be a K-dimensional topic proportions from Dirichlet distribution, and let topics
π1:K be K multinomials over a fixed visual feature vocabulary with size Vs, β1:K be K
multinomials over a fixed text word vocabulary with size Vt . The graphical representation and
the generative procedure of the corrLDA are shown in Fig. 2.2. The topic-feature matrix πzm

is a Vs dimensional multinomial distribution, where zm ranges from 1 to K. The topic-word
matrix βzyn

is a Vt dimensional multinomial distribution, where zyn also ranges from 1 to
K. “Dir” means Dirichlet distribution, “Mult” means multinomial distribution, and “Unif”
indicates uniform distribution.

A problem with drawing the topic mixture proportions from a Dirichlet distribution in
LDA is that Dirichlet distributions are too simple and exhibit a near independence structure,
where the correlations between the components of a Dirichlet random variable are restricted
to sum to one. Therefore, the corrLDA also has the problem that the correlation of different
topics cannot be efficiently captured by the Dirichlet distributions, and the relationship
between image regions and words cannot be properly represented by the topic representations.

To tackle the problem in LDA model, the CTM is proposed to capture the topic correlation
and is applied to use topic representation for document classification problem. Compared
with LDA, the CTM uses logistic normal instead of Dirichlet to capture the topic correlation.
As the logistic normal distribution can form a richer class of distributions and better captures
inter-component correlations, the CTM gives a better fit than LDA in representing textual
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(a) Graphical representation. (b) Generative procedure.

Fig. 2.3 Illustration of the corrCTM model.

documents. Furthermore, Malisiewicz et al. [28] has applied CTM to object recognition
in images and found that CTM also has a better fit for visual representation than LDA by
modeling correlated topic space rather than independent topic space.

Motivated by such success of CTM in recognition task, here the author adopts the
association model of CTM for the task of annotation. In order to capture the correlation of
topics, the hyper parameter of topic prior distribution is modeled as multivariate Normal
distribution instead of Dirichlet, and the dependencies of different topics by covariance
matrix is captured. Then the logistic normal function f (θi) =

(
exp θi/∑

K
j=1 exp θ j

)
is used

to project the multivariate normal to topic proportions for each image, where K is the topic
number. The graphical representation and the generative procedure of the proposed corrCTM
are shown in Fig. 2.3.

In Fig. 2.3 (b), “Norm” means normal distribution, “Mult” means multinomial distribu-
tion, and “Unif” indicates uniform distribution. In particular, firstly M image features vm are
generated from correlated topic proportions θ , conditional on the topic-feature multinomial
π Secondly, for each of the N text words, one of the M features is selected and corresponding
assigned to a text word wn, conditional on the topic-word multinomial β . The generative
process of corrCTM is identical to the process of corrLDA in Fig. 2.2 (a), except that the
topic proportions for the image are drawn from a logistic normal distribution rather than a
Dirichlet distribution. From the generative process of corrCTM, it could be learned that topic
correlations are modeled and generated through the covariance matrix Σ of prior multivariate
normal distribution. After the logistic normal procedure, the topic proportions are generated
depending on the correlations. And topic assignment for image features and text words in
the latter part would again rely on the correlated mixture of topics in the current image.

Then the author embeds the scheme to another model sLDA-bin, and develops sCTM-
bin that can model the topic correlation. Similarly, the generative process of sCTM-bin
is identical to the general process of sLDA-bin, except that topic proportions θ are drawn
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(a) Graphical representation. (b) Generative procedure.

Fig. 2.4 Illustration of the sCTM-bin model.

form logistic norm rather than Dirichlet. Specifically, the generative procedure of the
sCTM-bin models are depicted in Fig. 2.4. Here f (z,Ai,τi) is a logistic regression function
f (z,Ai,τi) = σ(AT

i z+ τi), where Ai is a Vt dimensional vector of regression coefficients,
τi is a regularization constant for Ai, σ(x) = 1/(1+ exp(−x)). “Bern” means Bernoulli
distribution.

It can be observed from the graph representations of the proposed corrCTM and sCTM-
bin models that, different from the previous LDA based models, in the proposed models topic
correlation is first incorporated in prior multivariate covariance Σ, then topic proportions θi,
θ j of an image are generated relying on Σ through logistic normal process f (θ). Moreover,
topic assignment for image features and annotation words would subsequently depend on the
correlated mixture of topic proportions, by means of building topic correspondence (C-type)
or regression from empirical topic proportions (R-type).

2.3.3 Variational inference in proposed models

To learn the parameters of corrCTM that maximize the likelihood of training data, the
variational Expectation Maximization (VEM) framework developed in [6] is employed to
iteratively estimate the model parameters of latent variables. Generally, in the E-step, the
posterior probability function is derived to approximate the lower-boundary of the joint
likelihood, and then maximize the lower-boundary to calculate model parameters in the M-
step. In other words, the two alternative procedures in VEM consists of variational inference
and parameter estimation. The former E-step is to calculate a set of variational parameters
to obtain the approximate lower-bound on likelihood of each sample. The latter M-step is
to estimate the model parameters that maximize the log likelihood of the whole training
samples.
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To simplify the formulation, in the graphical representations of the models in Fig. 2.3
and Fig. 2.4, a symbol Ψ is used to represent the model parameters in each model, e.g.
{µ,Σ,π,β} in corrCTM and {µ,Σ,π,A,τ} in sCTM-bin, and a symbol ∆ is used to denote
the latent variables in each model, e.g. {θ ,z,y} in corrCTM and {θ ,z} in sCTM-bin. In
addition, a symbol Ω is used to denote the parameters of varational distributions introduced
during the VEM procedure, details can be referred to Appendix A. Then during the learning
procedure, the goal is to maximize the lower boundary L (Ω;Ψ) of log joint likelihood of
observed image-word pairs {v, w},

log p(v,w|Ψ)≥L (Ω;Ψ), (2.1)

where Ω contains variational parameters approximated to latent variables in ∆. The variational
EM framework is utilized to maximize L (Ω;Ψ). In the E step, the variational parameters Ω

is approximated to lower bound the marginal likelihood , then maximize the lower boundary
in M step to obtain model parameters Ψ. The detailed deriving process is presented in
Appendix A, and here the update rules of the variational parameters γ , ν for θ , φ for z, and
model parameters µ , Σ are summarized as follows.
E-step: For each image, optimize values for variational parameters in Ω. The update rules of
γ , ν , φ which differ from LDA based models are

∂L

∂γ
=−Σ

−1(γ−µ)+
M

∑
m=1

φmi−
M
ζ

exp (γ +ν
2/2), (2.2)

∂L

∂ν2
i
=−Σ

−1
ii /2− (M/2ζ )exp (γi +ν

2
i /2)+1/(2ν

2
i ), (2.3)

ˆφmi ∝ πi,vmexp

(
γi +

N

∑
n=1

λnmlog βi,wn

)
, (2.4)

ˆφmi ∝ πi,vmexp
[

γi +
Vt

∑
j=1

(
λ (ξ j)

2M
A j−

λ (ξ j)

M2 diag(A jAT
j ) + 2A jAT

j ∑
n̸=m

φni

)]
, (2.5)

where i is topic index. Intermediate variables such as ζ , ξ , λ are the same as [8, 22],
and the other variational parameters specific in corrCTM and sCTM-bin follow the similar
iteration rules in [8, 22]. The update rule of φmi in Equation 2.4 is for corrCTM and the one
in Equation 2.5 for sCTM-bin, respectively.
M-step: For all images in a training set, to estimate model parameter Ψ, maximize lower
boundary of summational log likelihood ∑

D
d=1 Ld(Ωd;Ψd) for all D images, given Ωd

obtained from the E-step. The update rules of µ , Σ, which are different from LDA based
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models, are

µ̂ = (1/D)
D

∑
d=1

γd , (2.6)

Σ̂ = (1/D)
D

∑
d=1

(
I ν

2
d +(γd− µ̂)(γd− µ̂)T ) , (2.7)

where d is image index in the training set. The other model parameters such as π , β in
corrCTM, and π , A, τ in sCTM-bin follow the similar iteration rules as in [8, 22].

Generally speaking, the computational complexity of two proposed CTM based models
corrCTM and sCTM-bin are higher than their LDA based versions corrLDA and sLDA-bin.
The reason is that the proposed CTM based models introduce the new parameters µ and
Σ of logistic normal distribution and the correspondingly variational parameters γ and ν .
Computing µ (Equation 2.6) and γ (Equation 2.2) both require complexity of O(NK), and
computing Σ (Equation 2.7) and ν (Equation 2.3) both require complexity of O(NK2). Note
that, for the update rules of the parameters in the CTM based models, the rules for γ in
Equation 2.2, and ν in Equation 2.3 are not closed-form. Thus the optimal values of these
parameters can be calculated iteratively. In practice, the (Limited-memory BFGS) LBFGS1

algorithm is used to update γ and a constrained Newton’s method to update ν .
In addition, the scheme of capturing topic correlation can also be observed in the update

rules of the parameters. For example, in Equation 2.4 and 2.5, the per-feature variational
distribution over topics φmi depends on variational hyper parameter γi and νi of different topic
proportions. As the variance νi is derived from prior covariance matrix Σ, the covariance
matrix Σ controls topic proportions of each image, and different topic components assigned
to feature point (φmi) would be correlated.

2.4 Experimental result

2.4.1 Configuration

The proposed two models are evaluated on three benchmark datasets: LabelMe [29], PASCAL
VOC07 [30] and Corel 5K [31]. The detailed information of the three datasets are as follows:

• LabelMe: The annotation words that occur less than 3 times are removed from the
original dataset, resulting in a word dictionary with 136 entries and 2,687 images
(2,149 for training, 538 for testing).

1Matlab implementation of the LBFGS algorithm can be found in http://www.caam.rice.edu/
~heinken/

http://www.caam.rice.edu/~heinken/
http://www.caam.rice.edu/~heinken/
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Table 2.1 Statistics of three datasets: LabelMe, PASCAL VOC07 and Corel 5K.

LabelMe PASCAL VOC07 Corel 5K
Number of labels 136 186 260

Number of training images 2,149 4,340 4,500
Number of testing images 538 1,860 499

• PASCAL VOC07: For this 20-category dataset, after removing the words that appears
less than 5 times, a subset containing 6,200 images (4,340 for training, 1,860 for
testing) with 186 words is preserved.

• Corel 5K: The original Corel 5K dataset is used in the experiment without pruning.
This dataset includes 5,000 images (4,500 for training, 500 for testing) and 260 words.

Table 2.1 summarizes the statistics of these datasets.
Following the configuration in [8, 22], the author uses the 128-dimensional SIFT [32]

descriptor as a feature descriptor to represent each image. The SIFT feature has shown to be
effective in image classification and recognition tasks. The public tool VLFeat2 is used to
extract 128-dimensional dense SIFT descriptor on 20×20 gray-scale patches in each image.
And then a codeword dictionary is built for LabelMe and PASCAL VOC07 with the size
500, and for Corel 5K, with the size 1000. To train the model, the stopping criteria for
log likelihood change is less than 0.001%, and the the max number of iterations is 20 for
variation inference, 100 for parameter estimation. All the experiments are conducted on a
computer with dual 4-core Intel i7 2.8GHz CPU, 8GB RAM.

2.4.2 Predictive perplexity

To measure the quality of codewords and annotations predicted by the models, two standard
measures: “feature perplexity” and “word perplexity,” which are proposed in [6] are adopted.
Introduced from conventional language modeling, the perplexity is equivalent to the inverse
of the geometric mean likelihood (in Equation 2.8 and 2.9, denoted as P(∗)), a lower
perplexity score indicates better predictive performance),

P( f eature) = exp

(
−∑

D
d=1 ∑

Md
m=1 log p(vm|zm)

∑
D
d=1 Md

)
, (2.8)

P(word) = exp

(
−∑

D
d=1 ∑

Nd
n=1 log p(wn|vd)

∑
D
d=1 Nd

)
. (2.9)

2http://www.vlfeat.org/

http://www.vlfeat.org/
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(b) PASCAL VOC07

Fig. 2.5 Word perplexity of CTM based and LDA based models on datasets: (a) LabelMe,
(b) PASCAL VOC07.

Fig. 2.5 shows the word perplexity of the proposed CTM based models and previous
LDA based models on two standard datasets with various number of topics. Note that on
LabelMe dataset, the results of the models of sLDA-bin and sCTM-bin overfit with 150
topics are not shown as they overfit with 150 topics. As seen in Fig. 2.5, both corrCTM and
sCTM-bin give lower perplexity score for different number of topics compared with their
LDA based versions corrLDA and sLDA-bin. It shows the superior predictive capabilities of
capturing topic correlation, propagating this correlation to build correspondence between
topics and words in C-type models, or to perform regression from topics to words in R-type
models. These capabilities are also hinted in the previous exemplars Fig. 2.1 and Fig. 2.6.
Note that, in Fig. 2.6, the second column is a test image and its histogram of empirical topic
proportions, the third to fifth columns are “neighbor images” selected according to nearest
Hellinger distance [16]. The italic words indicate predicted annotations for the test image,
while the normal words are ground truth annotations for “neighbor images.”

2.4.3 Visualizing topic correlation

Since topic representation can decompose image-word relations to image-topic and word-
topic relation in corrCTM, the author then investigates how the proposed corrCTM better
propagates the correlation to word-topic. Taking dataset Corel 5K for example, the author
first establishes the normalized co-occurred frequency matrix for pair-wise words in the
vocabulary dictionary, and then obtains empirical frequently co-occurred word pairs by
setting a threshold to the matrix. Finally, there are 1434 word pairs can be obtained from the
total 260 words, given a global threshold 0.25, which means that when one word occurs its
partner would also occur with conditional probability larger than 0.25.
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Fig. 2.6 Modeling topic correlation to formulate correlated empirical topic proportions.

The goal is to examine how well the proposed corrCTM fits the empirical co-occurred
word pairs. According to the caption-topic multinomial matrix β in Fig. 2.2 (b), which is a
Vt×K matrix and each column implies the multinomial distribution among words for current
topic. Top 10 caption words are selected as most representative for each topic, and then
make a statistic to recall the count of the appeared co-occurred word pair in the empirical
co-occurred word pairs. The recall count for both datasets compared with corrLDA (#recall
count / #total empirical count) is reported in Table 2.2. And Table 2.3 shows some typical
co-occurred word pairs in top-10 words for topics in Corel 5K, where the total topic number
K is 80, and different word pairs from various semantic meanings are marked with different
symbols (†, ‡ and §). It is indicated that corrCTM owns the ability to cluster more related
word pairs to formulate compact topic representation compared with corrLDA. The reason
is that from the generative procedure of corrCTM, once correlated topic proportions are
assigned to image features, the co-occurred words to related topics may also be probable.
As a result, probability value for co-occurred word pairs would be lifted in the topic-word
multinomial β .
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Table 2.2 Recall count for co-occurred words: corrCTM vs. corrLDA

PASCAL VOC 2007 Corel 5K
corrCTM 232/621 348/1,434
corrLDA 185/621 276/1,434

Table 2.3 Typical co-occurred word pairs in top-10 representative words of each topic:
corrCTM (top panel) and corrLDA (bottom panel)

Topic index Typical word pairs
Topic 1 cars†, prototype†, tracks†, street, turn, marsh‡, roofs, bengal§, forest‡, tiger§

Topic 4 plane†, jet†, sky†, sun, birds§, fly§, clouds§, snow, sand†, dunes†

Topic 27 snow†, ice†, polar†, frozen†, bear, mountain§, water, rocks§, grass, sky
Topic 48 island†, beach†, sand, sea†, water†, sky, people, kauai†, sunset, buildings
Topic 72 ocean†, coral†, fish†, rocks§, reefs§, water, orchid, boat§, sky, fan

Topic 1 water, sky†, tree, people, clouds†, grass, mountain, buildings, sun, snow
Topic 9 sky†, jet†, plane†, mountain, tree, water, sun, people, clouds, buildings
Topic 30 tree†, grass†, flowers§, people, field, house, mountain, sky, water, garden§

Topic 41 ice†, people, mountain§, sky, frost, snow§, clouds, water, rocks§, landscape
Topic 67 cars, buildings§, street†, people, sidewalk, lights†, window†, post, store‡, shops‡

It can be learned that modeling topic correlation has two promising advantages that
improve annotation performance. Firstly, image would be assigned with correlated topics,
where each topic tends to be semantically compact and represented by more co-occurred
words (see Fig. 2.1 the topic representation in the proposed corrCTM and the previous
corrLDA models). Secondly, as shown in Fig. 2.6, images sharing similar empirical topic
proportions would have similar visual content and related annotation words in the proposed
sCTM-bin, whereas this internal correlation is overlooked in the previous sLDA-bin.

2.4.4 Evaluation of annotation performance

Previous works [8, 22, 24] rarely provide comprehensive statistic of annotation performance
by modern measures, resulting in ambiguous judgment. To provide a comprehensive compar-
ison, the standard measures widely used in recent works [13, 14, 33] are used for evaluation.
The standard measures include 4 types: (1) percentage mean precision P, (2) percentage
mean recall R, (3) F1 score F1 = 2 P∗R

P+R , (4) total recalled words count N+. The two pro-
posed CTM based models are compared with their LDA based versions. To present the best
performance of each model, the optimal topic numbers for each model is selected via cross
validation. And for each test image, top-5 words is predicted by each model.
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Table 2.4 summarizes the overall evaluations from the proposed results as well as those
reported by previous models for image annotation on three datasets. It can be learned that, on
most of the measures, the CTM based models defeat their LDA based versions, on all three
datasets. Precisely, for LabelMe, PASCAL VOC07, Corel 5K datasets, corrCTM improves
corrLDA 3.03%, 0.85%, 2.03% on F1 score and 11, 5, 12 on N+, sCTM-bin outperforms
sLDA-bin for 3.54%, 2.74% , 4.22% on F1 score, 4, 6, 2 on N+. In general, the proposed
models gain 3.54%, 0.85%, 2.03% in terms of F1 score, and 8, 5, 4 with regards to N+

compared with the best results from both sides of the CTM based models and the LDA based
models on three datasets respectively.

It is notable that the composition of datasets, such as variety of image contents, balance
of image counts and word counts, highly affects the performance of the different types of
models. It can be observed that R-type (sLDA-bin, sCTM-bin) models are better on uniform
dataset LabelMe, in which the regression for topic-word seems to be robust, but more word
counts will reduce the regression efficiency. On the other hand, C-type (corrLDA, corrCTM)
models, which build correspondence between topic-word support larger number of topics ,
and do not easily suffer from over fitting on datasets, e.g. PASCAL VOC07, Corel 5K, which
contain much more various image content and annotations.

Fig. 2.7 demonstrates some exemplar annotation results from the proposed CTM based
models. In most scenarios, annotations predicted by the CTM based models are more related
to the contents of image and ground truth annotations, while the LDA based models incline
to prefer weird words (e.g. “boat,” “train,” “bird,” “snow”) which are actually irrelevant to
image content.
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2.5 Summary

In this chapter, the author has developed a series of CTM based topic models to capture
topic correlation, and provides a comprehensive comparison between the proposed CTM
based and previous LDA based models on annotation performance. It indicates that modeling
topic correlation could benefit annotation performance, and that the CTM based models
have either superior or competitive annotation results compared with LDA based models.
In addition, more co-occurred words can be recalled by the CTM based models through
modeling topic correlation. However, the computation of estimating model parameters
µ , Σ in the CTM based models are more complex, and the approximation for variational
parameters are sometimes numerical unstable in practice. Therefore, it remains a challenge
to apply the CTM based model on large-scale datasets, e.g., ESP Game, IAPRTC-12. This
would be a feasible direction of the future work.



Chapter 3

Exploring image-label associations in
incompletely labeled datasets

3.1 Introduction

In Chapter 2, the author discusses the traditional image annotation problem and develops a
scheme to model topic correlation in the previous LDA based topic models. In the problem
setting of traditional image annotation, the ground truth labels assigned to the images are
assumed to be compact and perfect. In other words, the ground truth labels completely
describe the content of the images. However, this assumption is not reasonable as the
ground truth labels are assigned by human annotators manually. Due to unconsciousness
and misconception of the annotators, the ground truth labels indeed tend to be ambiguous,
incomplete and even imprecise.

In this chapter, the author considers a practical issue of incomplete labeling that the
images in the training set are not completely annotated with all relevant labels. As shown
in Fig. 3.1, the two images from benchmark datasets IAPRTC-12 and NUS-WIDE (both
datasets are collected from social media such as Flickr) have few annotated labels and suffer
from the problem of incomplete labeling. Potentially correct labels such as {“flower,” “plant,”

“tree,” “trunk”}, {“sky,” “grass”} are missed from the ground truth labels of two images,
respectively.

Thus, when applying the traditional annotation methods on incompletely labeled datasets,
the annotation performance can hardly achieve optimal since the insufficient annotations
of the datasets could potentially lead to biased estimation of the prediction model. For
example, a recent study of [19] reports that the annotation performance of a baseline method
OVA-SVM decays drastically when the degree of incompleteness of training set increases.
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(a) Ground truth: bloom, leave (b) Ground truth: clouds

Fig. 3.1 Examples of incomplete labeling: (a) an image from IAPRTC-12 dataset and (b) an
image from NUS-WIDE dataset.

To tackle the issue of incomplete labeling, one group of recent ongoing researches [10, 34–
36] directly modify conventional image annotation prototypes such as multi-label ranking
[34, 36], binary SVM [10], and ridge regression [35], by incorporating additional consistency
between visual and semantic cues in images and labels. In addition, the performance of
these methods largely depends on the assumption of consistency. Moreover, another group of
works aim at boosting the conventional annotation models and adding a new learning stage
incrementally under the incomplete setting. The techniques utilized in the new learning stage
could be multi-task learning [11], ensemble learning [37], and structured output learning
[38, 39].

In particular, the structured output learning technique has been attracting much atten-
tion since it allows the learning of functions with complex outputs, such as object poses,
segmentations, and parse trees. It has been successfully applied to the problems such as
object detection, image segmentation and image parsing. It is notable that the structured
output learning technique is an efficient scheme to handle the difficulties of incomplete
labeling in image annotation tasks. First, it captures interdependencies of multiple labels
from the structure in the output space. Secondly, the weak learning manner allows it to
explore the potential usages of missing labels, and those missing labels can be captured by
latent variables [40].

Specifically, in the celebrated work of [39], McAuley et al. propose a model termed
OVA-SSVM that combines conventional OVA-SVM with structured output learning method.
In the OVA-SSVM model, the structured output learning method is adopted to boost the
performance of pre-trained OVA-SVM classifiers under the incomplete setting, and a struc-
tured loss function of image classification is adopted to benefit prediction of missing labels.
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Promising prediction results are obtained on the classification task conducted on the Ima-
geNet dataset [3] where each training image has a single label. However, due to the limitation
of structured loss function used, the OVA-SSVM method may not be well extended to more
practical circumstances where each training image has multiple labels.

Therefore, in this chapter, the author puts effort to improve OVA-SSVM in three aspects:

• A new method is proposed to tackle with more general case where each training image
has one or more labels. The proposed method is more efficient for the multi-label
annotation problem than the OVA-SSVM method

• A novel image specific structured loss term is formulated, which is more appropriate
than the classification-style structured loss used in OVA-SSVM, to account for the
dependencies of predicted multiple labels of a specific image

• An efficient optimization algorithm with lower complexity is developed by exploiting
the properties of the proposed structured loss.

Extensive evaluation on two benchmark annotation datasets with various settings of incom-
pleteness are performed on image annotation tasks. The empirical results demonstrate that the
proposed method is significantly better than OVA-SSVM, and achieve competitive annotation
performance compared with other state-of-the-art methods designed for incomplete labeling.

3.2 Related work

Generally, image annotation can be viewed as a multi-label classification problem as each
image is associated with multiple labels. Several approaches cast the problem of multi-
label classification to separately train a discriminative classifier for each label, and use
these classifiers to predict the presence/absence of each particular label. Usually, SVM [9],
boosting [41], random forest [42] are typically applied to learn the discriminative classifiers.
It is worth noting that the OVA-SVM that has been widely used on image classification tasks
[43, 44] also shows promising results on image annotation task, and hence, it is usually
treated as a baseline for annotation model evaluation. However, these approaches neglect the
correlation of different labels that are useful for model learning.

To exploit the dependencies among labels, several efficient schemes are proposed in the
multi-label classification framework, e.g., incorporating the correlation of labels from prior
label information [45], using hypergraph regularization to constrain the label correlation [2],
constructing bi-relational graph to model the label correlation and image similarity [46]. The
main shortcoming of multi-label classification methods is that in order to train a reliable
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annotation model, they require a large set of training images with clean and complete manual
annotations.

Besides the multi-label classification methods, several advanced machine learning tech-
niques have been applied, including generative and nearest neighbor (NN)-based methods.
The generative methods [5, 22, 47], such as topic model [22], learn the joint distribution
of labels and image features, where different hypotheses of probability distribution can be
assumed, such as multinomials, separate Bernoullis, mixture of Gaussian. The NN-based
methods [12–14, 48] perform image annotation via propagating labels from visually similar
images, since such methods generally assume that visually similar images probably share
common labels. For the NN-based methods, the primary research issue focuses on designing
an efficient label propagation scheme [12, 13, 15] and selecting appropriate visual neighbors
[14, 48, 49]. Similar to the multi-label classification methods, to achieve good performance,
the generative and NN-based methods also require a large number of well annotated images.

3.3 Image annotation under incomplete labeling

3.3.1 Problem formulation

In this section, the author first introduces the conventional OVA-SVM used for image
annotation task, and then describes the OVA-SSVM method that uses structured output
learning for boosting the conventional OVA-SVM classifiers under the incomplete setting.
Some notations used in the following sections are also defined in this section.

Conventional OVA-SVM [9]

Let T = {(x1,Y 1), ...,(xN ,Y N)} be an incompletely labeled dataset, where xn ∈X rep-
resents an image feature vector, Y n ⊆ Y is a set of labels, where Y = {y1, ...,yC} is the
vocabulary of C labels. Note that Y n is a subset of the ideally full set Ωn of ground truth
labels for image xn. The goal is to learn an annotation model that, for an unseen image x,
outputs an optimal set Ŷ consisting of K distinct labels. Usually, K is set to be a fixed value
for different test images, to simplify the problem setting and the model evaluation.

A conventional annotation model consists of learning a series of binary OVA-SVM
classifiers that distinguish a single label from all other. In other words, for each class yc ∈ Y ,
OVA-SVM learns a separate parameter vector wyc

OVA. where Fig. 3.2 (a) shows the learning
procedure of OVA-SVM and the learnt binary classifiers {wyc

OVA}Cc=1 of all labels. To predict
a set of K labels Ŷ for an unseen image x, the annotation model simply returns the labels
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𝑤𝑂𝑉𝐴
𝑦1

𝑤𝑂𝑉𝐴
𝑦𝐶

{𝑤,𝑤𝑂𝑉𝐴
𝑦1 }

Training

images

OVA-

SVM

OVA-

SSVM

…

{𝑤,𝑤𝑂𝑉𝐴
𝑦𝐶 }

(a) Parameter learning for OVA-SVM (b) Parameter learning for OVA-SSVM

…

Fig. 3.2 Procedure of parameter learning for OVA-SVM and OVA-SSVM methods.

with the K highest scores performing on classifiers of all labels:

Ŷ = arg max
Y⊆Y

∑
yc∈Y

x ·wyc
OVA, (3.1)

where Y ⊆ Y represents any possible output set containing K labels. It is worth noting
that the annotation model of OVA-SVM classifiers has the following limitations that (1) the
one-versus-all learning manner ignores the dependencies of labels, which implies that the
OVA-SVM optimizes the prediction of only one single output label, ignoring the “struc-
ture” altogether; (2) the performance of OVA-SVM classifiers would drop drastically when
incomplete labels for training image are provided.

OVA-SSVM [39]

To overcome the disadvantages of conventional OVA-SVM and to exploit the structured
associations in output label set Y , the structured output learning method OVA-SSVM [39]
refers to the training set consisting of structured input-output pairs T ∈ (X ×Y )N . The
prediction rule of optimal output labels Ŷ for an unseen image x is

Ŷ = arg max
Y⊆Y

Φ(x,Y ) ·w = argmax
Y∈Y ∑

y∈Y
φ(x,y) ·w, (3.2)

where Φ is the joint feature vector that describes the relationship between input x and any
structured output Y , φ is the joint feature vector for input x and a single label y in Y , and
w is the parameter vector to be learnt. In particular, given a set of pre-trained OVA-SVM
classifiers {wyc

OVA}Cc=1, the joint feature vector Φ(x,Y ) in OVA-SSVM is defined as

Φ(x,Y ) = ∑
y∈Y

x◦wy
OVA, (3.3)
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where x◦wy
OVA represents the Hadamard product of x and wy

OVA. Then the annotation model
in Equation 3.2 can be formulated as

Ŷ = arg max
Y⊆Y

∑
y∈Y
⟨x◦wy

OVA,w⟩. (3.4)

We can learn from Equation 3.4 that OVA-SSVM incrementally learns a single parameter
vector w that re-weights the parameter vectors of existing OVA-SVM classifiers {wyc

OVA}yc∈Y

(the learning procedures of OVA-SSVM is illustrated in Fig. 3.2 (b)), and incorporates the
structured nature of output Y through the joint feature vector Φ(x,Y ).

Moreover, for the setting of incomplete labeling of T , the input-output relationship
is not completely characterized by (x,Y ) ∈X ×Y . It is rational to introduce a set of
unobserved latent variables, Z = {Z1, ...,ZN}, where Zn represents a set of labels that appear
in image xn but are not annotated in the ground truth. The full set of labels for the image xn

is Ωn = Y n∪Zn (note that Y n∩Zn =∅). Now the joint feature vector Φ(x,Ω) describes the
relation among input x, output Y and latent variables Z, and it is defined as

Φ(x,Ω) = ∑
y∈Y

x◦wy
OVA + ∑

z∈Z
x◦wz

OVA. (3.5)

To train OVA-SSVM, the parameter vector w is determined by minimizing the regularized
risk on the training set T . The risk is measured through a user-provided structured loss
function ∆(Y,Y n) that quantifies how much the prediction Y differs from the given label
set Y n of image xn. The resulting convex optimization problem is to minimize an objective
function as

min
w,ξ

λ

2
∥w∥2 +

1
N

N

∑
n=1

ξn (3.6)

s.t w ·Φ(xn,Ωn)−w ·Φ(xn,Y )≥ ∆(Y,Y n)−ξn,

∀n,Y ⊆ Y .

The constraints of Equation 3.6 identify the prediction Y with a score w ·Φ(xn,Y ) that is
smaller than the score w ·Φ(xn,Ωn) of the “full” ground truth Ωn by a soft margin that equals
to the loss ∆(Y,Y n) with the slack variable ξn. The optimization problem can be solved
efficiently using a constraint generation strategy [50]: the constraint can be generated by
identifying the most violated (incorrect) prediction Ȳ from Y for the current parameter vector
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w on xn. This amounts to solving

Ȳ = arg max
Y⊆Y
{∆(Y,Y n)+w ·Φ(xn,Y )}. (3.7)

Given the definition of the user-provided structured loss ∆, Ȳ of all xn ∈X can be used to
approximate a lower bound of the objective in Equation 3.6. Then the gradient of Equation
3.6 can be computed, and alternately optimize the latent variables Z and the parameter vector
w. In the next section, the author will introduce the proposed image specific loss term that is
elaborately designed for incompletely labeled training data, and derive the corresponding
optimization algorithm in the structured output learning framework.

3.3.2 Image specific structured loss

Since the given label set Y n may not describe all the object in the image xn, an annotation
model should not be penalized for predicting “incorrect” labels that actually describe those
objects in xn. To address this issue, a structured loss function ∆ is designed in OVA-SSVM. It
argues that, given a set of predicted output labels Y for xn, it should not penalize the method
if one of the predicted labels y ∈ Y is similar to any of the ground truth labels yn ∈ Y n. The
loss function is defined as

∆(Y,Y n) = min
y∈Y

min
yn∈Y n

d(y,yn), (3.8)

where d(y,yn) is the error term measuring the difference between label y and yn. In practice,
d(y,yn) could be a flat error measure: d(y,yn) = 0 if y = yn, and 1 otherwise. Besides, d(y,yn)

could also be a hierarchical error measure that measures the shortest path distance between
yn and y in a taxonomic vocabulary tree.

Actually, there are several limitations of the structured loss of Equation 3.8 for the
incomplete setting. Firstly, to predict output labels Y , ensuring that only one of the predicted
labels is similar to the ground truth is not enough. In other words, it is expected that each
of the predicted labels is similar to any (even all) of the ground truth labels. Secondly, the
error measure of d(y,yn) is either too coarse to quantify the difference of labels (i.e. flat error
measure), or too rigorous to require the prior construction of taxonomic tree (i.e. hierarchical
error measure). Thirdly, the error measure indicates that the variances of labels are based on
the global statistics of training data, whereas for the incomplete setting, it is not sufficient to
model the relatedness of missing labels and ground truth labels.

Fig. 3.3 demonstrates two examples of label prediction using the flat structured loss in
OVA-SSVM. Note that in Fig. 3.3 the fourth column, the image specific loss of each predicted
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Image 𝑥𝑛
Incomplete
labels  𝑌𝑛

Predicted labels 𝑌

OVA-SSVM
(Flat)

Proposed

Structured loss ∆

Flat
Image

specific

bloom,
leave

man,
one,
rock

bloom (0),
leave (0),

trunk (0.531),
flower (0.552),
plant (0.765)

man (0),
rock (0),

tee-shirt (0.647),
hand(0.685),

waterfall (0.689)

bloom,
flower,
fruit,

forest,
branch

man,
woman,

front,
bottle,
forest

0

0

0.3696

0.4042

Fig. 3.3 Examples of label prediction using flat loss (OVA-SSVM (Flat)) vs. image specific
structured loss (proposed method), where the two images are selected from IAPRTC-12
dataset.

label is also presented. The loss values ∆ in last two columns are calculated according to
Equation 3.8 and Equation 3.9 respectively. It can be observed that, although flat structured
loss (in fifth column) is generated to be zero (since the predicted labels “bloom,” “man”
match the incomplete ground truth Y n ), the predicted result (in third column) is inferior since
it contains several incorrect labels, e.g. {“fruit,” “forest”}, {“woman,” “bottle,” “forest”}.
Thus, it implies that numerically minimizing the structured loss of Equation 3.8 could not
guarantee all predicted labels to be similar to ground truth labels.

To address the limitations of Equation 3.8, the author assumes that each of the predicted
labels is related to all of the ground truth labels, and proposes a new structured loss term to
capture the variances of labels relying on the specific image content. The proposed image
specific loss term is defined as

∆(Y,Y n;xn) =
1
|Y |

1
|Y n| ∑y∈Y

∑
yn∈Y n

d(y,yn;xn). (3.9)

Here the error measure d(y,yn;xn) is image specific, representing the difference of label y
and yn particularly on the image xn. In addition, the structured loss ∆(Y,Y n;xn) ensures that
each of the predicted labels in Y to be related to all the ground truth labels in Y n. Since
the incomplete label set Y n is small, here the structured loss of Equation 3.9 is restricted to
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moderately consider the dependencies between each of the predicted labels and all labels in
Y n.

Inspired by the works [10, 20], the author casts the calculation of d(y,yn;xn) to comparing
the relatedness of image xn to labels y and yn. In particular, for a given label yc, let X +

c be the
set of images that are annotated with label yc, and the remaining images be X −

c = X \X +
c .

For image xn in X +
c , the relatedness of image xn to label yc is defined as R(xn,yc) = 1 since

xn is annotated with yc. For image xn that belongs to X −
c of yc, the relatedness score of

R(xn,yc) is determined by considering three factors: visual similarity, semantic similarity
and image-label association in the visual neighborhood. Correspondingly, R(xn,yc) consists
of

• Visual similarity based relatedness score RV (xn,yc): we compute the visual distance
dist(·) (scaled to range [0,1]) of xn with its nearest neighbor x∗ ∈X +

c , and define
RV (xn,yc) = 1−dist(xn,x∗).

• Semantic similarity based relatedness score RS(xn,yc): we first compute the correlation
score between pairwise labels yi and y j, ∀yi,y j ∈ Y as: co_occur(yi,y j) =

fi, j
fi+ f j− fi, j

,
where fi and f j are the count of occurrence of labels yi and y j, and fi, j is the count of
co-occurrence of labels yi and y j. Let Y n be the label set of image xn and RS(xn,yc) =

maxyn∈Y n co_occur(yc,yn).

• Reverse nearest neighbors based relatedness score RN(xn,yc): given a fixed value of
M(= 5), first the mth nearest neighbor for each image in X +

c on the whole training set
X is calculated, and then pm is set to be the number of images in X +

c that have xn

as their mth nearest neighbor. Finally, RN(xn,yc) is defined as ∑
M
m=1

pm
m /∑

M
m=1 pm + ε ,

where ε > 0 is a small number to avoid division by zero.

Finally, R(xn,yc) is defined as the average of these three scores, similar as in [10]:

R(xn,yc) =
1
3
(RV (xn,yc)+RS(xn,yc)+RN(xn,yc)). (3.10)

Now the error measure d(y,yn;xn) can be calculated by comparing the relatedness scores of
image xn to labels y and yn as

d(y,yn;xn) = R(xn,yn)−R(xn,y) = 1−R(xn,y). (3.11)

Recalling that yn ∈Y n is the ground truth label of xn, therefore it has highest relatedness score
(equals to 1). It can be learnt that the calculation of Equation 3.11 is directly determined
by the relatedness score R(xn,y) of label y to image xn. If the predicted label y has larger
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relatedness score to xn, it would have smaller difference with all the ground truth labels. This
is consistent with the proposed structured loss of Equation 3.9, which now can be efficiently
measured by the relatedness of predicted labels to the specific image.

When computing the proposed structured loss in Equation 3.11, the complexity of
calculating the relatedness scores RV (xn,yc) and RS(xn,yc) is O(N2) and O(C2), respectively,
due to the pairwise neighborhood searching. In addition, calculating RN(xn,yc) also relies
on the searched neighborhood, thus RN(xn,yc) can be obtained along with RV (xn,yc). It is
worth mention that since usually the number of training samples N is much larger than the
label dictionary size C, the time consuming of the Equation 3.11 scales quadratically to N.

Compared with the flat/hierarchical structured loss, the proposed structured loss of
Equation 3.9 has several advantages. Firstly, as shown in Fig. 3.3, although the loss values
(in last column) are numerically larger than “zero” of flat structured loss (in fifth column),
the predicted labels are more similar to the provided incomplete labels. This is because the
proposed structured loss moderately considers the predicting labels based on their relatedness
to specific image content, and the relatedness measure is elaborately designed and more
appropriate than the simple 0-1 measure. Secondly, the proposed structured loss is more
flexible to the number of ground truth labels as it accumulatively measures each of the
predicted labels to all the ground truth, while the flat structured loss focuses on the most
dominant one in the predicted label to a single label of the ground truth. Thirdly, in the
proposed method the relatedness measure can be directly and precisely computed from
incompletely labeled training images, while prior knowledge of taxonomy or large quantities
of fully labeled training data is required in the traditional algorithms.

3.3.3 Optimization method

Given the proposed structured loss function of Equation 3.9, the most violated constraint of
prediction Ȳ for image xn can be generated according to Equation 3.7 as in the form of

Ȳ = argmax
Y∈Y
{ 1
|Y |

1
|Y n| ∑y∈Y

∑
yn∈Y n

d(y,yn;xn)+ ∑
y∈Y

w ·φ(xn,y)}

= argmax
Y∈Y
{ 1
|Y | ∑y∈Y

(1−R(xn,y))+ ∑
y∈Y

w ·φ(xn,y)}, (3.12)

where the calculation of structured loss ∆(Y,Y n;xn) is converted to computing the relatedness
scores of predicted label set Y to image xn, as described in Section 3.3.2.

We can obtain the solution of Y of Equation 3.12 by simply sorting the term 1
|Y |(1−

R(xn,yc))+w ·φ(xn,yc) for each label yc ∈ Y , and then by choosing the top K labels for Ȳ .



3.4 Experimental results under incomplete labeling 33

Solving Equation 3.12 greedily takes O(C logC), thus it is faster than the constraints genera-
tion method in OVA-SSVM which takes O(C2 logC). After the most violated constraint Ȳ
for each image has been generated, the lower bound of the objective function in Equation 3.6
can be derived as

J(w) =
λ

2
∥w∥2 +

1
N

N

∑
n=1

[∆(Ȳ −Y n)+w ·Φ(xn,Ȳ )−w ·Φ(xn,Ωn)], (3.13)

and the gradient of J(w) with respect to w is

∇wJ(w) = λw+
1
N

N

∑
n=1

[w ·Φ(xn,Ȳ )−w ·Φ(xn,Ωn)] . (3.14)

It can be observed in Equation 3.13 and Equation 3.14 that calculating J(w) and its gradient
is involved in computing the joint feature vector Φ(xn,Ωn) on “full” label set Ωn of each
image. Here the number of labels in Ωn is fixed to be K so that the missing labels Zn can
be precisely inferred. Thus, Φ(xn,Ωn) can be efficiently computed according to Equation
3.5 with latent variable Zn. To learn the parameter vector w with latent variable Zn, the
previous alternating optimization technique proposed in [38, 39] is adopted. Specifically, the
optimization algorithm alternates between optimizing the parameter vector wt by initializing
the latent variable Zn for each image in the tth iteration, and re-estimating the latent variable
Zn for the (t +1)th iteration given the learnt parameter vector wt .

The pseudocode for solving the alternating optimization problem is depicted in Algorithm
1. In practice, the author refers to the implementation in [39] to conduct the optimization
algorithm, which utilizes GPU and Nvidia’s high-performance BLAS library to accelerate
the optimization procedure.

3.4 Experimental results under incomplete labeling

In this section, the effectiveness of the proposed method is evaluated by comparing it with
the previous OVA-SSVM and other state-of-the-art annotation methods under incomplete
setting.
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Algorithm 1: Alternating optimization of proposed method
Input: Incompletely labeled training data T = {(xn,Y n)}N

n=1, pre-trained binary classifiers
{wyc

OVA}Cc=1
Output: Parameter vector w
1: Initialize w0 = 1 for iteration t = 0
2: repeat
3: Set t = t +1
4: for n = 1, ...,N do
5: Assign latent variable Zn

t = {argmaxY∈Y wt−1 ·Φ(xn,Y )}\Y n for xn (preserving
K−|Y n| missing labels)

6: end for
7: for n = 1, ...,N do
8: Generate the most violated constraint Ȳt for xn according to Equation 3.12
9: end for

10: Compute objective Jt(w) and gradient ∇wJt(w) according to Equation 3.13 and
Equation 3.14

11: Minimize loss of Equation 3.6 to calculate wt
12: until Loss in Equation 3.6 is converged

3.4.1 Experimental setup

Datasets and Features

Our evaluation experiments are conducted on two publicly available benchmark datasets:
IAPRTC-12 [51] and NUS-WIDE [52]. These two datasets are very challenging with
significant diversity among the images that are obtained from the social web. Table 3.1
shows the general statistics of these two datasets. The items in the second row are listed
in the format “training/test,” and items in the third and fourth rows are given in the format
“mean/minimum/maximum.” It is worth noting that they cover both conditions of large
vocabulary size and large number of images.

In the experiments, for IAPRTC-12 dataset, the same multiple features is used as those
in [10, 12, 13, 35]. These multiple features consist of global and local features. The global
features include histograms in RGB, HSV and LAB color space, and the GIST features; and
the local features include the SIFT and hue descriptors obtained densely from multi-scale
grid, and from Harris-Laplacian interest points. For NUS-WIDE dataset, besides global GIST
features, other five types of SIFT based local features (C-SIFT, Opponent-SIFT, RGB-SIFT,
RG-SIFT) are also extracted using the public colorDescriptor tools [53]. The SIFT based
features are computed without orientation invariance and the grid has a step size of three. The
codebook for each SIFT based feature is generated from 7,000 randomly selected images,
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and quantized to 4,000 corresponding k-means clusters. For both datasets, L2 normalization
for each type of features is firstly performed, and then concatenated to an fused feature vector
(37,152-dimensions for IAPRTC-12 and 20,512-dimensions for NUS-WIDE) to represent
each image.

Table 3.1 General statistics for the two datasets used for evaluation.

IAPRTC-12 NUS-WIDE
Number of labels 291 81

Number of images 17,665/1,962 138,563/92,484
Number of labels per image 5.7/1/23 1.8/1/20
Number of images per label 34/153/4,999 2,512/333/16,425

Incomplete setting

We consider the original IAPRTC-12 as fully labeled dataset since the average number of
labels per image is more than 5 (5.7 in Table 3.1), which could be sufficient to describe
multiple objects in an image. To simulate the incomplete setting, partial labels for each image
are randomly deleted, and the deletion process which stands by the principle min(1,⌈M×
(1−ratio)⌉) ensures that each image preserve at least one label. Here, M denotes the number
of original labels of an image, ⌈·⌉ denotes the ceiling function which gives the smallest
integer not smaller than the given value, and ratio represents the degree of incompleteness.
In the experiments, ratio = {10%,30%,50%,70%,90%}, and it indicates that the larger the
ratio is, the higher the degree of incompleteness would be. Note that ratio = 0% means the
dataset is fully labeled without any incompletion. For NUS-WIDE, as the average number of
labels per image is less than 2 (1.8 in Table 3.1), which could be insufficient compared with
the situation of IAPRTC-12, thus the NUS-WIDE is considered as an originally incompletely
labeled dataset.

Binary classifiers

As the proposed method needs a pre-trained binary classifier for each class as a starting point
for structured learning, following the previous works [10, 39], the OVA-SVM classifiers are
learned for initialization. In particular, a linear OVA-SVM classifier is trained for each label
using Pegasos algorithm [54], and the raw confidence scores predicted by the OVA-SVM
classifiers are calibrated to probabilities using Platt algorithm [55]. Finally, the calibrated
probability scores are utilized as the initial input to the proposed method.
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Evaluation metrics

Given an unlabeled test image, the score for each label is firstly computed using the learnt
model, and then five top-scored (K = 5, |Y |= 5) labels are selected according to Equation
3.4. Here two standard criteria are used to evaluate the performance: (1) average precision
per label P, (2) average recall per label R. Note that the P and R scores are obtained by first
computing precision and recall for each label and then averaging. In addition, as the number
of labels in NUS-WIDE dataset is considerably small, another two criteria: Hamming loss
and Average AUC are exported, which take the performance of overall prediction and ranking
into account. For all the adopted evaluation metrics except Hamming loss, a larger numerical
value indicates better performance. All the experiments are conducted on a computer which
has Inter Xeon E5520 2.27GHz CUP with 16GB RAM.

3.4.2 Evaluation on IAPRTC-12 dataset

Assessment of assigning latent variables

The author then evaluate the proposed method on image annotation task in this section
and the next section. Due to the more manageable size of the two datasets IAPRTC-12
and NUS-WIDE, the proposed image-specific structured loss for each training image can
be directly computed in these two datasets. Since these two datasets have no pre-defined
semantic hierarchy, thus the hierarchical structured loss is invalid for evaluation. The
author first investigates the the efficiency of structured output learning with latent variables
in the proposed method and OVA-SSVM (Flat) method. Intuitively, the latent variables
should capture those objects that appear in an image, but are not present in the ground truth.
Specifically, the author explores how closely the assigned latent variable Zn matches those
labels Ωn\Y n deleted from the originally full annotations of image xn when the learning
algorithm depicted in Algorithm 1 is followed. The author uses a measure termed Coverage=
1
N ∑

N
n=1

|Zn∩(Ωn\Y n)|
|Zn| to represent the averaged intersection between Zn and Ωn\Y n for all

training image xn ∈X . Note that higher coverage indicates better assignments of latent
variables.

Fig. 3.4 (a) shows the overall coverage of latent variable to the deleted labels in the full
annotations with different degree of incompleteness. It can be observed that (1) the coverage
of latent variable of both methods increases when the degree of incompleteness decreases,
and this is reasonable because the more labels are given for training, the better the model
can predict the missing labels; (2) the proposed method consistently obtains higher coverage
for missing labels than OVA-SSVM (Flat), which simply uses flat structured loss, as the
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(c) Degree of incompleteness: 50%
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Fig. 3.4 Evaluation of coverage of latent variables with various degree of incompleteness.

image specific structured loss used in the proposed method is more efficient to exploit various
contextual information of labels and images under the incomplete setting.

Furthermore, Fig. 3.4 (b)-(d) explicitly demonstrates the changing of coverage of the
latent variables through the iterations (as described in Algorithm 1) under different degree of
incompleteness: 10%, 50%, 90%. We can learn that the proposed image specific structured
loss is appropriate to ensure the proposed method to perform robustly, while OVA-SSVM
(Flat) seems to be unstable through the iterations and results in inferior coverage. Especially,
when the degree of incompleteness is pretty high (e.g. 70%, 90%), the coverage of the
proposed method is significantly better than OVA-SSVM (Flat), showing the superiority of
the proposed method under the incomplete setting.

Overall comparison with various degree of incompleteness

To make comprehensive comparison, the labeling results from binary classifiers: OVA-SVM
and SVM-VT [10] (OVA-SVM combined with the proposed image specific label relatedness
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Fig. 3.5 Comparison of annotation performance with various degree of incompleteness.

as depicted in Section 3.3.2 are included, without structured output learning), then the binary
classifiers is boosted by structured output learning via flat structured loss (OVA-SSVM (Flat))
and image specific structured loss (the proposed method). In addition, the method termed
2PKNN [14] is also into account, which is a nearest neighbor based method that achieves
the state-of-the-art performance for image annotation task with full labeling. The basic
2PKNN method and its metric learning version 2PKNN (ML) under the same settings of
incompleteness are evaluated in the experiment.

Fig. 3.5 shows the annotation performance of these methods in terms of P and R with
various degree of incompleteness. It can be learned that:

• As the degree of incompleteness decreases, the performance of all the methods becomes
better. This is because more labels for training data provides more information.

• The proposed method can boost the performance of binary classifiers OVA-SVM and
SVM-VT under the incomplete setting, which verifies the efficiency of the incremen-
tally structured output learning.

• Regarding the structured output learning stage, the proposed method performs re-
markably better than OVA-SSVM (Flat) which uses the flat structured loss, especially
when the degree of incompleteness is considerably high (e.g. 70%,90%). The reason
behind this is that more appropriate structured loss which efficiently accounts for the
dependencies among the predicted labels is used under the incomplete setting.

• The 2PKNN method performs better than the proposed method when the degree of
incompleteness is not high (e.g. 10%, 30%, 50%), as the elaborately designed neighbor
selection scheme in 2PKNN method can efficiently construct a balanced neighborhood
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in this case, and the metric learning version can further capture the importance of
different labels based on measured image similarity. However, when the degree of
incompleteness is considerably high (e.g. 70%, 90%), the 2PKNN method performs
inferiorly to the proposed method. We believe that large proportions of missing labels
from training images prohibit the 2PKNN method obtaining a balanced neighborhood
and learning appropriate distance metric for similarity measure. Therefore, it indicates
that the proposed method is more robust to tackle the issue of incompleteness.

(a) field, mountain (b) front, people, street (c) stand (d) road
mountain, cloud, sky,

field, landscape
restaurant, building,
street, people, front

fruit, people, woman
stand, clothes

llama, gravel, road
stone, shrub

(e) sand, sky (f) flowers, sun (g) cars (h) sand
beach, sand, sky,

rocks, ocean
sky, tree, clouds,

flowers, sun
vehicle, cars, nighttime,

buildings, reflection
sky, sand, animal,

person, horse

Fig. 3.6 Samples of annotation results of the proposed method on IAPRTC-12 ((a)-(d)) and
NUS-WIDE ((e)-(h)), where the red labels are the ground truth and black ones are top five
labels predicted by the proposed method.

3.4.3 Evaluation on NUS-WIDE dataset

In the previous section, the author evaluates the performance of the proposed method on a
moderate dataset IAPRTC-12 by simulating the cases of different degrees of incompletion.
In this section, the author directly utilizes a large scale dataset NUS-WIDE that is originally
incompletely labeled dataset for evaluation. To make comprehensive comparisons, besides
the four methods compared above, the state-of-the-art annotation methods which are designed
for full labeling and incomplete labeling are also considered. The methods for full labeling
include JEC [12], Tagprop [13], 2PKNN [14] and M3L [45]. In particular, for Tagprop and
2PKNN, their metric learning version is used, denoting as Tagprop (ML) and 2PKNN (ML).
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The methods for incomplete labeling consist of SVM-VT [10], MLR-GL [34], Fasttag [35]
and LEML [36]. To make fair comparison, the code provided by these authors are directly
used in the experiment and the instructions in the corresponding papers are referred to tune
model parameters.

Table 3.2 Annotation performance comparison among different methods on NUS-WIDE
dataset, where the best results of previous and the proposed methods are highlighted in bold.

Method P (%) R (%) Average AUC Hamming loss
JEC [12] 11.9 16.6 0.557 0.083

Tagprop (ML) [13] 13.2 23.8 0.707 0.074
2PKNN (ML) [14] 14.5 23.9 0.726 0.073

OVA-SVM 12.3 22.8 0.782 0.079
M3L [45] 16.1 23.2 0.791 0.071

SVM-VT [10] 16.7 24.3 0.806 0.069
MLR-GL [34] 14.2 23.5 0.722 0.078
Fasttag [35] 18.4 21.3 0.834 0.067
LEML [36] 17.5 24.6 0.798 0.076

OVA-SSVM (Flat) [39] 16.9 24.1 0.772 0.070
Proposed 17.7 25.6 0.819 0.064

Table 3.2 shows the annotation performance of various methods depicted above. It can
be observed that:

• The proposed method consistently boosts the binary SVM classifiers (OVA-SVM and
SVM-VT) and also obtain better performance than OVA-SSVM (Flat).

• The conventional nearest neighbor based methods such as JEC, Tagprop and 2PKNN
fail to achieve comparable performance. This reason may be that the noisy and missing
label assignments of NUS-WIDE dataset affects the results of selecting representative
neighborhood and learning appropriate distance metric.

• The annotation methods including the proposed method designed for incomplete
labeling are generally superior to conventional annotation methods with full labeling,
which again addresses the significance of tackling the issue of incompleteness of
practical annotation data.

• The proposed method performs comparable or better than even the recently proposed
methods with incomplete labeling, which corroborates the efficiency of structured
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output learning on capturing the semantic correlations of labels when labels are incom-
plete. And it explores more efficient SVM based method combining with structured
output learning and provides another aspect for the image annotation problem with
incomplete labeling.

Fig. 3.6 gives qualitative samples of annotation results predicted by the proposed method
on the two datasets. In particular, for IAPRTC-12 dataset, the original training images
are preserved without the deletion process to evaluate the generalization of the proposed
method. From the samples it can be learned that, although there are fewer ground truth
labels, the proposed method can still make correct prediction to them. In addition, the
proposed method can also reflect semantic connectedness among the predicted labels, e.g.
{“field,” “landscape”}, {“restaurant,” “building,” “street”}, {“beach,” “sand,” “ocean”}, etc.
This further demonstrates the effectiveness of the proposed method using structured output
learning.

3.5 Summary

In this chapter, the author considers a special case of weak labeling, which is termed in-
complete labeling. The author leverages the structured output learning method to boost the
performance of conventional OVA-SVM classifiers, and then formulates an image specific
structured loss function which is more appropriate to explore the dependencies of predicted
multiple labels. Later, an efficient optimization algorithm with lower computational com-
plexity is developed to learn model parameters. Experimental evaluation demonstrates that
the proposed method is efficient to handle the issue of incomplete labeling and performs
superior than several existing methods on image annotation task. For the future direction,
it is rational to explore more efficient strategy of calculating the image specific structured
loss term for large quantities of training data, and to extend the proposed method to a more
general case where even some of the incomplete labels are incorrectly assigned to the training
samples. This in turn would facilitate the annotation model to be robust against the defection
of training data.





Chapter 4

Image-tag re-weighting with defective
tag assignments

4.1 Introduction

In Chapter 3, the author discusses a practical issue of incomplete labelling where the images
in the training set are not completely annotated with all relevant labels. Later in Chapter 3,
the author proposes a scheme to explore the image-label associations in the incompletely
labeled dataset, and formulate a image-specific structured loss term in the structured output
learning method OVA-SSVM. The proposed scheme of modeling the image-label association
is efficient and robust when the training dataset is incompletely labeled.

In this chapter, the author posts a more general problem of defective tag assignments,
where the raw user-provided ground truth tags (labels) assigned to the training images are
incomplete or noisy. It is notable that the issue of incomplete labelling can be considered as a
subcase of defective tag assignments. As an example, in the case of defective tag assignments,
an image whose true tag assignment is (t1, t2, t3) is defectively assigned as (t1) or (t2, t4). Fig.
4.1 shows examples of defectively tagged images from benchmark datasets IAPRTC-12 [51]
and MIR Flickr [56]. In Fig. 4.1, italic tags are provided ground truth tags, underlined tags
are incorrect noisy tags, and bold tags are potentially missing tags.

Indeed, there are several reasons that cause defective tag assignments. (1) Tag-synonyms:
the synonyms of tags can be used interchangeably, e.g. “lake” and “pond,” but users
usually will not spend time to enter all the synonyms. (2) Tag-hypernyms: some tags share
hierarchical and structural overlap, e.g. “animal,” “insect,” “wildlife,” and users tend to
choose general tags. (3) User-unconsciousness: some “obvious” or visually secondary
tags might be ignored by user unconsciously, e.g “tree,” “plant.” (4) User-misconception:
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(a) cliff, lake, landscape,
shade, sky, pond,
rock, tree, water

(b) nature, macro, flowers,
germany, animal, eyes, insect,

plant, leaf, wildlife

Fig. 4.1 Example images with defective tag assignments: (a) an image from IAPRTC-12
dataset, (b) an image from MIR Flickr dataset.

visually ambiguous content leads to inappropriate tagging, e.g. “eyes.” (5) User-arbitrariness,
sometimes users choose unrelated tags arbitrarily in order to minimize their efforts, e.g.
“germany.”

To tackle the challenge of defection, the goal of the work in this chapter is to learn
a tag completion model from defectively tagged training images to recover the complete
tag assignments of training images, and then to apply the learned model on untagged or
defectively tagged test images. In other words, the work in this chapter can be treated as a
unified framework that tackles both tag completion and denoising. Although several previous
studies [57–59] are also declared to be unified frameworks, an inevitable disadvantage of
them is the difficulty in balancing the degree of completion and denoising. When recalling
missing tags (completion) or rejecting noisy tags (denoising) from an image, the penalties of
different tags are equally allocated, leading the result to be biased on either completion or
denoising. This potential disadvantage motivates the author to consider specific image-tag
penalty term when assigning each tag to each image. Imaging the examples in Fig. 4.1,
the cost of recalling tag “pond” ought to be different from tag “car,” as well the penalty of
rejecting “germany” would vary from “animal.”

The main contributions of the work in this chapter are summarized as follows:

• An efficient re-weighting scheme is proposed to elaborately assign the penalty of
predicting each tag to each image, and the penalty of pairwise image-tag is fully
derived from both image-image similarities and tag-tag associations.
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• A unified re-weighted empirical loss term is formulated and then is incorporated in
two recently proposed tag completion models to tackle the tag completion problem
with defective tag assignments.

• Efficient optimization algorithms are developed for the two extended tag completion
models.

4.2 Related work

Given the training data with defective tag assignments, one way to complete the missing tags
in the test data is to directly apply automatic image annotation techniques such as [10, 12, 13].
Most of these techniques treat image annotation problem as a set of binary classification
problem, one for each tag. The main shortcoming of these approaches is that they require
training images to be clean without missing or noisy tags. However, the condition of defective
tag assignments would potentially result in biased annotation result, hence it is suboptimal to
directly utilize these image annotation methods.

Besides these conventional image annotation approaches, several advanced machine
learning methods have been proposed for the issues of partially tagged images, tag refinement.
For the issue of partially tagged images, the ongoing researches mainly extend conventional
multi-label ranking [34], ridge regression [35] or binary SVM classification [10]. These
approaches exploits the potential associations between the assigned and unassigned tags.

Regarding tag refinement, several approaches have been proposed to remove noisy tags
from correct tags using tag relevance [60, 61], denoising sparse error [59], collaborative
propagation among tags [58], etc. For examples, Li et al. [60] utilize neighbour voting
to learn the relevance of each tag, and then differentiated noisy tags from correct ones;
Zhu et al. proposed a method to decompose the initial tag matrix into a low-rank refined
matrix and a sparse error matrix with low-rank and sparsity constraints. A potential problem
of the tag refinement approaches is that they focus more on tag denoising but less on tag
completion. Indeed, it is hard to design a unified framework to perform both tag denoising
and tag completion, since the difficulty in controlling the degree of denoising may affect
the performance of tag completion. Therefore, recently studies such as [57, 62] discuss the
tag completion problem and utilize matrix factorization (reconstruction) methodologies by
embedding various contextual information such as semantic and visual similarities. Specially,
Wu et al. [57] use matrix factorization approach to find the optimal tag matrix, which is
consistent with both observed tags and visual similarities. Lin et al. [62] try to reconstruct
the optimal tag matrix from both image-specific and tag-specific sides, with the constraint
that an image contains a few objects and a tag represents a few levels of meaning, and usually
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objects or levels of meaning are redundantly contained or implied in the context. These
methods specialized for the tag completion problem usually show better performance than
the tag denoising approaches.

4.3 Image-tag re-weighting

The author first describes the proposed re-weighted empirical loss function and then present
an efficient scheme to determine the image-tag weights combining both visual and semantic
cues.

4.3.1 Re-weighted empirical loss

Let X = {x1, ...,xn} be a collection of n images and Y = {t1, ..., tm} be a vocabulary of m
tags. The user-annotated dataset T̂n×m = {Ŷ1, ...,Ŷn} is a defective tag matrix, where Ŷi ⊆ Y

is an initial defective tag vector of image xi, and Ŷi, j is set to one if tag j is assigned to image
i and zero otherwise. Our target is to recover the final complete tag matrix Tn×m from initial
defective T̂ , where the element Ti, j ≥ 0 denotes confidence score of assigning tag t j to image
xi. The general formulation of previous tag completion works [35, 57–59] corresponds to an
empirical loss minimization with a regularization term as follows:

min
T

λEp(T )+Er(T ), (4.1)

where the regularization term Ep(T ) restricts the model to some constraints, such as the
visual and semantic consistencies, and λ ≥ 0 controls the trade-off between the empirical
loss and the regularization term. Specifically, the empirical loss term Er(T ) represents the
deviation of complete tag matrix T from initial defective tag matrix T̂ , and is generally
formulated as

Er(T ) = ∥T −αT̂∥2
F =

n

∑
i=1

m

∑
j=1

(Yi, j−αi( j)Ŷi, j)
2. (4.2)

Here ∥ · ∥F denotes Frobenius matrix norm, α is an n×n diagonal matrix where αi plays as
scaling factor for image xi. Please note α could also be an m×m diagonal matrix, where α j

is a scaling factor for tag t j. With respect to the selection of α , previous tag completion works
can be categorized into two types. 1) Identical-type, which assumes α to be an identical
diagonal matrix. This type indicates that each element in T̂ has the equal scaling value. 2)
Scaling-type, which assumes α to be a diagonal matrix with different diagonal values. This
type implies that each row (column) in T̂ has equal scaling value of αi (α j).
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It is indicated from Equation 4.2 that: 1) the complete tag matrix T should be consistent
(similar) to the initial defective matrix T̂ , 2) the penalty of assigning each tag t j to each
image xi contributes equally to empirical loss Er(T ). However, these two assumptions may
be inappropriate to obtain the optimal T under defective setting. Firstly, given the defective
tag matrix T̂ , the constraint of consistency between T̂ and T is too rigorous to twist the
complete T from defective T̂ , which leads the final T to be similar with original T̂ (see more
interpretation in Fig. 4.2). Secondly, the identical penalty assumption of assigning each tag t j

to each image xi is imprecise and inhibits the model from recalling missing tags and rejecting
noisy tags from T̂ .

To formulate a more appropriate empirical loss Er(T ) under defective tag assignments,
a weighted image-tag penalty matrix Zn×m is introduced, whose element Zi, j represents the
penalty of assigning tag j to image i in T . Then, the re-weighted empirical loss can be
derived as:

Er(T ) = ∥(T −αT̂ )◦Z∥2
F =

n

∑
i=1

m

∑
j=1

(Yi, j−αi( j)Ŷi, j)
2Zi, j. (4.3)

Here, ◦ represents point-wise product of matrices. It is worth noting that the specific image-
tag penalty Zi, j in Z is determined by corresponding image-tag relatedness. Specifically,
for tag t j that is related but missing in image xi, the penalty Zi, j needs to be smaller so that
higher confidence score can be allocated to recall t j in xi. Likewise, for tag t j that is noisy
but tagged in image xi, the penalty Zi, j ought to be smaller so that lower confidence score
can be allocated to reject t j in xi.

Compared with traditional empirical loss in Equation 4.2, the re-weighted empirical loss
in Equation 4.3 indeed have two advantages:

• It allows the complete tag matrix T to be moderately inconsistent to the initial defective
matrix T̂ , and it is possible to recall untagged related tags which are missing in T̂ and
to remove tagged noisy tags from T̂ , since the weighted penalty Z could balance the
empirical loss.

• Each element Zi, j in Z is flexible to explicitly incorporate both visual and semantic cues
to model the specific image-tag relatedness, while the identical penalty in Equation
4.2 would neglect the discrimination of pairwise image-tag and limitedly formulate a
suboptimal empirical loss term.

Fig. 4.2 illustrates the tag completion results with/without image-tag re-weighting in
identical-type model (α is identical diagonal matrix). In Fig. 4.2, T̂ is initial defective tags for
training, T is final tag completion result. Tags in T is in the format of “tag (Zi, j)(confidence
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Groud-truth tags:

nature, macro, animal, insect,

plant, leaf, wildlife

Defective tags       :

nature, germany, eyes, insect

Complete tags without re-weighting     :

nature  (1)(0.9)           insert  (1)(0.9)             eyes  (1)(0.7)        

animal  (1)(0.5)           germany  (1)(0.4)

           

Complete tags with re-weighting     :

nature  (1)(0.9)           insert  (1)(0.8)            eyes  (0.3)(0.2)

germany  (0.3)(0.1)    animal (0.2)(0.6)        wildlife (0.3)(0.5)    

plant  (0.3)(0.4)           leaf (0.3)(0.4)          

Fig. 4.2 Tag completion example with/without image-tag re-weighting.

score).” The empirical loss without re-weighting (Equation 4.2) is: 0.12 + 0.12 + 0.32 +

0.52 +0.62 = 0.72, with re-weighting (Equation 4.3) is: 0.12 +0.22 +0.82×0.3+0.92×
0.3+0.62×0.2+0.52×0.3+0.42×0.3+0.32×0.4 = 0.716. Note that the rejected noisy
tags “eyes,” “germany” also contribute to the re-weighted loss in Equation 4.3. With similar
empirical loss values (0.72 vs. 0.716), the recovered tag matrix T without re-weighting
(top box in Fig. 4.2) twists initial T̂ slightly, since using identical penalty it is hard to
decline the confidence scores of noisy tags (e.g. “eyes,” “germany”) and to promote missing
tags (e.g. “plant,” “leaf ”) while keeping low empirical loss. However, after importing the
re-weighted image-tag penalties, T with re-weighting (bottom box in Fig. 4.2) is able to
assign appropriate confidence scores relying on image-tag relatedness while maintaining low
empirical loss values.

4.3.2 Determining image-tag penalty

The author proposes an efficient approach to determine Zi, j for pairwise image-tag entry
in T̂ incorporating both visual and semantic similarities. For a given tag t j,∀ j ∈ {1, ...,m},
let X +

t j be a set of images that are annotated with tag t j, and the remaining samples as
X −

t j = X \Xt j , and Zi, j for xi ∈X +
t j and xi ∈X −

t j , i ∈ {1, ...,n} are considered separately.

• Visual similarity based relatedness RV (·). The visual distance score dist(·) is com-
puted (scaled to range [0,1]) of xi with all images xk ∈ Xt j . Specially, for xi ∈
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X +
t j , RV (xi, t j) = 1−mindist(xi,xk),xk ∈ X +

j \xk, for xi ∈ X −
t j , RV (xi, t j) = 1−

mindist(xi,xk),xk ∈X +
t j .

• Semantic similarity based relatedness RS(·). Firstly, computing the correlation score
between pairwise tags ti and t j as: co_occur(ti, t j) =

fi, j
fi+ f j− fi, j

, where fi and f j are the

occurrence of tags ti and t j, and fi, j is the co-occurrence of tags ti and t j. Let Ŷi be the
tag set of image xi and RS(xi, t j) = maxtk∈Ŷi

co_occur(t j, tk).

Based on the two similarity measures above, the relatedness R(xi, t j) is then defined as a
weighted linear combination of the two similarity components above:

R(xi, t j) = πRV (xi, t j)+(1−π)RS(xi, t j), (4.4)

where RV (·) and RS(·) are normalized similarity scores from image-specific and tag-specific
measures, and π is a weight parameter in [0,1] which is validated during parameter tuning.
In practice, the author also use the relatedness term (Equation 3.10) defined in Chapter 3
to calculate R(xi, t j), which can be considered as a more general form to account for the
relatedness of images and tags. Therefore, for each tag t j, the image-tag penalty Zi, j for the
i-th image based on R(xi, t j) is computed as:

Zi, j =

R(xi, t j) if xi ∈X +
t j

1
1+exp(R(xi,t j))

if xi ∈X −
t j

(4.5)

From Equation 4.5 it can be learned that missing and noisy tags have smaller penalties Zi, j

than other tags depending on their relatedness value R(xi, t j). Thus these tags are more likely
to be predicted with higher confidence scores, and they are able to be recalled (missing tags)
or rejected (noisy tags) in recovered complete tag matrix T . Similar as the discussion in
Chapter 3, Z can be calculated off-line in practice from the initial defective tag matrix T̂ and
treated as the input of the proposed methods during optimization.

4.4 Tag completion via image-tag re-weighting

In this section, two typical tag completion models are selected: tag matrix completion
(TMC) [57] from identical-type models and Fasttag [35] from scaling-type models. Then
the proposed image-tag re-weighting scheme is embedded and the parameter optimization
algorithms are derived for these two types of models.
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4.4.1 TMC with image-tag re-weighting

Given visual features of image data Vn×d , tag correlation matrix Rm×m and observed defective
tag matrix T̂n×m, the TMC model reconstructs the complete tag matrix Tn×m under three
constraints:

1. The complete tag matrix T should be similar to the observed defective matrix T̂ , and
the empirical loss term is formulated as ∥T − T̂∥2

F .

2. The complete tag matrix T should be consistent with the visual similarity, and this
constraint is formulated as ∥T T⊤−V diag(w)V⊤∥2

F , where wd×1 is a non-negative
vector representing the weight of each visual feature dimension.

3. The complete matrix T should also be consistent with tag correlation matrix R, which
can be formulated as ∥T T⊤−R∥2

F . It is indicated that TMC is an identical-type model,
as α is set to be an identical diagonal matrix in the first constraint.

When embedding the proposed re-weighting scheme in TMC model, the first constraint
∥T − T̂∥2

F is replaced with the re-weighted empirical loss term in Equation 4.3. Thus, the
objective of the TMC model with image-tag re-weighting (TMC-RW) is to minimize the loss
function L (T,w), which is derived as,

min
T,w

L (T,w) = min
T,w
∥(T − T̂ )◦Z∥2

F︸ ︷︷ ︸
re−weighted loss

+η∥T T⊤−R∥2
F

+λ∥T T⊤−V diag(w)V⊤∥2
F +µ∥T∥1 + γ∥w∥1, (4.6)

where the L1 regularizer for both T and w are to generate sparse solutions for them. The
subgradient descent based algorithm proposed in [57] is adopted to optimize T and w with
non-negative constraints. Defining L (T,w) = A (T,w) + µ∥T∥1 + γ∥w∥1, G = T T⊤−
V diag(w)V⊤, H = T T⊤−R, the subgradients for A (T,w) are derived as

▽T A (T,w) = 2λGT +2ηT H +2(T − T̂ )◦Z,

▽wA (T,w) =−2λdiag(V⊤GV ). (4.7)

The composite function optimization is used similar as in [57], and the final update rules for
T and w in each iteration are derived as following:

T ←[T −ζt▽T A (T,w)−µζt1n×m]+,

w←[w−ζt▽w A (T,w)− γζt1d×1]+, (4.8)
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where ζt is the step size and [ f ]+ = max(0, f ) projects the negative entries in T and w to be
zero in iteration t.

4.4.2 Fasttag with image-tag re-weighting

To keep the notations consistent with Fasttag, the visual features of images data is denoted
as Vd×n = {x1, ...,xn} and observed defective tag matrix is denoted as T̂m×n = {Ŷ1, ...,Ŷn}
for each image in each column. Fasttag assumes that the observed defective tag matrix T̂
is a “corrupted” version of the complete tag matrix Tm×n, and introduces an enrichment
mapping matrix Bm×m to reconstruct T from BT̂ by estimating which tags are likely to
be recalled or rejected in T̂ . The original empirical loss is formulated as ∥T − BT̂∥2

F ,
which implies that Fasttag is a scaling-type model as each image has identical value of
α . Moreover, besides the enriched mapping to reconstruct complete tag matrix T , T can
also be reconstructed from the image features V . Then a co-regularizer term is introduced
to force the two reconstructions from both tag-side and image-side with small difference
∥BT̂ −WV∥2

F , where each row of Wm×d contains the weights of a linear classifiers for each
tag. After embedding the re-weighted empirical loss term, the objective of Fasttag with
image-tag re-weighting (Fasttag-RW) is to minimize the loss function L (W,B) as

min
B,W
∥(T −BT̂ )◦Z∥2

F︸ ︷︷ ︸
re−weighted loss

+ γ∥BT̂ −WV∥2
F +λ∥W∥2, (4.9)

where L2 regularization on W is to reduce complexity and avoid overfitting. In Equation
4.9, T is not directly optimized, and instead, the backtracked corruption method [35] is
used to approximate the re-weighted empirical loss. In particular, some tags are removed
randomly with independent probability p ∈ (0,1) from T̂ to generate a further corrupted
version T̄ = {Ȳ1, ...,Ȳn} from T̂ . This backtracked corruption procedures are repeated several
times, and the expected corruption value to approximate the re-weighted empirical loss is
used. Finally, the empirical loss can be approximated as

∥(T −BT̂ )◦Z∥2
F ≈ E

[
∥(T̂ −BT̄ )◦Z∥2

F
]

p(T̄ |T̂ )

=
1
n

n

∑
i=1

E
[
∥(Ŷi−BȲi)◦ zi∥2

F
]

p(Ȳi|Ŷi)
, (4.10)

where zi is the i-th column in Z for the i-th image. When expanding Equation 4.10, referring
to P=∑

n
i=1 ŶiE[Ȳi◦zi]

⊤ and Q=∑
n
i=1E[Ȳi◦ziȲ⊤i ], the re-weighted empirical loss in Equation
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4.10 can be rewritten as

∥(T −BT̂ )◦Z∥2
F ≈

1
n

trace(BQB⊤−2PB⊤+ T̂ ◦ZT̂⊤). (4.11)

Here P and Q can be computed as

P = (1− p)T̂ ◦ZT̂⊤,

Q = (1− p)2T̂ ◦ZT̂⊤+ p(1− p)δ (T̂ ◦ZT̂⊤), (4.12)

where δ (·) is an operator to set all entries except for the diagonal to zero. By substituting
Equation 4.11 and Equation 4.12 in Equation 4.9, the block-coordinate descent algorithm
can be used to optimize B and W alternatingly. Finally, the close form solutions for B and W
are derived as

B =(P+ γWV T̂⊤)(Q+ γT̂ T̂⊤)−1,

W =γBT̂V⊤(γVV⊤+nλ1d×d)
−1. (4.13)

The deriving details for parameter optimization in the proposed two re-weighted based
models are depicted in Appendix B.

4.4.3 Discussion

Once the penalty matrix Z is computed, the proposed two re-weighted models TMC-RW
and Fasttag-RW maintain the same level of computational complexity since the close-form
solutions for parameters in Equation 4.8 and Equation 4.13 have the same forms as TMC and
Fasttag models and only the products of matrices are involved in the re-weighted penalty Z.
Specifically, the convergence rate for the subgradient descent method adopted in TMC-RW
is O(1/

√
t), where t is the number of iterations. And the space requirement of TMC-RW is

O(nm). Regarding Fasttag-RW, the solving the ridge regression in Equation 4.13 requires
O(nm3), as usually we have the number of training samples n≫ m, thus the training time of
Fasttag-RW scales linearly to n. Similar as the case of Fasttag in [35], Fasttag-RW converges
with a few bootstrap iterations (usually ranges from 2 to 8).
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4.5 Experiments

4.5.1 Experimental configuration

Datasets and Features. In the experiments, three benchmark datasets ESP Game [63],
IAPRTC-12 [51] and MIR Flickr [56] are used, which are very challenging with large tag
vocabulary and significant diversity among visual content. Table 4.1 shows general statistics
of these datasets. In Table 4.1, the counts of images are in the formatted as “training/test” and
the counts are in the format as “mean/minimum/maximum” in the forth and fifth columns.
The original multiple features including global descriptors (RGB, HSV, LAB, Gist) and local

Table 4.1 General statistics of the three datasets.

Dataset Images Labels Labels per image Images per label
ESP Game 18,689/2,081 268 4.7/1/15 326/172/4,553
IAPRTC-12 17,665/1,962 291 5.7/1/23 34/153/4,999
MIR Flickr 9,359/9,335 457 4.55/1/45 145/50/1,483

descriptors (SIFT, Hue) were extracted in [13], and widely utilized in subsequential works
[10, 34, 35]. Here the multiple feature mapping and random projection scheme in [35] is
adopted, dimensionality reduction is applied to all original features and they are concatenate
to a 12,912-dimensional merged feature to represent each image.
Defective tag assignments. To simulate the situation of defective tag assignments, ex-
periments are conducted in two settings: incomplete setting and noisy setting. (1) For
incomplete setting, partial tags are randomly deleted for each images , the deletion process
stands by the principle min(1,⌈N× (1− ratio)⌉) ensuring that each images preserves at
least one tag. (2) For noisy setting, untagged tags are randomly added for each images, the
addition process follows the principle N +min(1,⌈N× ratio⌉), ensuring that each image is
corrupted by at least one noisy tag. Here N denotes the counts of originally tagged tags in
one image, ⌈·⌉ denotes the ceiling function which gives the smallest integer not smaller than
the given value, ratio represents the degree of incompletion or noise. In the experiments,
ratio = {10%,30%,50%,70%,90%}. It indicates that the larger the ratio, the higher the
degree of incompletion or noise. Note that ratio = 0% means the dataset is fully labeled
without any incompletion or noise.
Evaluation metrics. Three standard evaluation criteria used in previous tag completion
works [34, 35, 57] and tag refinement works [60, 61] are adopted: (1) F1-macro, which is the
averaged F1 score (F1 = 2 Precision∗Recall

Precision+Recall ) of all tags, (2) F1-micro, which is the averaged
F1 score of all images, (3) Coverage (Coverage = N+

Ntotal
), where N+ is the count of recalled

tags by model and Ntotal is the quantity of tags in vocabulary. To calculate these criteria, all
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images are predicted with top five tags which have highest confidence score. It is notable that
for all three criteria, larger numerical value indicates better performance. All the experiments
are conducted on a computer which has Inter Xeon E5520 2.27GHz CUP, 16GB RAM.

4.5.2 Evaluation on various degree of defection

Firstly, the proposed re-weighting based TMC-RW and Fast-RW models are compared with
previous TMC and Fasttag on various degree of incomplete and noisy settings. To obtain
the best parameters for these models, 30% of initial training samples in each dataset are
randomly split as validation set, and perform model selection. Experiments are repeated five
times for each model, and report the evaluation results averaged over the five trials.
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(b) Fasttag(-RW) on IAPRTC-12
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(c) Fasttag(-RW) on IAPRTC-12
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Fig. 4.3 Tag completion performance of proposed methods with various degree of incomplete
and noisy settings.

Fig. 4.3 compares tag completion performance of the proposed re-weighting based
models and the previous models without re-weighting scheme. It can be observed that in
most conditions, varying the degree of incomplete and noisy settings, the tag completion



4.5 Experiments 55

results are constantly improved on all three evaluation metrics when the re-weighting scheme
is taken into account. In particular, both TMC-RW and Fasttag-RW models are robust to
serious condition of defection. For degree of incompletion and noise from 50% to 90%,
TMC-RW and Fasttag-RW drop slightly on three measures while TMC and Fasttag decrease
drastically. The reason behind this is that when the degree of defection is serious, using
equal penalty for image-tag is too coarse to distinguish missing and noisy tags from other
tags, whereas the re-weighted penalty is more reasonable and appropriate to represent the
relatedness of pairwise image-tag since the defection can be compensated by utilizing both
visual similarities and tag correlations.

ESP Game IAPRTC-12 MIR Flickr ESP Game IAPRTC-12 MIR Flickr
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Ground truth :
grass, green,
house, sky,
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Ground truth :
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car, street
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yellow,
flowers,
orange

Incompletion
70%:

boat, money

Incompletion
90%:
sun

Incompletion
50%:

sunset, roma

Noise 90%:
bikini, cat,

game, green,
house, light,

sky, tree,
grass

Noise 70%:
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Noise 30%:
yellow,
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newyork

Fasttag:
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head, old,

round
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cloud, sun,
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sunset
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road
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silver(0.25)

TMC-RW:
sunset(0.11),

horizon(0.35),
sun(0.89),

orange(0.27),
landscape(0.37)

Fasttag-RW:
sunset(0.88),
italy(0.16),
italia(0.21),
roma(0.83),

cityscape (0.35)

TMC-RW:
grass(0.97),
green(0.95),
house(0.72),
man(0.38),
tree(0.81)
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building(0.95),

car(0.81),
pavement(0.46),

sky(0.41),
street (0.8)

TMC-RW:
macro (0.24),
flower(0.16),
yellow(0.85),
flowers(0.96),
orange(0.79)

Fig. 4.4 Tag completion results of exemplar images on three datasets with various degree of
incomplete (left three) and noisy (right three) settings.

Fig. 4.4 demonstrates tag completion results of exemplary images using the proposed
methods with various degree of incomplete and noisy conditions. In Fig. 4.4, the fourth row
is initial defective tags, last two rows are predicted tags from tag completion models. For the
proposed models (last row), weighted penalty Zi, j of predicted tags are also presented. It can
be learned from Fig. 4.4 that using the proposed re-weighting scheme, the proposed models
are able to improve defective tags which are initially assigned, to recall related missing tags
and to reject existed noisy tags. Moreover, the weighted penalties for predicted tags based on
the principle of the proposed re-weighting scheme, which allocates smaller penalties to both
missing and noisy tags than correctly labeled tags.
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4.6 Summary

In this chapter, the author considers the practical issue of training dataset with defective
tag assignments. The author proposes an image-tag re-weighting scheme and formulates a
re-weighted empirical loss term which is more efficient for optimization in tag completion
problems under defective tag assignments. In particular, the weighted penalty of pairwise
image-tag is derived from image-image similarities and tag-tag associations, which ensures
that missing and noisy tags have discriminant importance rather than identical importance in
the previous works. Experimental evaluations verify that using the proposed re-weighting
scheme achieves superior tag completion results on various degree of incomplete and noisy
settings. In addition, the proposed re-weighting scheme can also benefit image annotation
performance which assumes complete tag assignments.



Chapter 5

Multimodal learning for images, texts
and their semantics

5.1 Introduction

In the previous chapters, the author has discussed the topic model used in the traditional
image annotation problems and also the practical issues of incomplete labeling and defective
tag assignments of the training image datasets. Actually, a promising application of image
annotation could be searching for a set of images using a query string or multiple keywords
(e.g., as is done in Google Image search). This application can be considered as a reverse
process of image annotation, which is called “keyword based image retrieval.” The “keyword
based image retrieval” involves different modalities of data: images and texts.

Recently, jointly modeling different modalities of images and texts has been an active
research area, as there has been massive explosion of multimedia content such as images and
texts from multiple input channels on the Internet. Usually, the images are usually associated
with texts. Fig. 5.1 illustrates concrete examples of images with the associated texts. The
associated text are used to describe the semantic content of these images. In particular, the
term “keywords” refers to high level labels or categories, and the terms “text” and “tag”
are textual descriptions taking from the surrounding web pages and the user-provided tags
respectively. It is worth noting that the semantics of an image may be given by one or more
keywords and the text/tags are typically noisy and may not explicitly mention the ground
truth keywords.

Indeed, there are two types of cross-modal retrieval scenarios relying on the different
modalities of images and texts: (1) “Text2Img”: automatically associating one or more
semantically relevant images given a piece of text (i.e., a label, phrase or caption) [64–
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Tags: canon, explored,
longexposure, 400d,
moon, fall, rebel, 
michigan, waterfall 

Keywords: clouds, plant,
life, sky, sunset, tree

Text: …, Sherman was
not an abolitionist 
before the war, …
Four days later, 
Sherman issued … 

Keywords: warfare

Fig. 5.1 Examples of Internet images with associated texts.

66]; (2) “Img2Text”: automatically annotating images using semantic labels [12, 13, 67]
or describing images with phrases [66]. Due to the distinct statistical properties from the
different modalities of image and text, one of the primary issues involved in the cross-modal
retrieval is learning useful representations about such data by fusing the modalities into a
joint representation. Indeed, the modalities of image and text may have different kinds of
representations and correlation structures. For example, an image is usually represented by
real-values and dense feature descriptors, whereas a text is represented as discrete sparse
word count vectors. However, many existing methods only consider the direct correlation
between the original representations of images and corresponding texts, leading to inefficient
latent subspaces for representing data of both modalities. Moreover, these methods also have
difficulties in discovering the highly non-linear relationship across different modalities.

In this chapter, the author investigates the problem of modeling images and their associ-
ated text for cross-modal retrieval tasks such as Text2Img and Img2Text. To make the data
from images and texts modalities comparable, the previous cross-modal retrieval methods
directly learn two projection matrices to map the raw features of the two modalities into a
common subspace, in which cross-modal data matching can be performed. However, the
different feature representations and correlation structures of different modalities inhibit these
methods from efficiently modeling the relationships across modalities through a common
subspace.

To handle the diversities of different modalities, the author aims to learn a more efficient
latent subspace from the original representations of different modalities and proposes a uni-
fied framework (see Fig. 5.2) for cross-modal retrieval problems. The proposed framework
consists of coupled dictionary learning and coupled feature mapping. Firstly, the original
multimodal data transformed into sparse representations via coupled dictionary learning,
with the guarantee that the generated representations are homogeneous. Then, these repre-
sentations are acquired by coupled linear regression method where data from each modality
are simultaneously projected into a common subspace of keywords. For the testing stage
(i.e. Img2Text or Text2Img), the sparse representation of a given query from one modality is
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Fig. 5.2 Illustration of the proposed framework for cross-modal retrieval, where {AV ,AT}
and {WV ,WT} are the sparse representations and projection matrices for image and text
modalities, respectively.

generated using the learned coupled dictionary of this modality, then the sparse representation
is mapped into the common (keyword) subspace using the learned projection matrix. Finally,
in the common subspace, the best match is selected from the other modality as the output.

The main contributions of the work in this chapter can be summarized as follows:

• A novel framework is proposed to integrate the schemes of coupled dictionary learning
and coupled feature mapping for the cross-modal retrieval problem. The proposed
framework cannot only handle the diversity of different modal data, but also improve
the efficiency of subspace learning and coupled feature selection.

• The previous scheme of coupled dictionary learning developed for single modality
is extended to the case of multi-modal data in this work, and an efficient iterative
algorithm of the dictionary learning is derived to solve the corresponding minimization
problem.

• The proposed framework is evaluated with a variety of cross-modal retrieval tasks
on three challenging datasets, and the experimental results show that the proposed
framework outperforms several relevant state-of-the-art approaches.

5.2 Related work

The problems of image and text retrieval are well-studied research topics [68]. Some of the
earliest research is based on retrieval of unimodal data, i.e., both query and retrieved data
belong to the same modality (either image or text). For example, given a text query, the
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unimodal methods directly match the query with textual meta-data on the web instead of
examining the corresponding image. Usually, these unimodal approaches cannot be applied
to cross-modal retrieval.

Recently, a number of successful approaches [67, 69–71] designed for cross-modal
retrieval are proposed to jointly model images and associated texts. The major goal of
these works is learning a common latent space for image and text modalities, in which both
modalities are projected into the same space for cross-modal retrieval. Specifically, several
approaches rely on Canonical Correlation Analysis (CCA), a classic technique that maps two
views, such as visual and textual features, into a common latent space where the correlation
between the two views is maximized. Hwang and Grauman [71] have modeled the relative
importance of words based on the order from the user provided annotations to improve
cross-modal retrieval results. Ballan et al. [67] have used kernel CCA (KCCA) to develop
cross-view approach to associate images and text. Gong et al. [70] have leveraged CCA for
cross-modal retrieval under the multi-view learning framework, in which the image and the
text views are linked to the underlying third view of semantic labels.

Except for the CCA based approaches, there are some other methods for the cross-modal
retrieval. Chen et al. [72] have applied the Partial Least Squares (PLS) to cross-modal
document retrieval. They use PLS to transform the visual features into the text space, then
learn a semantic space to measure the similarity between two different modalities. Recently,
Sharma et al. [73] made a comprehensive analysis for the multi-view learning framework to
deal with cross-modal retrieval problem. They extend traditional discriminative methods, i.e.,
Linear Discriminant Analysis (LDA), Marginal Fisher Analysis (MFA), to the multi-view
counterpart: Generalized Multi-view LDA (GMLDA) and Generalized Multi-view MFA
(GMMFA). Wang et al. [74] proposed a generic framework to jointly perform common
subspace learning and coupled feature selection from different modalities of data. They
unified coupled linear regression, L21 norm and trace norm regularization terms into the
generic framework and achieved the state-of-the-art performance for cross-modal retrieval
task.

It can be learned from these methods that learning the common latent space is crucial
for matching data of different modalities. However, when learning the latent space, these
methods only considered the direct correlation between image and text modalities, ignoring
the intrinsic diversity of representations and correlational structures in them. Therefore,
these methods have difficulty in incorporating the highly non-linear relationship between the
low-level features across different modalities. To overcome this, the author takes advantage
of dictionary learning to obtain the sparse representations of different modalities in a coupled
learning manner. The sparse representations are homogenous for different modalities and can
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incorporate the relationship across modalities, ensuring to learn a more representative latent
space. The details of the proposed framework for cross-modal retrieval will be described in
the next section.

5.3 Proposed framework

In this section, the author will first present the details of the two procedures in the training
stage as shown in Fig. 5.2, and then develop iterative algorithm for learning parameters in
each procedure. Finally, the testing stage of the proposed framework will be described.

5.3.1 Coupled dictionary learning

Let D = {I1, ..., In} be a collection of n images, each image Ii = (vi, ti) consists of features
from two modalities: d1 dimensional visual feature vector and d2 dimensional textual feature
vector. Here, the data from image modality is denoted as V = [v1, ...,vn] ∈ Rd1×n and data
from text modality as T= [t1, ..., tn]∈Rd2×n, respectively. To handle the diversity of different
modalities V and T, the sparse representation from dictionary learning for each modality is
used since it has been shown to be very effective in data representation or reconstruction
tasks. It is worth noting that the dictionary learning for different modalities is coupled and an
associate function f (·) is imposed to relate the sparse representations of different modalities.
The coupled dictionary learning can be formulated as the following minimization problem:

min
DV ,DT ,AV ,AT

∥V−DV AV∥2
F +∥T−DT AT∥2

F +σ(∥AV∥1 +∥AT∥1)+ f (AV ,AT ) (5.1)

s.t. ∥dv,i∥2 ≤ 1,∥dt,i∥2 ≤ 1,∀i.

In Equation 5.1, the original features V and T of the two modalities are reconstructed from
the sparse representations AV ∈ Rk1×n and AT ∈ Rk2×n, respectively. Here AV and AT rely
on the learnt dictionaries DV ∈ Rd1×k1 and DT ∈ Rd2×k2 , where k1 and k2 are dictionary
size for DV and DT , respectively. And f (AV ,AT ) is an associating function defining the
cross-modal relationship in terms of AV and AT . Once the relationship between AV and AT

is captured, the dictionaries DV and DT can be updated accordingly.
Regarding f (AV ,AT ), following the scheme in [75], a kc dimensional common feature

space P is introduced to relate the sparse representations of different modalities. It is
restricted that kc = k1 = k2 so that different modalities of data should be comparable in P . In
addition, PV = UV AV is the projected data from sparse representations AV of image modality,
where UV ∈ Rkc×k1 is the projection matrix. The same remarks are applied to PT and UT .
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And it is required that each pair of samples from AV and AT can be projected to the same
instance of PV and PT in space P (see the illustration in Fig. 5.2). To be more precise, for an
instance p = UV αV (or p = UT αT ) in P which is projected from the sparse representation
αV (or αT ) of image (or text) modality, the corresponding sparse representation of text (or
image) modality αT = U−1

T p (or αV = U−1
V p) can be reconstructed. Finally, the definition of

f (AV ,AT ) can be formulated as

f (AV ,AT ) = γ(∥AV −U−1
V PT∥2

F +∥AT −U−1
T PV∥2

F)+µ(∥U−1
V ∥

2
F +∥U−1

T ∥
2
F), (5.2)

where additional regularized constraints on U−1
V and U−1

T ensure numerical stability and
avoid over-fitting. It can be learnt that the constraints in Equation 5.2 exhibits the capabilities
in recovering the sparse representations in one modality using data projected from the other,
and hence, the relationship across different modalities can be efficiently incorporated in the
sparse representations.

By substituting Equation 5.2 into Equation 5.1, the objective function for the coupled
dictionary learning procedure can be obtained. Although the objective function is not
jointly convex with respect to dictionaries {DV ,DT}, sparse representations {AV ,AT} and
projection matrices {UV ,UT}, it is convex with respect to each of them when fixing the other
variables. They can be iteratively updated in an alternating manner. The proposed iterative
algorithm is outlined in Algorithm 2 and the detailed optimization is provided in Appendix
C.

5.3.2 Coupled feature mapping

Let Y = [y1,y2, ...,yn] ∈ Rc×n be a keyword matrix for all images in D . The coupled feature
mapping procedure aims to learn two projection matrices WV ∈ Rk1×c and WT ∈ Rk2×c,
which map the sparse representations AV and AT of the two modalities into the common
space defined by the keywords. Note that the roles of WV and WT are different from UV and
UT of coupled dictionary learning procedure: the former bridges the sparse representations
to the keyword space, while the latter performs on the intermediate space P .

In this work, the author leverages a coupled linear regression method and develops two
schemes (a simple scheme and an advanced scheme) for coupled feature mapping, based
on how the projection matrices are learnt. Specifically, for the simple scheme, the ridge
regression method is adopted to minimize projection errors of the sparse representations
of each modality to the keyword space. The generic minimization problem of the simple
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scheme is derived as:

min
WV ,WT

∥W⊤V AV −Y∥2
F +∥W⊤T AT −Y∥2

F +λ (∥WV∥2
F +∥WT∥2

F). (5.3)

The analytical solutions of WV and WT can be derived as:

WV = YA⊤V (AV A⊤V +λ I)−1,

WT = YA⊤T (AT A⊤T +λ I)−1. (5.4)

For the advanced scheme, the coupled feature mapping method in [74] is adopted to
further incorporate coupled feature selection. Intuitively, relevant and discriminative features
from the sparse representations can be selected to enhance the relevance across different
modalities. Therefore, for the advanced scheme, it has similar objective function as in [74]:

min
WV ,WT

1
2
(∥W⊤V AV −Y∥2

F +∥W⊤T AT −Y∥2
F) (5.5)

+λ1(∥WV∥21 +∥WT∥21)+λ2∥[W⊤V AV W⊤
T AT ]∥∗,

where the L21 norm3 ∥ · ∥21 is used to select features from coupled feature space jointly,
and the trace norm4 ∥ · ∥∗ encodes the correlations of different modalities with a low-rank
constraint. It is worth noting that the advanced scheme in Equation 5.5 differs from [74], i.e.,
the coupled feature selection is performed on sparse representations AV and AT to leverage
the merit from coupled dictionary learning, rather than on original features of both modalities
in [74].

5.3.3 Test phase for cross-modal retrieval

Algorithm 2 summarizes the iterative algorithm used in the above two procedures of the
training stage. Once the training stage is complete, the dictionaries {DV ,DT}, sparse
representations {AV ,AT}, projection matrices {WV ,WT} of two modalities can be obtained
successively. In the testing phase, given a test image Î = (v̂, t̂), the sparse representations Âv̂

and Ât̂ based on learnt dictionaries DV and DT is firstly generated, respectively. Then Âv̂

and Ât̂ are projected into the keyword space through projection matrices WV and WT . To

3For a matrix M ∈ Rn×m, its i-th row and j-th column are denoted by M(i), M j respectively. The L21 norm
of M is ∥M∥21 = ∑

n
i=1 ∥M(i)∥2.

4The trace norm of M is defined as ∥M∥∗ = ∑
min(m,n)
i=1 τi, where τi denotes the i-th singular value of M.
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Algorithm 2: Iterative Algorithm for the proposed framework
Input: Image feature matrix V with associated text feature matrix T, parameters σ , γ and

µ .
1: Initialize {D0

V ,D
0
T} and {A0

V ,A
0
T} by [75], and {U0

V ,U
0
T} as I for iteration i = 0.

2: Let P0
V ← U0

V A0
V and P0

T ← U0
T A0

T .
3: repeat
4: Update Di+1

V , Di+1
T with Ai

V , Ai
T and Ui

V , Ai
T .

5: Update Ai+1
V , Ai+1

T with Di+1
V , Di+1

T and Ui
V , Ai

T .
6: Update Ui+1

V , Ui+1
T with Di+1

V , Di+1
T and Ai+1

V , Ai+1
T .

7: Update Pi+1
V ← Ui+1

V Ai+1
V and Pi+1

T ← Ui+1
T Ai+1

T .
8: Set i = i+1.
9: until Objective function of Equation 5.1 converges.

Output: Dictionaries {DV ,DT}, sparse representations {AV ,AT}.
Input: Sparse representations {AV ,AT}, keywords matrix Y, parameters λ (or {λ1,λ2}).
10: Compute {WV ,WT} according to Equation 5.4 or solutions of Equation 5.5.
Output: Projection matrices {WV ,WT}.

perform cross-modal retrieval, one modal data (i.e., image modality ) of Î can be taken as the
query to retrieve the other modality (i.e., text modality).

5.3.4 Discussion

The time consuming for training the proposed model includes sparse representation gen-
eration for the coupled dictionary learning procedure and linear regression for the feature
mapping procedure. Typically, the computational complexity of the sparse representation
generation is O(ndk2

c), and the computational complexity of the linear regression is O(nck3
c).

Note that, usually we have the number of training samples n≫ d and n≫ kc, thus the total
time complexity of training the proposed model is linear to n, which is scalable and efficient
for large-scale datasets. For the testing time, given a test sample of one modality, generating
its sparse representation and matching the query requires O(dckc) and O(c2), respectively.
Thus the testing time is not as important as that of the training time.

5.4 Experimental results

5.4.1 Experimental setting

The proposed framework is applied to two cross-modal retrieval tasks: Text2Img and Img2Text.
Given an image (or a text) query, the goal is to find the nearest neighbors from the text (or
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the image) database. The two proposed schemes (simple and advanced) are compared with
several related methods on two publicly available datasets: Pascal Voc [71] and Wiki [69]
datasets, in which each image is assigned with only one keyword. In addition, a more specific
task called Img2Keyword is taken into account. The goal of Img2Keyword to predict the
results from the keyword space rather than retrieving a sample from the text modality for a
given image. It can be considered as a traditional image annotation task and here it is used to
evaluate the efficiency of the proposed feature mapping into the common subspace defined
by keywords. For this task, a challenging dataset MIRFlickr-25K is adopted, in which each
image is assigned with at least one keyword. Table 5.1 lists some of the general statistics of
the three datasets used in this work.

Table 5.1 General statistics of three datasets used in this work.

Dataset Images Keywords Image feature Text feature

Pascal Voc
2808,
2841 20

512-dim
Gist

399-dim
word frequency

histogram

Wiki
1300,
1566 10

128-dim
SIFT

10-dim
LDA features

MIRFilckr-25K
12500,
12500 38

7500-dim
multiple features5

457-dim
word frequency

histogram

To evaluate the performance of the proposed schemes, the standard measure of mean
average precision (MAP) in [69] is used for Img2Text and Text2Img tasks. To compute
MAP, the average precision (AP) of the retrieval result of each query is calculated, then
average the AP values over all queries in the query set is computed. Moreover, to evaluate
the Img2Keyword task, the standard measures of image annotation tasks are adopted: average
precision per keyword (P), average recall per keyword (R) and F1 measure (F1 = 2× P×R

P+R ).
The values of P and R are computed by predicting the top five keywords for each test image
on MIRFlickr-25K dataset. Notable that for all the measures, larger numerical value indicates
better performance. In the training stage, the parameters σ , γ and µ is empirically set to
0.01, 0.0001 and 0.001 for the coupled dictionary learning procedure, and the parameters λ ,
λ1 and λ2 to 0.01, 0.1 and 0.001 for the feature mapping procedure, respectively. In testing
phase, the cosine distance is adopted to measure the similarity of features and select the
matches. All the experiments are conducted on a computer which has Inter Xeon E5520
2.27GHz CUP with 16GB RAM.

5The multiple features including various local and global features, such as SIFT, HUE, RGB, HSV, LAB,
GIST and etc. They can be downloaded from http://lear.inrialpes.fr/people/guillaumin/data.php.

http://lear.inrialpes.fr/people/guillaumin/data.php
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5.4.2 Results on Pascal Voc and Wiki datasets

The two proposed schemes is firstly compared with common subspace learning methods PLS
[72], CCA [71], GMMFA [73], GMLDA [73] and LCFS [74] and the results for Img2Text
and Text2Img tasks are reported. Using the settings of LCFS method, Principal Component
Analysis (PCA) is performed on the original features of Pascal Voc dataset to remove
redundant features for PLS, CCA, GMMFA, GMLDA methods while preserving the original
features for LCFS method and the proposed two schemes. Since the Wiki dataset has low
dimensional features, theses features are directly used without the process of dimension
reduction.

Table 5.2 MAP scores of different methods on Pascal Voc dataset. Previous and proposed
best results are highlighted in bold.

Method Img2Text Text2Img Average
PCA+PLS 0.2757 0.1997 0.2377
PCA+CCA 0.2655 0.2215 0.2435

PCA+GMMFA 0.3090 0.2308 0.2699
PCA+GMLDA 0.2418 0.2038 0.2228

LCFS 0.3438 0.2674 0.3056
Proposed (Simple) 0.3262 0.2997 0.3129

Proposed (Advanced) 0.3741 0.2944 0.3342
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Fig. 5.3 Performance of different methods on the Pascal Voc dataset, based on precision-scope
curve for K = 50 to 1000: (a) image query to match text, (b) text query to match image.

Table 5.2 shows the results of different methods in terms of MAP on Pascal Voc dataset.
It can be observed that the proposed simple scheme significantly outperforms the previous
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methods. It shows that the coupled dictionary learning algorithm has the advantage of
outputting sparse representation that preserves the relationship among different modalities.
Moreover, the advanced scheme makes further improvement over the simple one, showing
that coupled feature selection can be done in the sparse representations and benefits the
learned common space for feature mapping.

The corresponding precision-scope curves on Pascal Voc dataset are plotted in Fig. 5.3 for
both forms of cross-modal retrieval tasks, i.e., Image query to match text (a) and Text query
to match image (b). The scope (i.e., the top K retrieved samples) for the precision-scope
varies from 50 to 1,000. It can be observed that compared with the previous methods, the
proposed method obtains better results for both tasks.
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Fig. 5.4 Performance of different methods on the Wiki dataset, based on precision-scope
curve for K = 50 to 1000: (a) image query to match text, (b) text query to match image.

Table 5.3 shows the MAP scores of different approaches on the Wiki dataset. On average,
the proposed schemes achieves higher MAP scores than the other methods but perform worse
than some methods on Img2Text task. As discussed in [74], it is challenging to improve on
this dataset due to the low dimensions of image and text features. Nevertheless, the proposed
schemes consistently outperform previous methods especially on Text2Img task. To further
understand the reason, the performance is compared by changing the dictionary size of the
coupled dictionary learning step in the advanced scheme. Fig. 5.5 shows the MAP scores
with different dictionary size on the two datasets. It can be learned that, larger dictionary
size generally has better capability for sparse representation and the best MAP scores on
the two datasets are achieved with dictionary size 300 and 210, respectively. Therefore, the
limitation of low dimensional (10-dim) text features (see Table 5.1) of the Wiki dataset can be
tackled by the coupled dictionary learning procedure where more efficient high dimensional
(210-dim) sparse features are used, benefitting the coupled feature selection in the feature
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mapping procedure. However, the decay on Img2Text indicates that the sparse representations
of different modalities may need to be further balanced.

The corresponding precision-scope curves on Wiki dataset are plotted in Fig. 5.4, and it
can be seen that for both forms of cross-modal retrieval tasks, the proposed method finds
more correct matches in the top K documents compared with its several counterparts.

Table 5.3 MAP scores of different methods on Wiki dataset. Previous and proposed best
results are highlighted in bold.

Method Img2Text Text2Img Average
PLS 0.2402 0.1663 0.2032
CCA 0.2549 0.1846 0.2198

GMMFA 0.2750 0.2139 0.2445
GMLDA 0.2751 0.2098 0.2425

LCFS 0.2798 0.2141 0.2470
Proposed (Simple) 0.2717 0.2233 0.2475

Proposed (Advanced) 0.2776 0.2311 0.2544
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Fig. 5.5 The MAP with different dictionary size of the proposed scheme (advanced) on the
Pascal Voc dataset (a) and Wiki dataset (b), where the best MAP score (Average) of LCFS
method is also provided for guides in red dotted line.

Specifically, for Text2Img task, Fig. 5.6 shows two examples of text queries and the top
five images retrieved using the advanced scheme. In each example, the text query and its
corresponding image are shown at the left, and the top five images retrieved are listed in the
following columns. It can be observed that the advanced scheme finds the closet matches of
the image modality at the semantic level for both text queries. And the retrieved images are
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all belonging to the same keyword of the text queries (“music” at the top, “warfare” at the
bottom).

Radiohead began work on their 
seventh album in February 2005.
In September 2005, the band 
recorded a piano-based song,
"I Want None of This“ …

The ship was named afterLudwig 
Adolf Wilhelm von Lützow, a 
Prussian lieutenant-general who 
fought during the Napoleonic 
Wars …

Text query Image of text query Top five images retrieved by our proposed advance scheme

Another growing threat in recent 
years is the introduction of non-
native species into the park. The 
melaleuca tree causes the most 
destruction of plant species, ...

Fig. 5.6 Two examples of the Text2Img task obtained by the proposed advanced scheme on
Wiki dataset.

5.4.3 Results on MIRFlickr-25K dataset

The comparison is then made for the Img2Keyword task. To make comprehensive comparison,
several state-of-the-art image annotation methods are also taken into account, which can
also be evaluated for the Img2Keyword task. These methods include: (1) JEC [12] , Tagprop
[13] and Fasttag [35], which only use image modality for learning model; (2) Multi-kernel
SVMs [65], which applies different kernel functions to train SVM classifiers for image and
text modalities; (3) Kernel CCA (KCCA) [67] and LCFS [74], which are common subspace
learning methods. Since KCCA does not directly map image modal data into the keyword
space, it is used for nearest neighbor selection then combine it with the nearest neighbor
based tag propagation scheme Tagprop (this has been reported with promising result in
[67]). For the proposed scheme, the dictionary size is empirically set to be 350 for coupled
dictionary learning.

The overall performance on Img2Keyword task is shown in Table 5.4. It can be observed
that: 1) using an additional text modality improves the accuracy of Img2Keyword task than
only using the image modality; 2) both of the proposed schemes outperform the subspace
learning method LCFS, indicating that the coupled dictionary learning procedure in the
proposed framework is efficient to handle the diversity of different modalities and the learned
sparse representations is more powerful than the original features for subspace learning;
3) the advanced scheme achieves the highest performance and generally outperforms the
state-of-the-art method KCCA+Tagprop, showing that the learned sparse representations
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Table 5.4 Comparison of Img2Keyword in terms of P, R and F1 measure for the proposed
schemes and related methods on MIRFlickr-25K dataset. Previous and proposed best results
are highlighted in bold.

Method P R F1
JEC 0.3290 0.1733 0.2270

Tagprop 0.4521 0.3021 0.3622
Fasttag 0.4498 0.3637 0.4021

Multi-kernel SVMs 0.5162 0.3658 0.4282
KCCA+Tagprop 0.5469 0.3542 0.4299

LCFS 0.3253 0.3122 0.3186
Proposed (Simple) 0.4933 0.3445 0.4056

Proposed (Advanced) 0.5890 0.3779 0.4604

are powerful for subspace learning and coupled feature selection is crucial in enhancing the
relationships across different modalities.

lake, night, 
sea, water, 
structures,

newyork

2007, flower, 
naturesfinest, 
impressedbeauty, 
spring, nikkor, 
nikond200

flower,
plant_life,
pink,nature, 
macro

night, car,
structures, 
sunset, 
transport

<no text>

female, indoor, 
people, portrait 

<no text>

clouds, sky,
structures,
lake, sunset

food, indoor 

car, plant_life, 
structures, 
transport, tree

flower, plant_life,
sky, tree, water,
structures

Input image Given text Predicted keywords Input keywords Top 2 images retrieved

Img2Keyword task Keyword2Img task

Fig. 5.7 Examples of the Img2Keyword and Keyword2Img tasks obtained by the proposed
advanced scheme on MIRFlickr-25K dataset.

Fig. 5.7 shows several Img2Keyword and Keyword2Img examples obtained by the
proposed advanced scheme on MIRFlickr-25K dataset. In each case, the query image or text
is shown at the left, and the retrieved texts or images are listed at the following columns. It
can be observed that the proposed advanced scheme can efficiently find the closest matches
across different modalities of data.



5.5 Summary 71

5.5 Summary

In this chapter, the author has proposed a novel framework to solve the problem of cross-
modal retrieval. The framework consists of two procedures: coupled dictionary learning and
coupled feature mapping. The former procedure is imposed to obtain homogeneous sparse
representations, which is to handle the diversities of different modalities and incorporate
the relationships across them. The latter procedure is utilized to learn projection matrices
based on the sparse representations of different modalities, which can efficiently map the data
of different modalities into the keywords space for comparison. The author has developed
efficient iterative algorithm to solve the derived minimization problem in the proposed
framework. Experimental results on a variety of cross-modal retrieval tasks shows the
superiority of the proposed framework. In the future, the author will explore the potentiality
of the proposed framework in fill in missing modalities given the observed one, to deal with
the issue of absence of some modalities.





Chapter 6

Conclusion

To make conclusion, the main contributions in the thesis are depicted in Section 6.1. Then
the future work are discussed in Section 6.2.

6.1 Contributions

Modeling the topic correlation of images and texts via latent topic model: The author
has made the first trial to extend the LDA based topic model for image annotation problem,
and then extends the popular LDA based topic models such as corrLDA and sLDA-bin to the
CTM based models: corrCTM and sCTM-bin, which can incorporate topic correlation. A
general mean-field variational algorithm for parameter estimation is derived in these CTM
based models. Informative comparison of annotation performance between proposed CTM
based and previous LDA based models are performed, which shows the superiority of the
proposed models.

Exploring image-label associations in weakly labeled datasets: For the issue of in-
complete labeling, the author has put effort to improve OVA-SSVM in three aspects:

1. A method that can tackle with more general case where each training image has one
or more labels is proposed. The proposed method is more efficient for the multi-label
annotation problem than the OVA-SSVM method.

2. A novel image specific structured loss term is formulate, which is more appropriate
than the classification-style structured loss used in OVA-SSVM, to account for the
dependencies of predicted multiple labels of a specific image.

3. The author also has developed an efficient optimization algorithm with lower complex-
ity by exploiting the properties of the proposed structured loss.
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Finally, experiments are conducted to compare the proposed method with OVA-SSVM
on image classification task, observing that proposed method performs on par with OVA-
SSVM and can automatically capture the semantic hierarchies without pre-definition (used in
OVA-SSVM). Extensive evaluation on two benchmark annotation datasets is conducted with
a variety of the setting of incompleteness for image annotation task. The empirical results
demonstrate that the proposed method is significantly better than OVA-SSVM, and achieves
competitive annotation performance compared with other state-of-the-art methods designed
for incomplete labelling.

For the issue of defective tag assignments, the author has proposed an efficient re-
weighting scheme to elaborately assign the penalty of predicting each tag to each image,
and the penalty of pairwise image-tag is fully derived from both image-image similarities
and tag-tag associations. Then, a unified re-weighted empirical loss term is formulated by
utilizing the re-weighted penalty term. Finally, the author has extended two recently pro-
posed tag completion models to incorporate the re-weighted empirical loss term, developing
the corresponding optimization algorithms to perform tag completion with defective tag
assignments.

Multimodal learning for images, texts and their semantics: The author has proposed
a novel framework that unifies coupled dictionary learning and coupled feature mapping for
the cross-modal retrieval problem. The proposed framework can not only handle the diversity
of different modal data, but also improve the efficiency of subspace learning and coupled
feature selection. The previous sparse representation method of coupled dictionary learning
developed for unimodal data is extended to the case of multi-modal data, and an efficient
iterative algorithm is developed to solve the complex minimization problem in the proposed
framework. The proposed framework is evaluated with a variety of cross-modal retrieval
tasks on three challenging datasets, and the experimental results show that the proposed
framework outperforms several relevant state-of-the-art approaches.

6.2 Future work

In the conventional image annotation problem, as discussed in Chapter 2, the target is to train
an annotation model from a collections of annotated training images with a fixed size of pre-
defined labels. However, the corpus of labels can only support general visual knowledge and
does not cover the semantics of the entire world. The expansibility of the annotation model is
limited since it cannot predict newly discovered labels that are not in the pre-defined corpus.
In this case, the annotation model should incrementally learn the new visual knowledge and
predict new labels. Thus, the incremental learning scheme could be employed to enable
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the model to tackle with image with new visual knowledge. And it is necessary to design a
framework in which the topic representation can be efficiently used with large size of labels,
e.g., tens of thousands of labels extracted from social media, which is an essentially difficult
challenge.

In the Chapter 3 and Chapter 4, the author has investigated the practical issues of
incomplete labeling and defective tag assignments in the training images, and it can be found
in the experiments that the quality of the manually annotated labels of the training images
highly impacts the performance of the annotation systems. And the author has developed a
data-driven based scheme to compute the image-label associations from the training corpus.
However, it is still difficult to capture the true associations while maintaining quality and
consistency of image labeling. Indeed, the prior knowledge such as ontologies and semantic
hierarchy of labels can be utilized when computing the associations of image and labels. It
is necessary to develop more appropriate scheme to incorporate the prior knowledge and
consider the scalability of the scheme when performing on large quantities of training images.

In Chapter 5, the author has considered the cross-modal retrieval task and focused
on eliminating the diversity of two different modalities of images and texts. A potential
problem of the proposed framework is that it consists of two loosely connected steps. The
objective functions in the two steps are formulated separately and the parameters in the two
functions are not jointly learned. Indeed, the proposal can be further improved into a compact
framework and all the parameters can be learned jointly, which may reasonably leads to
better performance. Moreover, besides the two modalities of images and texts, various
information provided by other modalities (e.g., data of various sensors) can be integrated
to extend the cross-modal system to a multi-modal scenario. For examples, the different
information sources such as GPS and inertial sensors can be utilized, which may provide
additional information. In addition, the audio information along with the visual frames in the
videos can also be leveraged to enrich the relationship among different modalities.
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Appendix A

This appendix depicts the mathematical derivation details of variational inference and pa-
rameter estimation of the proposed CTM based models: corrCTM and sCTM-bin in Chapter
2.

A.1 Derivation of optimization algorithm in corrCTM

As shown in Fig. A.1(a), the corrCTM model assumes that topic-feature matrix π and topic-
word matrix β shares the same dimensional topic space K, to ensure the same sets of topics
are used to generate corresponding between feature and word modalities. In addition, under
corrCTM each word w directly shares a hidden topic variable with a randomly selected image
feature v. The corrCTM model specifies the following joint distribution for an image in terms

(a) corrCTM (b) variational approximation

Fig. A.1 Illustrations of the proposed corrCTM model: (a) graphical representation, (b)
variational approximation for the latent variables.

of features v, words w, topic proportion θ and topic assignment z:

p(v,w,θ ,z,y|µ,Σ,π,β )= p(θ |µ,Σ)

(
M

∏
m=1

p(zm|θ)p(vm|zm,π)

)(
N

∏
n=1

p(yn|M)p(wn|yn,z,β )

)
.

(A.1)
Note that µ , Σ, π , β are model parameters we want to estimate. An intuitive way is
using Maximum Likelihood Estimation (MLE). Therefore, we marginalize over the hidden
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variables θ , z, y for observation variables v, w. We then rewrite joint log probability in terms
of µ , Σ, π and β as:

logp(v,w|µ,Σ,π,β ) =
∫

θ
∑
z

∑
y

p(v,w,θ ,z,y|µ,Σ,π,β )dθ . (A.2)

A.1.1 Variational inference

Unfortunately, Equation A.2 is intractable due to the coupling between θ and π in the summa-
tion over topic z. We use Jensen’s inequality to bound the log probability logp(v,w|µ,Σ,π,β ):

logp(v,w|µ,Σ,π,β ) ≥ Eq[logp(v,w,θ ,z,y|µ,Σ,π,β )]+H(q)

= L (γ,ν ,φ ,λ ; µ,Σ,π,β ), (A.3)

where H(q) denotes entropy of variational distributions, H(q) =−Eq[logq(θ ,z,y|γ,ν ,φ ,λ )].
The negative expectation is taken with respect to variational distributions of latent vari-
ables in Fig. A.1(a), and from variational approximation in Fig A.1(b) we can factorize
Eq[logq(θ ,z,y|γ,ν ,φ ,λ )] over introduced variational variables:

q(θ ,z,y|γ,ν ,φ ,λ ) = q(θ |γ,ν)

(
M

∏
m=1

q(zm|φm)

)(
N

∏
n=1

q(yn|λn)

)
, (A.4)

where the variational distribution of θ1:K are K independent univariate Normals {γ1:K , ν1:K}.
The variational distributions of z1:M are specified by φm over K topics, and variational
distributions of y1:N are specified by λn over M features.

Finally, the lower boundary L (γ,ν ,φ ,λ ; µ,Σ,π,β ) in Equation A.3 can be factorized
as:

L (γ,ν ,φ ,λ ; µ,Σ,π,β ) =
M

∑
m=1

(
Eq[logp(zm|θ)]+Eq[logp(vm|zm,π)]

)
+Eq[logp(θ |µ,Σ)]+

N

∑
n=1

(
Eq[logp(yn|M)]+Eq[logp(wn|yn,β )]

)
− Eq[logq(θ |γ,ν)]−

M

∑
m=1

Eq[logq(zm|φm)]−
N

∑
n=1

Eq[logq(yn|λ )]. (A.5)

The expectation terms in Equation A.5 which are different from corrLDA [22] are
Eq[logp(θ |µ,Σ)] and Eq[logp(zm|θ)]. Since η derives from multivariate Normals,

Eq[logp(θ |µ,Σ)] = (1/2)log|Σ−1|− (K/2)log2π− (1/2)Eq[(θ −µ)T
Σ
−1(θ −µ)]. (A.6)
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Learned from [16, 76], the lower bound of non-conjugate logistic normal f (θi) =

expθi/∑ j expθ j can be preserved with a Taylor expansion,

Eq[logp(zm|θ)] = Eq[θ
T zm]−Eq

[
log(

K

∑
i=1

expθi)

]

≥ Eq[θ
T zm]−ζ

−1

(
K

∑
i=1

Eq[expθi]

)
−1+ log(ζ )

=
K

∑
i=1

γiφmi−ζ
−1

(
K

∑
i=1

Eq[expθi]

)
−1+ log(ζ ), (A.7)

where ζ is a new variational variable introduced, and Eq[expθi] = exp{γi +ν2
i /2} for i ∈

{1, ...,K}. Finally, we can maximize Equation A.5 with respect to variational parameters
γ1:K , ν1:K , φ1:M and λ1:N . We use a coordinate ascent algorithm, iteratively maximizing the
bound with respect to each parameter.

Table A.1 A summary of update rules in corrCTM for all parameters: the former five are
variational parameters, and the latter four are model parameters.

Parameters Update Rule

γ ∂L (γ)/∂γ =−Σ−1(γ−µ)+∑
M
m=1 φm,1:K− (M/ζ )exp(γ +ν2/2)

ν ∂L /∂ν2
i =−Σ

−1
ii /2− (M/2ζ )exp(γ +ν2

i /2)+1/(2ν2
i )

ζi = ∑
K
i=1 exp{γi +ν2

i /2}
φim ∝ πi,vmexp

(
γi +∑

N
n=1 λnmlogβi,wn

)
λ ∝ exp

(
∑

K
i=1 φmilogβi,wn

)
µ = (1/D)∑

D
d=1 γd

Σ = (1/D)∑
D
d=1
(
I ν2

d +(γd− µ̂)(γd− µ̂)T)
πmi ∝ ∑

D
d=1 ∑

Md
m=1 φdmiv

j
dm

βnm ∝ ∑
D
d=1 ∑

Nd
n=1 w j

dn ∑
Md
m=1 φdmiλdnm

A.1.2 Parameter estimation

Specifically, to estimate model parameters {µ,Σ,π,β}, the objective function is the like-
lihood bound given by summing Equation A.5 over all training image-annotation pairs,

L(µ,Σ,π,β ;v1:D,w1:D)≥
D

∑
d=1

Eqd [logp(θd,zd,yd|µ,Σ,π,β )]+H(qd). (A.8)

We use variational EM algorithm to maximize this objective function. In E-step, we maximize
the bound with respect to variational parameters {γ,ν ,φ ,λ ,ζ} by performing variational
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inference for each document, depicted in Section A.1.1. In M-step, we maximize the bound
with respect to model parameters {µ,Σ,π,β}, given the variational distribution computed in
E-step.

Here we supply a complete update rules for all variational parameters and model pa-
rameters in Table A.1. In practice, variational updates for γ , ν are not closed-form, we use
LBFGS algorithm to update γ and constrained Newton’s method to update ν .

A.2 Derivation of optimization algorithm in sCTM-bin

In sCTM-bin, each annotation word is treated as discrete response variable. In the generative
process in Fig A.2(a), the occurrence of annotation words w is a multivariate Bernoulli of all
words in dictionary. In addition, a logistic regression model from empirical topic proportions
z of visual features v is used to define the probability of each word.

(a) corrCTM (b) variational approxima-
tion

Fig. A.2 Illustrations of the proposed sCTM-bin model: (a) graphical representation, (b)
variational approximation for the latent variables.

A.2.1 Variational inference

Following the similar methodology from corrCTM in Section A.1, the joint log likelihood of
image-annotation pairs in one image can be formulated as,

logp(v,w|µ,Σ,π,A,τ) ≥ Eq[logp(v,w,θ ,z|µ,Σ,A,τ)]+H(q)

= L (γ,ν ,φ ; µ,Σ,π,A,τ), (A.9)

where H(q) denotes entropy of variational distributions, H(q) = −Eq[logq(θ ,z|γ,ν ,φ)].
The negative expectation is taken with respect to variational distributions of latent vari-
ables in Fig A.2(a), and from variational approximation in Fig. A.2(b) we can factorize
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Eq[logq(θ ,z|γ,ν ,φ)] over introduced variational variables:

q(θ ,z|γ,ν ,φ) = q(θ |γ,ν)

(
M

∏
m=1

q(zm|φm)

)
, (A.10)

where the variational distribution of θ1:K are K independent univariate Normals {γ1:K , ν1:K}.
The variational distributions of z1:M are specified by φm over K topics.

Finally, the lower boundary L (γ,ν ,φ ; µ,Σ,π,A,τ) in Equation A.9 can be factorized as:

L (γ,ν ,φ ; µ,Σ,π,A,τ) =
M

∑
m=1

(
Eq[logp(zm|θ)]+Eq[logp(vm|zm,π)]

)
+Eq[logp(θ |µ,Σ)]+

N

∑
n=1

Eq[logp(wn|A,τ)]

−Eq[logq(θ |γ,ν)]−
M

∑
m=1

Eq[logq(zm|φm)]. (A.11)

The expectation terms in Equation A.11 which are different form sLDA-bin [8] are also
Eq[logp(θ |µ,Σ)] and Eq[logp(zm|θ)]. We can use Equation A.6, A.7 to formulate the lower
boundary L (γ,ν ,φ ; µ,Σ,π,A,τ).

A.2.2 Parameter estimation

To estimate model parameters {µ,Σ,π,A,τ}, the objective function of likelihood bound over
all training image-annotation pairs,

L(µ,Σ,π,A,τ;v1:D,w1:D)≥
D

∑
d=1

Eqd [logp(θd,zd|µ,Σ,π,A,τ)]+H(qd). (A.12)

We use variational EM algorithm to maximize this objective function. In E-step, we maximize
the bound with respect to variational parameters {γ,ν ,φ} by performing variational inference
for each document. In M-step, we maximize the bound with respect to model parameters
{µ,Σ,π,A,τ}, given the variational distribution computed in E-step.

Table A.2 summarizes a complete update rules for all variational parameters and model
parameters. Here, ξ is an introduced variational parameter as the same as in sLDA-bin,
λ (ξi) = tanh(ξi/2)/(4ξi).
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Table A.2 A summary of update rules in sCTM-bin for all parameters: the top panel is
variational parameters, and the bottom panel are model parameters.

Parameters Update Rule

γ ∂L /∂γ =−Σ−1(γ−µ)+∑
M
m=1 φm,1:K− (M/ζ )exp(γ +ν2/2)

ν ∂L/∂ν2
i =−Σ

−1
ii /2− (M/2ζ )exp(γ +ν2

i /2)+1/(2ν2
i )

ξ 2
i = AT

i E[zzT ]Ai +2τiAiE[z]+ τ2
i

φim ∝ πi,vmexp
[

γi +∑
Vt
j=1

(
λ (ξ j)
2M A j−

λ (ξ j)

M2 diag(A jAT
j ) + 2A jAT

j ∑n ̸=m φni

)]
µ = (1/D)∑

D
d=1 γd

Σ = (1/D)∑
D
d=1
(
I ν2

d +(γd− µ̂)(γd− µ̂)T)
πmi ∝ ∑

D
d=1 ∑

Md
m=1 φdmiv

j
dm

Ai =
(
2∑

D
d=1 λ (ξ d

i )E(zdzT
d )
)−1 (

∑
D
d=1 (w

d
i −1/2−2λ (ξ d

i )τi)E[zd]
)

τi =
(
∑

D
d=1 (w

d
i −1/2−2λ (ζ d

i )A
T
i E[zd])

)
/∑

D
d=1 2λ (ζ d

i )



Appendix B

This appendix presents the mathematical derivation details of optimization algorithms utilized
in the proposed TMC-RW and Fasttag-RW models in Chapter 4.

B.1 Optimization in TMC-RW

The objective of TMC model with image-tag re-weighting (TMC-RW) is to minimize the
loss function L (T,w), which is derived as

min
T,w

L (T,w) = min
T,w
∥(T − T̂ )◦Z∥2

F︸ ︷︷ ︸
re−weighted loss

+η∥T T⊤−R∥2
F +λ∥T T⊤−V diag(w)V⊤∥2

F

+µ∥T∥1 + γ∥w∥1, (B.1)

where the L1 regularizer for both T and w is to generate sparse solutions for them. We
adopt the subgradient-based and composite function optimization strategy proposed in [57]
to optimize T and w with non-negative sparse constraints.

Defining L (T,w) =A (T,w)+µ∥T∥1+γ∥w∥1, G = T T⊤−V diag(w)V⊤, H = T T⊤−
R, the subgradients of T and w for A (T,w) are derived as

▽T A (T,w) = 2λGT +2ηT H +2(T − T̂ )◦Z,

▽w A (T,w) =−2λdiag(V⊤GV ), (B.2)

For only A (T,w) without L1 regularizer to T and w, the update solutions for T and w
are as follows:

Tt+1 = [Tt−ηt▽T A (Tt ,wt)]+,

wt+1 = [wt−ηt▽T A (Tt ,wt)]+, (B.3)

where ηt is the step size of iteration t, [ f ]+ = max(0, f ) projects learnt w to be non-negative.
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Now with L1 regularizer to T and w, the iterative update rules of T and w can be derived
according to a composite function optimization method as

Tt+1 = argmin
T

1
2
∥T − T̂t+1∥2

F +ηt µ∥T∥1,

wt+1 = argmin
w

1
2
∥w− ŵt+1∥2

F +ηtγ∥w∥1, (B.4)

where variables T̂t+1 and ŵt+1 are intermediate results without L1 regularizer, and they can
be derived as

T̂t+1 = Tt−ηt▽T A (Tt ,wt),

ŵt+1 = [wt−ηt▽T A (Tt ,wt)]+. (B.5)

Given Equation B.2 and Equation B.5, the final update solutions for T and w can be
formulated as

Tt+1 = [T̂t+1−ηt µ1n×m]+,

wt+1 = [ŵt+1−ηtγ11×d]+. (B.6)

Algorithm 3 summarizes the entire procedure for sub-gradient based optimization in
TMC-RW model.

Algorithm 3: Sub-gradient descent based optimization in TMC-RW
Input:

Initial defective tag matrix T̂n×m, image feature matrix Vn×d , tag correlation matrix
Rm×m, image-tag re-weighted penalty matrix Zn×m, coefficients η , λ , µ and γ , converge
threshold ε .

Output: recovered complete tag matrix T , image feature weight w.
1: Initialize T1 = T̂ , w1 = 11×d , R = T̂⊤T̂ , iteration t = 0, ε = 10−5.
2: repeat
3: Set t = t +1, step size ηt = 1/t.
4: Update T according to Equation B.6.
5: Update w according to Equation B.6.
6: until Convergence is reached to ∥L (Tt+1,wt+1)−L (T,w)∥ ≤ ε∥L (T,w)∥.
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B.2 Optimization algorithm in Fasttag-RW

The objective of Fasttag with image-tag re-weighting (Fasttag-RW) is to minimize the loss
function L (W,B), which is formulated as,

min
W,B

L (W,B) = min
W,B
∥(T −BT̂ )◦Z∥2

F︸ ︷︷ ︸
re−weighted loss

+ γ∥BT̂ −WV∥2
F +λ∥W∥2, (B.7)

where L2 regularization on W is to reduce complexity and avoid overfitting.

In Equation B.7, we do not directly optimize T , and instead, we use the backtracked
corruption method to approximate the re-weighted empirical loss. In particular, we randomly
remove some tags with independent probability p ∈ (0,1) from T̂ to generate a further cor-
rupted version T̄ = {Ȳ1, ...,Ȳn} from T̂ , and we repeat this backtracked corruption procedures
several times, and use the expected corruption value to approximate re-weighted empirical
loss. Finally, the empirical loss can be approximated as

∥(T −BT̂ )◦Z∥2
F ≈ E

[
∥(T̂ −BT̄ )◦Z∥2

F
]

p(T̄ |T̂ )

=
1
n

n

∑
i=1

E
[
∥(Ŷi−BȲi)◦ zi∥2

F
]

p(Ȳi|Ŷi)
, (B.8)

where zi is the i-th column in Z for the i-th image. When expanding Equation B.8, we define
P = ∑

n
i=1 ŶiE[Ȳi ◦ zi]

⊤ and Q = ∑
n
i=1E[Ȳi ◦ ziȲ⊤i ]. Then the re-weighted empirical loss in

Equation B.8 can be rewritten as

∥(T −BT̂ )◦Z∥2
F ≈

1
n

trace(BQB⊤−2PB⊤+ T̂ ◦ZT̂⊤). (B.9)

Especially, the expected value of backtracked corruptions E[Ȳi ◦ zi] = (1− p)Ŷi, and the
variance matrix V[Ȳi ◦ ziȲ⊤i ] = p(1− p)δ (Ŷi ◦ ziŶi

⊤
), where δ (·) is an operator to set all

elements but the diagonal to zero. Thus we can compute matrices P and Q as

P = (1− p)T̂ ◦ZT̂⊤

Q = (1− p)2T̂ ◦ZT̂⊤+ p(1− p)δ (T̂ ◦ZT̂⊤). (B.10)

Now, by substituting Equation B.9 and Equation B.10 into Equation B.7, we can use
block-coordinate descent algorithm to optimize B and W alternatingly. The gradient of
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Algorithm 4: Iterative optimization in Fasttag-RW
Input:

Initial defective tag matrix T̂m×n, image feature matrix Vd×n, image-tag re-weighted
penalty matrix Zm×n, corruption probability p, coefficients γ , λ .

Output: enrichment mapping B, linear weights W .
1: Initialize B = 1m×m, W = 1d×m, p = 0.
2: repeat
3: Set p = p+0.1, p≤ 1.
4: Fix W , calculate B using Equation B.12.
5: Fix B, calculate W using Equation B.12.
6: Calculate complete tag matrix T = BT̂ or T =WV .
7: until Convergence is reached until T no longer improves evaluation metrics F1-macro,

F1-micro and Coverage.

L (W,B) with respect to B and W can be derived as

▽BL (B,W ) = B(Q+ γT̂ T̂⊤)−P− γWV T̂⊤,

▽W L (B,W ) =W (γVV⊤+nλ1d×d)− γBT̂V⊤. (B.11)

By setting the gradients in Equation B.11 to be zero, we can formulate the close form
solutions for B and W as

B = (P+ γWV T̂⊤)(Q+ γT̂ T̂⊤)−1,

W = γBT̂V⊤(γVV⊤+nλ1d×d)
−1. (B.12)

The iterative optimization algorithm to calculate the optimal B and W is shown in
Algorithm 4.



Appendix C

This appendix provides the mathematical derivation details of the iterative algorithm for
parameter learning in the proposed framework for cross-modal retrieval problem in Chapter 5.
The author will first depict the parameter learning for coupled dictionary learning procedure
and then for coupled feature mapping procedure.

C.1 Parameter learning for coupled dictionary learning

Given the data from two different modalities: image modality V = [v1, ...,vn] ∈ Rd1×n

and text modality T = [t1, ..., tn] ∈ Rd2×n, the coupled dictionary learning procedure in the
proposed framework aims to get homogenous sparse representations AV and AT for the two
modalities based on their dictionaries DV and DT , respectively. Based on the coupled learning
framework in [75], an associate function f (·) (as interpreted in Chapter 5) is introduced to
account for the relationships across the different modalities. The final minimization problem
involved in the coupled dictionary learning procedure is formulated as:

min
DV ,DT ,AV ,AT ,UV ,UT

∥V−DV AV∥2
F +∥T−DT AT∥2

F +σ(∥AV∥1 +∥AT∥1)

+ γ(∥AV −U−1
V PT∥2

F +∥AT −U−1
T PV∥2

F)+µ(∥U−1
V ∥

2
F +∥U−1

T ∥
2
F) (C.1)

s.t. ∥dv,i∥2 ≤ 1,∥dt,i∥2 ≤ 1,∀i.

Similar as in [75], the objective function of Equation C.1 is convex with respect to dictionaries
{DV ,DT}, sparse representations {AV ,AT} and projection matrices {UV ,UT} when fixing
the other variables. In practice, we can iteratively update these parameters in each iteration
by an alternating manner.
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C.1.1 Updating DV and DT

When updating the dictionaries DV and DT of the two modalities during each iteration, we
treat the sparse representations {AV ,AT} and projection matrices {UV ,UT} as constants.
Then Equation C.1 can be simplified as:

min
DV
∥V−DV AV∥2

F , st. ∥dv,i∥2 ≤ 1,∀i,

min
DT
∥T−DT AT∥2

F , st. ∥dt,i∥2 ≤ 1,∀i, (C.2)

Equation C.2 is a typical form of quadratically constrained quadratic program (QCQP) with
respect to DV and DT , and it can be efficiently solved using Lagrange dual techniques.

C.1.2 Updating AV and AT

Similarly, we calculate the solutions of sparse representations AV and AT while fixing
projection matrices {UV ,UT} and dictionaries DV and DT . Thus, we convert Equation C.1
into the following problem:

min
AV
∥V−DV AV∥2

F +σ∥AV∥1 + γ∥AV −U−1
V PT∥2

F ,

min
AT
∥T−DT AT∥2

F +σ∥AT∥1 + γ∥AT −U−1
T PV∥2

F . (C.3)

Here Equation C.3 can be further rewritten as the form of standard sparse coding with respect
to AV and AT , as follows:

min
AV
∥V̄− D̄V AV∥2

F +σ∥AV∥1,

min
AT
∥T̄− D̄T AT∥2

F +σ∥AT∥1, (C.4)

where D̄V =

[
V

√
γU−1

V PT

]
, D̄T =

[
T

√
γU−1

T PV

]
, and D̄V =

[
DV√

γI

]
, D̄T =

[
DT√

γI

]
. In practice,

we use the open source tool of SPAMS [77] to compute AV and AT .
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C.1.3 Updating UV and UT

Using aforementioned strategy we can derive the following formulation to update dictionaries
UV and UT :

min
U−1

V

∥AV −U−1
V PT∥2

F +µ∥U−1
V ∥

2
F ,

min
U−1

T

∥AT −U−1
T PV∥2

F +µ∥U−1
T ∥

2
F , (C.5)

which are standard ridge regression problems with respect to UV and UT . Therefore, we can
derive the close-form solutions as:

U−1
V = AV P⊤T [PT P⊤T +(µ/γ)I]−1,

U−1
T = AT P⊤V [PV P⊤V +(µ/γ)I]−1. (C.6)

In summary, we can update these parameters according to the derived solutions iteratively
until the object function of Equation C.1 is converged. Once we get the optimized values of
sparse representations AV and AT of the two modalities, we can use them as the input for the
latter coupled feature mapping procedure.

C.2 Parameter learning for coupled feature mapping

After obtaining the sparse representations AV and AT for the two modalities from the coupled
dictionary learning procedure above, given the keyword matrix Y = [y1,y2, ...,yn] ∈ Rc×n,
the coupled feature mapping procedure aims to learn two projection matrices WV ∈ Rk1×c

and WT ∈ Rk2×c, which map the sparse representations AV and AT of the two modalities
into the common space defined by the keywords.

We leverage the coupled linear regression method and develop two schemes for the
coupled feature mapping procedure: the simple scheme and the advanced scheme.

C.2.1 Simple scheme

For the simple scheme, we adopt the ridge regression method to ensure that the projection
errors from the sparse representations of each modality to the keyword space are minimized.
The generic minimization problem of the simple scheme is derived as:

min
WV ,WT

∥W⊤V AV −Y∥2
F +∥W⊤T AT −Y∥2

F +λ (∥WV∥2
F +∥WT∥2

F), (C.7)
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where λ is the regularization parameter. The analytical solutions of WV and WT can be
derived as:

WV = YA⊤V (AV A⊤V +λ I)−1,

WT = YA⊤T (AT A⊤T +λ I)−1. (C.8)

C.2.2 Advanced scheme

For the advanced scheme, we follow the previous coupled feature mapping method [74] to
further incorporate coupled feature selection. Thus, we have the similar objective function as
in [74] as:

min
WV ,WT

1
2
(∥W⊤V AV−Y∥2

F +∥W⊤
T AT−Y∥2

F)+λ1(∥WV∥21+∥WT∥21)+λ2∥[W⊤
V AV W⊤T AT ]∥∗,

where the L21 norm ∥·∥21 is used to select features from coupled feature space simultaneously,
and the trace norm ∥ · ∥∗ encodes the correlations of different modalities with a low-rank
constraint. Note that in Equation C.9, we use sparse representations AV and AT for feature
mapping, while in [74] the original features of AV and AT are utilized.

Following the proposal in [74], the Equation C.9 can be rewritten as:

min
WV ,WT

min
S≥0

1
2
(∥W⊤V AV −Y∥2

F +∥W⊤
T AT −Y∥2

F)+λ1(∥WV∥21 +∥WT∥21)

+
λ2

2
tr([A⊤V WV A⊤T WT ]

⊤S−1[A⊤V WV A⊤T WT ])+
λ2

2
tr(S), (C.9)

where S is the approximately variational formulation for the trace norm in Equation C.9, as:

S = (A⊤V WV W⊤V AV +A⊤T WT W⊤T AT +δ I)
1
2 . (C.10)

Furthermore, the Equation C.9 can be reformulated by decomposing the L21 norm, as:

min
WV ,WT

min
S≥0

1
2
(∥W⊤V AV −Y∥2

F +∥W⊤
T AT −Y∥2

F)+λ1[tr(W⊤
V PWV )+ tr(W⊤T QWT )]

+
λ2

2
[tr(A⊤V WV S−1A⊤V WV )+ tr(A⊤T WT S−1A⊤T WT )]+

λ2

2
tr(S). (C.11)



C.2 Parameter learning for coupled feature mapping 99

Given S, optimizing the objective function in Equation C.11 for WV and WT can be
decomposed to two problems of half-quadratic analysis:

min
WV

1
2
∥A⊤V WV −Y∥2

F +λ1tr(W⊤V PWV )+
λ2

2
tr(A⊤V WV S−1A⊤V WV ),

min
WT

1
2
∥A⊤T WT −Y∥2

F +λ1tr(W⊤T QWT )+
λ2

2
tr(A⊤T WT S−1A⊤T WT ), (C.12)

where p = 1
2
√
∥wi

v∥2
2+ε

and q = 1
2
√
∥wi

t∥2
2+ε

are auxiliary vectors of the two L21 norms re-

spectively, and ε is a small constant value for smoothing. In addition, P = Diag(p) and
Q = Diag(q).

Therefore, with regarding to WV and WT , their optimal solutions of Equation C.12 can
be computed by solving the following two linear system problems:

(AV A⊤V +λ1P+λ2AV S−1A⊤V )WV = AV Y,

(AT A⊤T +λ1Q+λ2AT S−1A⊤T )WT = AT Y. (C.13)

In summary, the alternating minimization procedure for Equation C.9 is summarized in
Algorithm 5.

Algorithm 5: Alternating minimization for the advanced scheme
Input: Sparse representations AV and AT , keyword matrix Y, parameters λ1, λ2, δ and ε .
Output: Projection matrices WV and WT .
1: Initialize {WV and WT} as zero matrices for iteration t = 0.
2: repeat
3: t = t +1.
4: Compute St according to Equation C.10.
5: Compute Pt and Qt .
6: Compute Wt

V and Wt
T according to the solutions of linear system problems in

Equation C.13.
7: until The value of Equation C.9 converges.
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