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Abstract

The object recognition task in computer vision system is to detect or identify objects in an

image. It is an important part of the artificial intelligent systems to know their working

environment, and to decide what they can do or cannot do. Transparent object cannot be

well recognized by conventional methods that only use the appearance information since

the appearance of a transparent object dramatically changes when the background varies.

In this work, the author uses a light field camera to observe the visual information of the

environment. The light field camera can record light rays from every direction through every

point in the 3-Dimensional (3D) world. The captured light field data can help the computer

vision system recognize the 3D world more easily, even for the transparent object.

Because the applications require to know the relationship between the recorded light

rays and the 3D world, camera calibration is an essential step for the light field acquisition.

After calibration, camera parameters are known and ray geometry can be understood. In this

thesis, the author propose a calibration method for a cameraarray and a rectification method

for generating a light field image from the captured images. The proposed camera array

calibration approach is a two-step algorithm consisting ofclosed form initialization and

nonlinear refinement, which extends Zhang’s well-known method to the camera array. More

importantly, the author introduce a rigid camera constraint whereby the array of cameras is

rigidly aligned in the camera array and utilize this constraint in the calibration. Using this

constraint, the calibration process is much faster, and thecalibration results are getting more

accurate in the experiments.

After obtain the known geometrical information of the captured light field, special fea-

tures can be extracted from the light field. The feature extracted from the light field image

have more advantages than conventional features. A background-invariant feature which is

called the light field distortion (LFD) feature is proposed.The LFD feature comes from the

transparent object is very different from that comes from the Lambertian object because the

linearity in the light field space is different. The light field linearity (LF-linearity) can be

used for measuring the likelihood of a point comes from the transparent object or not. And

the occlusion detector is designed to locate the occlusion boundary in the light field image.



x

Recognizing the object category and detecting a certain object in the image are two im-

portant object recognition tasks, but previous appearance-based methods cannot deal with

the transparent objects. The proposed methods in this thesis overcome previous problems

using the novel feature extracted from a light-field image. Transparent object categorization

is performed by incorporating the LFD feature into the bag-of-features approach for recog-

nizing the category of transparent object. Transparent object segmentation is realized by

solving the pixel labeling problem. An energy function is defined and Graph-cut algorithm

is applied for optimizing the pixel labeling problem. The regional term and boundary term

are from the LF-linearity and occlusion detector output. Light field datasets are acquired

for the transparent object categorization and segmentation. The results demonstrate that the

proposed methods successfully categorize and segment transparent objects from a light field

image.
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Chapter 1

Introduction

Computer vision techniques, which are inspired by theoriesand observations of visual per-

ception, have been developed rapidly since it appeared in 1966 [1]. The computer vision

systems acquire the image, video and multi-dimensional data from the vision sensors, and

they can apply the theories and models to solve various problems. Typical computer vision

problems include object recognition, scene understanding, video tracking, motion estima-

tion and so on. The solutions to these problems are very useful for the artificial intelligent

systems, and computer vision usually plays an important role in the intelligent robotics.

Nowadays, the intelligent systems are not far from our dailylife, and they can make

our life better. For example, when we use a smart phone to takea photo of a monument

as shown in Fig.1.1a, the computer vision system can tell us the related knowledge of the

photo, such as what is the monument for and who made this monument, and then we can

know more about what we see. The driverless car will be true with the help of computer

vision system as shown in Fig.1.1b. It will be much safer and more fun when we travel by

a driverless car in the near future. Visual object recognition is one of the key parts in these

applications. Visual recognition makes the artificial intelligent systems possible to know

their working environment, and to decide what they can do or cannot do.

The visual object recognition task is mainly to detect or identify objects in an image. It is

easy for human beings to recognize all kinds of objects in theimage, no matter how complex

the scene is. But for the computers, this task is very difficult. Many approaches, such as

histogram-based [4] or feature-based methods [5], have been proposed to deal with this task.

However, transparent objects are still an exemption in the object recognition task since the

conventional methods which use the appearance information. But the transparent objects

do not have their own appearance, they borrow the appearancefrom the background. When

the background changes, the appearance of transparent objects will be totally different (see



2 Introduction

(a) Smart phone [2]. (b) Driverless car [3].

Fig. 1.1 Two examples of visual recognition in computer vision applications.

Fig. 1.2). Therefore, the conventional methods cannot recognize same transparent object

with different backgrounds.

1.1 Light Field Vision

In order to deal with the transparent object recognition problem, the author introduces a new

technique, which is called light field vision to tackle this problem.

As Adelson and Bergen pointed out visual information available to an observer at any

point in space and time [6]. Actually, objects can emit or reflect light rays, and we call all

the light rays in the spacelight field. The light field includes all the visual information in

the space.

The visual data is acquired by various vision sensors, and the data can be taken in many

kinds of forms. The charge-coupled device (CCD) has been widely used in digital image

sensing, because we can use the CCD image sensor to acquire high-quality images and

video sequences with low cost. CCD image sensors are easy to use since there are many

user-friendly hardware and software available. However, conventional CCD image sensor

can only capture sub light field space as shown in Fig.1.3.

A recently developed vision sensor, which is called light field camera, can capture richer

information from the 3-Dimensional (3D) world than conventional cameras. The light field

camera can record light rays from every direction through every point in the 3D world. And

the captured information can be useful for recognizing the transparent objects with various

backgrounds. Therefore, such kind of device is used in this work to tackle the transparent

object recognition applications in computer vision. The technique that utilizes light field

data to solve computer vision problems is calledlight field vision.
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Fig. 1.2 The appearance of transparent objects are totally different when the background
changes.

Fig. 1.3 Each viewpoint can only capture sub light field space.
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Fig. 1.4 Different parameterizations of the light field.

The light rays in the 3D world can be parameterized in the 4D coordinates, and each

ray is represented byL(s, t,u,v). There are several different ways to parameterize the light

rays, such as position-direction [7], two-plane [8], and spherical [9] parameterizations (see

Fig. 1.4). The author uses the position-direction style for the light field representation in

this thesis. A 4D light ray is described by the intersection position(s, t) on a plane and its

tangential and sagittal angles(u,v).

People use light field camera to capture 4D light rays. The light field camera was o-

riginally proposed for image-based rendering for use in thegraphics community, and has

been used for a variety of different visualization applications, such as generating free-view

images, 3D graphics, and digital refocusing. In the early days, light field was obtained by

camera on a gantry (Fig.1.5a). The large cameras array systems was developed in the

beginning of 21st century, e.g. Stanford multi-camera array (Fig. 1.5b). These light field

camera systems were usually huge and quite expensive, such as the the Stanford spherical

gantry costs $130,000 to design and build [10].

Fortunately, recent light field cameras are becoming inexpensive and compact. The

small camera array light field acquisition system, Profusion25 (Fig.1.5c), has already been

sold in the commercial market [11]. I believe that the PiCam camera array (Fig.1.5e),

which is suitable for smartphone applications, will be release to the market in the near

future. Plenoptic camera which consists of a micro-lens array between the sensor and main

lens was first proposed by Ng et al. [12], and a plenoptic 2.0 camera was proposed later by

Georgiev et al. [13]. Moreover, such kind of cameras (Fig.1.5d) have been available in the

commercial market now [14, 15]. All these camera systems can capture 4D light rays which

are from different positions and directions, but the regular cameras can only obtain position

information and integral all the directional information when projecting 3D scene to a 2D

image.
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(a) Stanford spherical gantry [8]

(b) Stanford multi-camera array [16] (c) Profusion25 [11]

(d) Lytro Illum [14] (e) PiCam Camera Array [17]

Fig. 1.5 Light field cameras.
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3D world 2D image

2D projection

Non-invertible

(a) Regular computer vision.

3D world

4D sensing

Invertible

4D Light Field

(b) Light field vision

Fig. 1.6 Regular computer vision and light field vision.

Since the data captured by light field cameras has richer information than that captured

by conventional cameras, light field cameras are becoming popular in computer vision ap-

plications. The comparison of regular computer vision and light field vision are shown in

Fig. 1.6. The regular computer vision applications are based on the images captured by

single viewpoint camera as shown in Fig.1.6a. The actual 3D scene is projected to a 2D

image. The depth information of the light rays disappear after the projection. Consequently,

we cannot know how far is the object from a single image, and itis difficult to recognize

objects and scenes in the real 3D world from the image. This work uses a light field camera

to capture the data as shown in Fig.1.6b. The light field image maintain the 2D positional

information, and 2D directional information of light rays from the 3D scene. The redundant

information makes it easier to understand the 3D world.

Researchers have used light field cameras for computer vision applications in the recent

years, such as surveillance [18], consistent depth estimation [19], salience detection [20].

And these applications show that light field vision has better performance than previous

computer vision approaches. More examples can be found in Chapter2 where the author

introduces the related work. In particular, this work demonstrates the advantages of light
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field vision applies to the transparent object categorization and segmentation from a single

light field image, which is not well addressed with regular computer vision approaches. The

light field vision can utilize the geometrical relationshipbetween different viewpoints, and

overcome the limitations in approaches only use the appearance information in a 2D image.

In order to use the geometrical information of the light rays, the relationship between the

captured light rays and the corresponding point in the 3D world should be known. This can

be done by camera calibration. The author will address the light field calibration problem

in this thesis as well.

1.2 Contribution

The following topics are addressed in this thesis:

1. Camera array calibration for light field acquisition;

2. Feature descriptors from light field;

3. Light field vision for transparent object categorization;

4. Light field vision for transparent object segmentation.

The specific contributions of each topic are:

Camera array calibration

• The projection and physical setup of the camera array is modeled, and the model

includes the rigid constraint between cameras with different viewpoints;

• Calibration process is performed by a two-step algorithm that combines initial param-

eter estimation using a closed form solution and non-linearrefinement of the parame-

ters using the rigid constraint;

• The captured array images are transformed to light field rayspace, which is convenient

for light field applications.

Feature descriptors from light field

• Light field distortion (LFD) feature is proposed to describe the deformation of light

rays in a light field image;

• Light field linearity (LF-linearity) is proposed to describe the likelihood of a light ray

comes from Lambertian object or not;
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• Occlusion detector is proposed to describe the light rays are occluded in the reference

viewpoint or not.

Transparent object categorization

• A challenge computer vision problem, transparent object categorization, is performed

with a single-shot image;

• LFD feature and LF-linearity verified to be effective in theapplication;

• The performance is evaluated in various conditions.

Transparent object segmentation

• A light field vision method for transparent object segmentation, which is automatic,

requiring no human interaction;

• An energy function is defined using the LF-linearity, and occlusion detector;

• Comparisons show that the proposed method obtains better results than previous

method based on regular camera [21].

This work partially published in [22–24].

1.3 Outline

Since the light field cameras are becoming popular, several computer vision applications

using light field cameras have been proposed recent years.Chapter 2 reviews different

types of light field sensors that can be used for computer vision, and shows the previous

computer vision applications in surveillance, depth estimation, salience detection, etc. The

related work for transparent objects applications are introduced inChapter 2 as well. It

reviews methods using special sensors or devices for transparent object 3D reconstruction

and detection.

Chapter 3 introduces the light field acquisition approaches. Calibration is an essential

step to know the know the relationship between the captured light rays and the 3D world.

This work focus on the applications using a camera array. An efficient and accuracy calibra-

tion method is proposed for light field acquisition using camera array. The performance of

proposed method is analyzed with simulated and real data, and the comparison with other

methods are shown in this chapter as well.

After acquiring the calibrated light filed data, the novel features can be extracted from the

light field. InChapter 4, novel descriptors are proposed, which are useful for the transparent
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object applications. LFD feature is firstly proposed to describe the deformation of light rays

in a light field image. And then LF-linearity is proposed to describe the likelihood of a

light ray comes from Lambertian object or not. Finally, occlusion detector is proposed to

describe the light rays are occluded in the reference viewpoint or not.

The extracted novel descriptors are successfully applied to two transparent object recog-

nition applications. InChapter 5, transparent object categorization method is proposed to

answers the question "which category of the transparent object is recognized?". The LFD

feature and LF-linearity are successfully applied to transparent object categorization task,

and the experimental results show the proposed method usinglight field image outperforms

the conventional method using the image captured by a regular camera. InChapter 6, trans-

parent object segmentation method is proposed to recognizewhether there is a transparent

object and where it is in the image. The LF-linearity and occlusion detector are success-

fully applied to transparent object segmentation task, andthe experimental results show

the proposed method using light field image can get stable andimpressive results, which

outperforms the conventional method using an image captured by a regular camera.

Chapter 7 draws conclusions and indicates directions of future work.





Chapter 2

Related Work

2.1 Light Field for Computer Vision

The light field images are used for computer vision applications in this work. The light

field acquisition systems are important input devices, and there are various types of systems

can obtain light field image. Different applications require different light field images. The

light field acquisition systems and the applications for computer vision is reviewed in this

section.

2.1.1 Light Field Acquisition Systems

Gantry camera

A simple way to acquire the light field is to put a camera on the moving gantry as shown

in Fig. 2.1. Researchers at Stanford University first built a gantry (Fig. 2.1a) for light

field rendering [8], and the specifications of their gantry are available on thewebsite of

Cyberware [25]. Researchers from Cornell University then built a gantry (Fig. 2.1b) that

improves the mounting arrangement at the ends of the arms [26]. It makes more flexibility

in the lamp and camera that can be attached to these arms. Researchers from University of

Virginia have also built a gantry (Fig.2.1c) with similar design, but the light and camera are

coaxially mounted to each of the arms [27].

The cost of a spherical gantry is very high, and it is not worthy to build such expensive

equipment only for light field acquisition. Researchers found some simple and inexpensive

ways to acquire the light field. The Lego Mindstorms gantry can be used to capture a light

field (Fig. 2.2a). We can just move a camera left, right, up, and down on the Lego gantry.

And the researchers from MIT graphics group also built a simple vertical XY-table to capture

the light field (Fig.2.2b).
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(a) Stanford spherical gantry.(b) Cornell spherical gantry.(c) Virginia spherical gantry.

Fig. 2.1 Spherical gantry cameras for light field acquisition.

(a) Lego Mindstorms gantry [28]. (b) A vertical XY-table [29].

Fig. 2.2 Planar gantry cameras for light field acquisition.
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(a) Programmable aperture cameras.

(b) Sequential light field acquisition using the coded aperture.

Fig. 2.3 Examples of coded aperture cameras and their sequential sampling mode.

Camera array

Moving a single camera on the gantry can only capture the static scenes. In order to cap-

ture dynamic scenes, camera array systems have been developed to acquire the light field.

Researchers at Stanford University built several large camera array to perform computation-

al photography applications [16]. These camera array systems allow them to capture light

field video. In the recent years, camera array systems are becoming more compact. A cam-

era array with 25 viewpoints, which is called Profusion25, has already been available in the

commercial market [11]. It can be easily connected to a Desktop PC or a laptop, whichdo

not require specific control equipment like the large cameraarray. The latest camera array is

even smaller than a coin as shown in Fig.1.5e. This camera supports both stills and video,

low light capable, and it is small enough to be included in thenext generation of mobile

devices including smartphones [17].

Coded aperture

Light field can also be captured by a camera with a series different aperture shapes. A

straightforward way is to blocks all undesirable light raysand leaves a subset of light field to

be obtained one by one, as shown in Fig.2.3b. This can be simply realized by programable

aperture cameras [30, 31] as shown in Fig.2.3a, but the light efficiency is very low because
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Fig. 2.4 The lenslet-based light field camera and its projection model.

of the small aperture size. In order to overcome this limitation, some well designed aperture

shapes is used to capture the images and light field can be recovered by computational

methods [32, 33].

Lenslet camera

Similar to the gantry camera, the camera with coded aperturecannot capture dynamic

scenes as well. However, if we put a lenslet array in front of the image sensor as shown

in Fig. 2.4, the camera can capture the light field with one shot. Ng et al.proposed the

first hand-held lenslet camera [12], and this is the prototype of the commercial light field

camera Lytro [14]. However, the resolution of first generation lenslet camera is pretty low.

The second generation lenslet camera, which is called focused plenoptic camera, has been

proposed by Georgiev et al. [7, 13] to increase the image resolution. The focused plenoptic

camera is also available on commercial market [15].

2.1.2 Light Field Vision Applications

The light field cameras have already been used in many computer vision applications. Syn-

thetic aperture photography generates multi-focus imagesfrom the light field. Digital refo-

cusing [34] that freely changes the focusing position after capturingthe image is the most

popular application in light field imaging. This technique can be utilized for occluded sur-

face reconstruction [35]. If the synthetic aperture is large enough, occluding objects in front

of the focal plane are blurred to the extent that they effectively disappear, and the occluded

surfaces can then be seen. It is very useful in surveillance applications. Shimada et al. also

used the light field camera for video surveillance application [18]. They proposed a new

feature called Local Ray Pattern (LRP) which is used to evaluate the spatial consistency of

light rays. The LRP feature and GMM-based background modeling are combined to detect
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objects on the selected in-focus plane. Scene geometry reconstruction from multiple views

has been an active area of research in computer vision [36] for some time. A light field cam-

era can capture multiple viewpoint images simultaneously,so that the 3D geometry can be

recovered efficiently from a single image. The depth map estimated from a light field image

is more accurate and consistent than conventional methods [19]. Recently, light field im-

ages are also used to detect the salience and get better performance than single-view based

methods [20].

2.2 Conventional Methods for Transparent Object

Although transparent object is very difficult to deal with incomputer vision applications,

researchers have utilized many special approaches to tackle the problems with transparent

object. There has been much research on measuring refraction responses in transparent ob-

jects using cameras to obtain physical parameters, such as surface curvature or refractive

index. It is well known that refraction polarizes light. Miyazaki et al. measured light in-

tensities from transparent objects through polarizing filters [37, 38]. Schlieren photography

[39, 40] has also been used for fluid, gas flows, and shock wave analysis. This method vi-

sualizes the refraction response in a scene as a gray-scale or color image by using special

optics, although it requires high-quality optics and precise alignment. Hence, its applica-

bility is restricted to laboratory environments, and not for common practical use. Multiple

video cameras are used to build passive tomography system tomeasure turbulence strength

of the invisible fluid [41]. Underwater cameras are often suffer from the distortion caused

by random waves in the water-air interface. A special sensoris designed to deal with such

kind of distortion for the underwater imaging [42].

Recent years, light field also plays an important role in reconstruction of transparent

surfaces. Wetzstein et al. [43] proposed light-field background-oriented Schlieren photogra-

phy that obtains Schlieren photos using a common hand-held camera and a special-purpose

optical sheet which is called light field probe (LF-probe). By using this technique, the trans-

parent surface can be reconstructed [44]. Similarly, Ji et al. [45] also utilized the LF-probe

and multiple viewpoints to reconstruct the invisible gas flow. Although this technique can

reconstruct the the transparent surface and invisible gas flow, it also has restricted practical

use as the LF-probe is always required as a background object. Ding et al. [46] proposed

a method to acquire the dynamic 3D fluid surfaces. They used camera array as the capture

device and checkerboard pattern as the background. Ye et al.[47] proposed an approach

to acquire the dynamic 3D fluid surfaces with a single camera,but they utilized a special
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background which is called Bokode to emulates a pinhole projector for capturing ray-ray

correspondences.

Similar to the target applications of this work, learning-based method [21, 48] has been

proposed for finding glass in a single view image. Fritz et al.[49] used SIFT feature and L-

DA for learning a transparent object and detecting its location and region as a bounding box.

Wang et al. [50, 51] used RGB-D image for glass object segmentation. The depth image

was utilized as one of the cues for transparency that the depth information is missing in the

glass region, since the glass refracts the active light fromthe sensor. For multi-view images

as input, the epipolar-plane-image (EPI) analysis method was used to extract layers with

specular properties [52]. Approaches, similar to this work, obtain shape from optical flow

caused by refraction. In particular, Ben-Ezra et al. [53] proposed a model-based method to

recover shape and pose from video taken with known camera motions. Similarly, Aagrwal

et al. [54] recovered shape from video acquired while the background behind the object

moves. Morris et al. [55] used two calibrated cameras to estimate the refractive indices

over time-varying liquid surfaces from distortions of known grid patterns at the bottom of

a tank. In contrast to these approaches, the novelty of this work is to apply refraction to

transparent object categorization and segmentation realized from a single shot image, using

a light field camera as an input device. Unlike previous methods, there are no constraints on

background texture, camera motion or known parameters. Andthe proposed method also

has the potential for glass and specular objects.

2.3 Summary

In this chapter, different types of light field cameras are reviewed first, and then the author

shows the previous computer vision applications using light field camera for surveillance,

depth estimation, salience detection, etc. The related work for transparent objects applica-

tions are introduced as well.



Chapter 3

Camera Calibration for Light Field

Acquisition

As introduced in the previous section, light field can be captured by many types of cameras.

Some light field acquisition systems are made by researchersthemselves, and some of them

can be bought from the commercial market. No matter using what kind of camera to ac-

quire light field images, the calibration is an essential step in computer vision applications.

After calibration, the relationship between the captured light rays become known. In this

work, relatively large disparities is needed to describe the distortion of the backgrounds,

and the system can be working under dynamic scenes. Therefore, relatively large baseline

is preferred, and a camera array is used as input device in theapplications.

3.1 Background

Over the past few decades, a great deal of work has been done oncamera calibration to ac-

quire camera parameters with high accuracy. There are several camera calibration approach-

es including the single camera, multi camera, and structurefrom motion (SfM), which can

be directly applied to the camera array, approaches.

Single camera calibration:Classic camera calibration is performed by observing a 3D

reference object with a known Euclidean geometry [56]. This type of approach requires

specialized and expensive equipment with an elaborate setup. To overcome these disadvan-

tages, a flexible technique for single camera calibration was proposed by Zhang [57], which

requires the camera to observe a planar pattern displayed ata minimum of two different

orientations only. The pattern can simply be printed using alaser printer and then attached

to a "reasonable" planar surface (e.g., a hard book cover). Either the camera or the planar
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pattern can then be moved by hand. The specific motion need notbe known. Although this

technique is very practical and robust for a single camera, it is not suitable for a light field

camera. The rigid transformations between any pair of viewpoints, which can be determined

using any captured frame, should be invariant irrespectiveof the frame by which they were

computed. Unfortunately, these transformations are inconsistent when each viewpoint is

calibrated independently (see Fig.3.2a). This inconsistency results in inaccurate estimation

of the relative translation between the viewpoints, potentially leading to serious problems if

used with light field cameras. To avoid the inconsistency, the model with a rigid constraint

between the viewpoints (see Fig.3.2b) has been adopted in this work.

Multi-camera calibration: Because multi-camera systems are becoming less expen-

sive and more useful, there are increasing requirements formulti-camera calibration. Stereo

camera is the simplest multi-camera system, and calibration methods utilizing different con-

straint were proposed for stereo calibration. Horaud et al.[58] proposed a method for

recovering camera parameters from rigid motions. This method relies on linear algebraic

techniques and requires the epipolar geometry. Malm and Heyden proposed a method [59]

which extends Zhang’s single camera calibration method, and also utilizing a planar object.

Several methods have been developed to deal with multi-camera systems. Vaish et al. [60]

proposed a method using a plane plus parallax to calibrate a multi-camera array for light

field acquisition. Assuming that the images of the light fieldwere aligned on some refer-

ence plane in the world, they were able to measure the parallax of some points in the scene

not lying on this reference plane. This method, however, assumes that all cameras lie on

a plane parallel to the reference plane, and the projection to the reference plane must be

calculated in advance. This calibration technique can onlybe used with cameras well on the

assumed plane and applications that do not require accurateparameters. Svoboda et al. [61]

proposed a method for multi-camera system calibration using point light source. They cap-

tured image sequences of the multi-camera while point lightsource moving in a working

volume. The method used the factorization method for solving projective matrices as well

as the light source positions from the sequences. Ueshiba etal. [62] proposed a method that

uses a planar checkerboard pattern like the proposed method. They calculate homography

matrices between the calibration chart and the images captured by the multi-cameras, then

also apply the factorization method for estimating checkerboard chart positions and the pro-

jection matrices from the homographies. These methods usedfactorization method, but it is

commonly time consuming algorithm. Zhang’s method is chosen for estimating the initial

parameters in this work, since it is simpler and less computational method and the accuracy

is satisfactory to make the re-projection error converge tominima in the refinement step.
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Structure from motion: SfM techniques aim to reconstruct simultaneously the un-

known 3D scene structure and camera positions and orientations from a set of feature corre-

spondences. Related methods such as bundle adjustment havemade their way into computer

vision and are now regarded as the gold standard for performing optimal 3D reconstruction

from correspondences [63]. Bundler [64] is a popular tool for SfM. It can also estimate cam-

era parameters from multi-images by bundle adjustment. Bundler was designed for applying

either a moving camera or multiple cameras. It has great flexibility in that each viewpoint

of the captured image can be freely moving. There are no constraints on camera positions

and it independently estimates the multi-camera parameters. As a result of the flexibility,

Bundler wastes computation and loses calibration accuracyby not using a rigid camera con-

straint. The comparison of the accuracy and computational cost between Bundler and the

proposed method will be shown in the experiments in Section3.5.

Previous calibration methods for single cameras [56, 57], multi-cameras [61] and SfM

[64] did not include a rigid constraint. I incorporate the use ofa rigid constraint derived

from the architecture of the camera array to improve accuracy and reduce the relative com-

putational cost.

Similar to the conventional methods [65, 66], rectification can be performed when the

calibrated parameters are obtained. There are also approaches for rectifying the light field

image without explicitly calibrating the camera parameters [67, 68]. In this work, the author

rectify and project the captured multiple images to light field space by calibrated parameters.

3.2 Light Field Camera Model

The author will start by modeling the projection of a single camera which can be moving on

the gantry, and then extend this model to a camera array with arigid constraint.

3.2.1 Gantry Camera

The gantry camera captures the light field by fixing a single camera on the moving gantry.

The single camera model is enough for get all the parameters since the relationship between

different viewpoints can be directly obtained from the gantry movement.

The projection model for a single camera is shown in Fig.3.1. A 3D pointM = [X,Y,Z]T

in the global coordinate system can be projected onto a 2D point m = [x,y]T on the ideal

image plane via a rotationR and translationt,

s

[

m

1

]

=
[

R t
]
[

M

1

]

(3.1)
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Fig. 3.1 Projection model for a single camera.

wheres is an arbitrary scale factor.

Camera lenses usually suffer from distortion, particularly radial distortion and slight

tangential distortion. Therefore, lens distortion shouldbe carefully considered during the

projection step. According to previous works [69, 70], the 2D pointmd = [xd,yd]T after

distortion in the captured image is modeled as

s

[

md

1

]

= A






x(1+d1r2+d2r4)+2d3xy+d4(2x2+ r2)

y(1+d1r2+d2r4)+d3(2x2+ r2)+2d4xy

1




 , (3.2)

wherer2 = x2+ y2, d1 andd2 are the radial distortion coefficients, andd3 andd4 are the

tangential distortion coefficients.A is called the intrinsic matrix, which is given by

A =






α γ cx

0 β cy

0 0 1




 (3.3)

and contains the coordinates of the principal point(cx,cy), the focal lengthsα andβ in the

horizontal and vertical directions, respectively, and theskew of the two image axes,γ.

D is used to represent the distortion coefficients[d1,d2,d3,d4] for short. If there is no

distortion,D = 0 and Eq. (3.2) defines the linear case:

s

[

md

1

]

= A

[

m

1

]

. (3.4)
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These days the image axes of charge-coupled device (CCD) sensors are almost perpendicu-

lar. As suggested in [57], I also assumeγ=0 in the model.

3.2.2 Camera Array

Let us consider a camera array system that containsN cameras, such that the light field cam-

era can simultaneously capture images fromN viewpoints. Each viewpoint independently

records its own 2D image from its position. If the single camera model is simply applied to

the camera array, it becomes the model without a rigid constraint as shown in Fig.3.2a.

However, a camera array has the physical constraint that each viewpoint is rigidly aligned

with every other and the relative positions and rotations ofthe viewpoints do not change

from one frame to the next. The author refer to this constraint as the rigid constraint in

this work. A projection model is introduced with an array coordinate system for the rigid

constraint as shown in Fig.3.2b. In this model,R and t denote, respectively, the rotation

and translation of the camera array. Thus,R andt describe the rotation and translation of

the entire camera array system in the global coordinate system at each frame.

Contrarily,Ra
i andta

i denote, respectively, the relative rotation and translation of thei-th

viewpoint in the camera array coordinate system.Ra
i andta

i are fixed for all frames, since

the relative positions and translations do not change from one frame to the next. Hence,

the author splits the extrinsic parameters of the single camera into camera array motion

[R t] and relative motion[Ra ta] in order to introduce the rigid constraint. Obviously,

if the camera array coordinate system is set to the camera coordinate system of viewpoint

0, ta
0 = 0 andRa

0 = I . Thus, the array coordinate system is equivalent to one of the camera

coordinate systems and the other viewpoints are described relative to the assigned viewpoint.

The relation between the extrinsic parameters of single camera model[Ri t i ] and those of

the proposed model using camera array coordinates[R t] and[Ra
i ta

i ] can be formulated

as:

[Ri t i ] = [Ra
i ta

i ]

[

R t

0 1

]

. (3.5)

Once we have the extrinsic parameters[Ri t i ], the intrinsic matrixA i , and the distortion

coefficientsDi, the projection of a 3D pointM = [X,Y,Z]T to a 2D pixelmd
i = [xd

i ,y
d
i ]

T in

the captured image of thei-th viewpoint can be computed from the single camera model

using Eqs. (3.1), (3.2), and (3.3). An overview of the capturing process is illustrated in

Fig. 3.6.
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(a) Camera model without rigid constraint

(b) Camera model with rigid constraint

Fig. 3.2 Camera array based light field acquisition system geometry.
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Until now the light field camera model with the rigid constraint between viewpoints has

been constructed, while the unknown parameters can be solved using the linear closed form

and refined by nonlinear optimization.

3.3 Camera Array Calibration

There are two steps in the proposed method for parameter calibration. The author first

calculate the initial values using the closed form solution, and then a non-linear iterative

algorithm is applied to refine the initial values. The distortion coefficients, initially set to

zero, are refined in the optimization step.

3.3.1 Closed form solution

By applying Zhang’s calibration method [57] to each viewpoint, closed form solution can

be obtained for the intrinsic matrixA i and the extrinsic parameters[Ri t i ]. The extrinsic

parameters of thei-th viewpoint in the array coordinate system can be then computed from

the inverse form of Eq. (3.5).

[Ra
i ta

i ] = [Ri t i ]

[

R t

0 1

]−1

(3.6)

Theoretically, the extrinsic parameters in the array coordinate system should be the same for

every frame. However, the results vary for different framesin the presence of noise, since

closed form solutions are computed independently for each viewpoint. To obtain reasonable

initial values, the author calculates extrinsic parameters in the array coordinate system for

all captured frames and then choose the median values.

3.3.2 Global optimization

Thus far, the intrinsic and extrinsic parameters have been obtained through a series of linear

methods. However, these parameters are not optimal. Moreover, the linear methods cannot

deal with lens distortion. As suggested in [57, 62], nonlinear optimization is needed to refine

the linear solutions.

Suppose that the total number of viewpoints isN. We captureT frames of a model plane

with K points on this model plane. Assuming that these image pointsmi jk are corrupted

by independent and identically distributed noise, the maximum likelihood estimation of the
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Intri eters

(4+4) x Cameras

Extrinsic Parameters of Camera Array

(In the global coordinate,

change for different frames)

6 x Frames

Relative Extrinsic Parameters between the viewpoints

(In the array coordinate,

keep same for different frames)

6 x (Cameras-1)

Fig. 3.3 Parameters for optimization.

intrinsic and extrinsic parameters can be obtained by minimizing the following function:

||ε||2 =
N−1

∑
i=0

T−1

∑
j=0

K−1

∑
k=0

||mi jk −Ei jk ||2, (3.7)

whereEi jk = m̂(A i ,Di,Ra
i , t

a
i ,R j , t j ,Mk) is the estimated projection of pointMk in the j-th

frame of thei-th viewpoint,Di represents the distortion coefficients of thei-th viewpoint

[d1i ,d2i,d3i ,d4i ], Ra
i , ta

i represent the extrinsic parameters of thei-th viewpoint in the array

coordinate system, andR j , t j represent the extrinsic parameters of thej-th frame for the

camera array in the global coordinate system.ε is a vector composed of the re-projection

error from each pointε i jk = mi jk −Ei jk .

Minimization is performed using the Levenberg-Marquardt algorithm [71, 72], which is

initialized with the linear solution obtained from the closed form. The Levenberg-Marquardt

algorithm is an improved version of Gauss-Newton algorithm, and the normal equations in

Gauss-Newton algorithm are replaced by the augmented normal equations(JTJ+λ I )∆ =

−Jε. J is the Jacobian matrix at certain values of the parameters, and I is the identity matrix.

λ is a non-negative damping factor which varies from iteration to iteration, and∆ is a vector

composed of the parameter increment.

Optimization can be carried out for all parameters simultaneously, including the intrin-

sic matrices, the distortion coefficients, and all extrinsic parameters. The components of the

parameters for optimization are shown in Fig.3.3. The implementation of proposed method

is very flexible in that there is no limit on the number of viewpoints, and the intrinsic param-

eters are optional for users at runtime.

As we see from the augmented normal equations in Levenberg-Marquardt algorithm,

updating the Jacobian matrix is the major work at each iteration. Fig. 3.4 illustrates the

structure of the Jacobian matrix. The left and right columnsare related to the intrinsic
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Algorithm 1 Global optimization

1: repeat
2: for all viewpointsdo
3: for all framesdo
4: Compose the extrinsic parameters in the global coordinate system for each view-

point
5: Compute the re-projection error for the current viewpoint and frame
6: Calculate the derivative of the extrinsic parameters of thecamera array
7: Update the elements of the Jacobian matrix related to the extrinsic parameters

of the camera array
8: end for
9: Compute the projection error of all frames for the current viewpoint

10: Update the elements of the Jacobian matrix related to the extrinsic parameter in the
array coordinate system

11: Update the elements of the Jacobian matrix related to the intrinsic parameter-
s(optional)

12: end for
13: Compute the total re-projection error of all viewpoints andframes
14: Launch the Levenberg-Marquardt algorithm to update all parameters
15: until termination criteria are met

and extrinsic parameters, respectively. Each row represents a different viewpoint, while

the z-axis is related to time, representing different frames. The values in each cell are the

derivative of estimated pointsEi j with respect to the corresponding parameters. Here the

size of the checkerboard pattern is known, so the 3D pointMk is the known parameter which

is unnecessary to estimate. The author assumes that the parameters are independent and

have rigid constraints. Fig.3.4cshows the Jacobian matrix with the rigid constraint used

in the proposed method. The extrinsic parameters in the array coordinate system remain

unchanged for each viewpoint when the frame changes, and theintrinsic parameters are also

fixed for each viewpoint. On the contrary, Fig.3.4aand Fig.3.4bshow the Jacobian matrix

without the rigid constraint. The structure used in a methodlike Bundler [64] is shown in

Fig. 3.4a. In this case, the values in each cell need to be updated during iterations of the

refinement process. Fig.3.4bcan be considered to be a combination of the single camera

refinements. Each viewpoint has fixed intrinsic parameters,but still does not include a rigid

constraint between viewpoints, which will cause inconsistency. Compared with the other

two structures, we can see that the proposed method is bettersuited to a camera array and

requires less computation during optimization. As previously discussed, the main task of

Algorithm 1 is to update the Jacobian matrix and then pass it to the Levenberg-Marquardt

procedure.
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(a) Jacobian with full freedom

(b) Jacobian without rigid constraint

(c) Jacobian with rigid constraint

Fig. 3.4 Structure of the Jacobian matrix for optimization.
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3.4 Light Field Representation and Projection

There are several different light field representations, such as two-plane [8], spherical [9],

and position-direction [7] parameterizations. The author uses the position-direction style

for the light field representation (Fig.3.5). A ray is described by a 4D vector(s, t,u,v)

as the intersection of plane(s, t) and tangential and sagittal angles(u,v) in this position-

direction representation. In this section, the process of rectification and projection from the
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N captured imagesmd
i on the camera array to the 4D image pointmL = [s, t,u,v]T on the

light field is described.

The image captured from the camera array are independently recorded by different view-

points as shown in Fig.3.7a. It is not convenient to use the captured images directly for

light field applications. The captured images need to be transformed to light field ray space,

so that each ray can be represented by a 4D vector(s, t,u,v) as shown in Fig.3.7b.

The intrinsic and extrinsic parameters are estimated as described in Section3.3. The

projective relation between the captured image spacemd and the ideal image spacem can

be obtained by using Eq. (3.2) and the intrinsic parameters for each viewpoint as shown in

Fig. 3.6. Here the author will describe the projection from the idealimage spacemi to the

light field spacemL.

Lens distortion and intrinsic parameter effect, such as difference in focal length, have

been rectified in the ideal image space. However, the principal axes of the viewpoints are

not yet aligned. To parallelize these and project image point mi on each viewpoint into the

same(u,v) space, the inverse of the rotation matrices is applied to theideal image.
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There is no guarantee that the projective center of the viewpoints are aligned on the

same plane or the s-t plane, even though the viewpoints in thecamera array are carefully

and precisely aligned. In addition, since there is a camera array that is arranged as a dome,

the intersection of s-t plane (s, t) have to be calculated as shown in Fig.3.7. We can obtain

the projection from the point on each viewpoint(xi ,yi) with an estimated translation vector

of the viewpointt i = [t1i, t2i, t3i]
T , described as follows.
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Using the projective relation in Eqs. (3.2), (3.8), and (3.9) and calculating the corre-

sponding intensity from the captured imageI(xi,yi) by interpolation, the light field image

I(s, t,u,v) can be obtained from the multiple captured images as shown inFig. 3.8.
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3.5 Calibration Results and Analysis

The proposed algorithm has been tested on both computer simulated data and real data.

3.5.1 Simulation results

The author performed simulation experiments for a 25-viewpoint (5 horizontal× 5 vertical)

light field camera. Fig.3.9 shows the configuration of the simulation. The resolution for

each viewpoint is 640×480 pixels. There is an interval of 10 mm between neighboring

viewpoints, and it is assumed that all the viewpoints are on the same plane. The simulated

light field camera has the following intrinsic parameters for all viewpoints: α = β = 700

pixels,cx = 320,cy = 240. The author simulated 10 frames for the system, with eachframe

painted with 7×10= 70 reference points at 20 mm intervals. The distance and orientation

of the frames were varied in the simulation. Independent Gaussian noise with 0 mean and

σ standard deviation (noise level) was added to the simulatedimage points. The estimated

camera parameters were then compared with the ground truth.For each noise level, 100

independent trials were conducted, the average results of which are shown in Fig.3.10and

Table3.1.

The author measured the errors with respect to the ground truth for focal lengthsα and

β for all the viewpoints, as well as the principal pointcx andcy. The noise level varied from

0.2 pixels to 1.8 pixels. The author compared the results with linear closed form, Zhang’s

method [57], which refines each viewpoint independently, and the state-of-art bundle adjust-

ment tool, Bundler [64]. As can be seen in Fig.3.10, the errors in the estimated intrinsic

parameters increase with the noise level. However, the proposed method yields much better

results than the other methods, because the proposed methodis constrained by a geometric
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relationship between the viewpoints and therefore suffersless from over-fitting the noise

in a single viewpoint. The input for Bundler consists of the matched points and initial es-

timation of focal length from the linear closed form. Bundler estimates the intrinsic and

extrinsic parameters for every frame and adjusts them to minimize the re-projection error.

The error in the estimated focal length by Bundler increasedso rapidly that a large scaled

axis (on the right) is needed to plot Fig.3.10a. Since the linear method and Bundler always

set the principal point at the center of the image, the authordid not plot these two methods

in Fig. 3.10b.

In Fig. 3.11, the author compared the error in the extrinsic parameters.In Table3.1, the
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10mm Resolution: 640x480 

Focal length: α = β = 700

Principal Point: cx = 320, cy = 240 

Fig. 3.9 Simulation setup.

Table 3.1 Comparison of parameter errors.

Method

Focal
length
error

(pixels)

Focal
length

deviation
(pixels)

Translation
error

(Euclidean
distance)

(mm)

Translation
deviation

(Euclidean
distance)

(mm)

Rotation
error

(Frobenius
norm)

Rotation
deviation

(Frobenius
norm)

Linear 1.12 0.79 0.64 0.48 0.0009 0.0004
Independently

refined
0.84 0.50 0.62 0.29 0.0026 0.0013

Bundler 9.12 32.90 8.27 25.27 0.0045 0.0047
Proposed 0.43 0.24 0.12 0.07 0.0005 0.0002

author also shows the comparison of the parameter errors with a 0.2 pixel noise level. The

relative translation, rotation errors and focal length were calculated from all the viewpoints

and frames. The author computed the errors with respect to the corresponding ground truth

and then averaged them. The translation error is the Euclidean distance with respect to the

ground truth, while the rotation error is the Frobenius norm. As expected, the errors in

the estimated extrinsic parameters increase with the noiselevel, and the proposed method
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Table 3.2 Estimation of lens distortion.

Independently refined Proposed

|d1− d̂1|/|d1| 1.5×10−8 1.4×10−7

|d2− d̂2|/|d2| 6.0×10−8 2.2×10−7

|d3− d̂3|/|d3| 2.2×10−8 1.4×10−8

|d4− d̂4|/|d4| 7.0×10−8 6.7×10−8

yields better results than the other methods. The errors in the results from Bundler are

greater than the other methods. The reason for this is that Bundler does not incorporate the

constraint of the geometric relationship between the viewpoints. In addition, it does not even

maintain the same intrinsic parameters for the same viewpoint. It adjusts the intrinsic and

extrinsic parameters to minimize the re-projection error.When the estimated focal length

deviates from the ground truth, the translation vector and rotation matrix also deviate from

the ground truth, and therefore the translation and rotation errors increase rapidly.

In order to evaluate the calibration results of lens distortion, the reference points with

distortion are generated. The ground truth of the distortion coefficients ared1 =−0.4, d2 =

0.2,d3= 0.01,d4= 0.005, and other settings are same as previous. The estimated results are

shown in Table3.2. d̂i is the estimated distortion coefficients. The linear methoddoes not

deal with lens distortion and Bundler only deal with the undistorted images, so the author

compared the results estimated from independent refinementand the proposed method. We

can see that the both two methods have good accuracy for the calculated coefficients.

In addition, the author evaluated that how important the accuracy of the extrinsic pa-

rameters brings on the actual applications. This is performed by calculating the blurriness

of the refocused light field when the parameters are deviatedfrom the ground truth. The

blurriness of refocused light field is defined as the average of the standard deviation for all

the reference points in the refocused image. Here the authorstill simulated 70 corner points

in the checkerboard pattern as the reference points as previously did. Fig.3.12shows the

evaluated blurriness when the translation and rotation parameters deviated from the ground

truth. The author perform the digital refocusing in two different depth,Z = 350mmand

Z = 700mm. The simulated deviation is with 0 mean and a certain standard deviation for 25

viewpoints. We can see that nearer focused plane is more sensitive to the deviation of the

parameters. And the deviation in Z axis can be negligible when the focus plane is relatively

faraway.
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Table 3.3 Comparison of re-projection errors (pixels).

Method
Re-projection

error
Standard
deviation

Linear 2.0672 0.7805
Independently

refined
0.6898 0.2670

Bundler 0.5962 0.1496
Stereo pair 0.4145 0.0519
Proposed 0.3952 0.0679

3.5.2 Results with real data

The proposed algorithm was also applied to the calibration of a real light field camera. Here

the author give an example of the calibration of a commercialproduct, the Pro Fusion25

(ViewPlus Inc., Tokyo, Japan), which has 25 VGA resolution (640×480 pixel) cameras.

This camera system can simultaneously capture images from 25 viewpoints (5 horizontal×5

vertical). The central camera in this system is assigned as the first viewpoint.

The author used the light field camera to capture several checkerboard pattern images.

Each checkerboard pattern image contains 7×10= 70 corner points. A closed form cali-

bration, refined each viewpoint independently, estimated the parameters by Bundler, normal

stereo pair calibration and the proposed optimization algorithm with the rigid constraint are

performed respectively for comparison. For the stereo paircalibration method, the central

viewpoint was used as the left (reference) camera, and one ofother viewpoints was used as

the right camera, so there are totally 24 pairs. As shown in Table 3.3, the author compared

the re-projection error of the proposed method with those ofthe other four methods. As

shown in the table, we can see that the re-projection error and standard deviation of all 25

viewpoints calculated using the proposed method is smallercompared with the values for

the other methods.

When the initial parameters calculated by the closed form procedure are used in the mod-

el, the re-projection error is greater than 2 pixels. When the parameters of each viewpoint

are refined independently, and calculate the median values for the translation and rotation

of all captured frames, the total re-projection error is smaller than 1 pixel. However, the re-

projection error for each viewpoint varies, with several viewpoints still having re-projection

errors greater than 1 pixel. The re-projection error from Bundler seems better, however, the

physical parameters deviate from the ground truth in order to over-fit the noise as previous-

ly discussed. The re-projection error of stereo pair methodis calculated from the average

re-projection error of all 24 pairs. In this method, the parameters of the central viewpoint is
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Table 3.4 Comparison of computational cost.

Method
10 frames

(17500 points)
100 frames

(175000 points)

Linear 1.4 s 14 s
Independently

refined
33 s

35255 s
≈ 9.79 hours

Bundler 684 s
279596 s

≈ 3.24 days

Stereo pair 22s
32498 s

≈ 9.03 hours

Proposed 277 s
5448 s

≈ 1.51 hours

calibrated 24 times, and the intrinsic parameters for the central viewpoint are different for

every pair, because this method tries to minimize the re-projection error for each pair and al-

so cause the over-fitting. Finally, when all parameters are refined with the rigid constraint, a

total re-projection error smaller than 0.4 pixels can be obtained. The author also confirmed

that the re-projection error for each viewpoint is within 1 pixel, i.e., the calibrated image

from every viewpoint has no disparity at infinity.

3.5.3 Computational cost

The experiments were carried out on a PC with an Intel Xeon E5620 CPU (2.40 GHz 4-core)

and 24 GB memory. The author evaluated the computational cost using two datasets with

different numbers of frames: one with 10 frames and the otherwith 100 frames. Each frame

has 70 points and both datasets have 25 viewpoints. The proposed method is implemented

in C++, as is Bundler. Table3.4 shows a comparison of the computational cost. When

estimating the parameters for 10 frames, it takes about 2.5× longer for Bundler to reach

convergence. However, with 100 frames, the computational cost increases dramatically.

Refinement using Bundler takes more than three days and stereo pair calibration takes more

than 9 hours, whereas the proposed method takes just 1.51 hours.

3.5.4 Digital refocusing

One of the most popular applications of light field cameras isimage refocusing after the light

field image has been captured. However, if the position and orientation of each viewpoint
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is unknown, we may never obtain a refocused image. Large lensdistortion also affects the

results for the refocused image.

The author attempted to generate an image focusing on the checkerboard (as shown in

Fig.3.13). The upper image was generated from the rough calibrated light field images. The

author used the parameters provided by the official specification and performed refocusing

using the captured images. The author selected the sharpestimage visually, but this was

still blurred (Fig.3.13a). The bottom image was generated from the calibrated and rectified

light field images by the proposed method. The author used thepositions and orientations

obtained from the calibration process. Then, the author performed a warping transform,

which re-projects the light field image onto the target plane, and then simply sums and

averages the images from all viewpoints. We can see that the resulting image is clearly

focused on the checkerboard (Fig.3.13b).

The author also captured some light field images for a real scene using the commercial

product, and then rectified the raw light field images using the proposed algorithm. There-

after, images focusing on different objects (as shown in thebottom row of Fig.3.14) can

be rendered. The images from left to right were refocused on the near, middle, and distant

objects, respectively. It is obvious that the images generated with rough calibrated light field

images (as shown in the top row of Fig.3.14) do not focus on the desired object, whereas

the images in the bottom row are refocused on the desired object.

3.6 Summary

In this chapter, a model of a camera array is derived for lightfield acquisition, which in-

cludes a rigid constraint between viewpoints. A calibration algorithm with global optimiza-

tion based on the rigid-constrained model is proposed for the light field camera. The pro-

posed algorithm extends Zhang’s well-known method, and consists of two steps: closed

form initialization and non-linear refinement. It is ratherfaster than conventional calibra-

tion methods that do not have the rigid-constraint. The proposed method is not restricted

with respect to the number of viewpoints or alignment of cameras. Simulation experiments

show that the proposed algorithm yields better results thanthe linear solution, the method

where each viewpoint is refined independently, and Bundler.The proposed method was also

applied to the calibration of a commercial light field camera, and the results show that all in-

trinsic and extrinsic parameters were optimized with a total re-projection error smaller than

0.4 pixels. A digital refocusing experiment was performed on a captured light field image

as well. The calibrated light field image was effectively refocused on the required target,

whereas this was not possible for the rough calibrated lightfield image.
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(a) Refocused image with rough calibrated light field

(b) Refocused image with calibrated light field by proposed method

Fig. 3.13 Refocused image of the calibration chart.
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Fig. 3.14 Refocused images of a real scene using rough calibrated(top) and well calibrated(bottom) light fields.



Chapter 4

Feature Descriptors from Light Field

When the light field is captured and rectified by the calibrated parameters, special features

can be extracted from the light field. These features are mainly from the geometrical in-

formation of the light field image, and they can describe the characteristics of transparent

objects and the occlusion boundary in the central view.

4.1 Light Field Distortion Feature

A transparent object can deform the background scene by refraction. Because refraction by

objects is affected by shape and refractive index, different objects produce different images

of the same scene as shown in Figure4.1. The author utilized the background distortion

caused by refraction to categorize different types of transparent objects in the proposed

method. In fact, the author modeled the background distortion to the appearance difference

from different perspectives (Figure4.2). Theocratically, the modeled distortion itself is in-

dependent of background texture. Although the background determines image appearance,

the distortion for corresponding points from different viewpoints is maintained. Therefore,

the proposal is to model the refraction of transparent objects as a distortion of multiple

viewpoints captured by the light field camera. In this section, the author will define the LFD

feature which is useful in transparent object categorization. The light field is a function that

describes the amount of light emitting in every direction from every point in a scene. Con-

ventional cameras integrate light field along the angular domain, and lose the information

about the light distribution entering from the world [12]. In contrast, a light field camera

obtains a 4D light field image which includes both the angularand positional information

of the light rays. There are various representations of the light field. The 4D-ray representa-

tion of the light fieldL(s, t,u,v) adopted here is same as that defined in the previous chapter,

which is determined by the intersection of the viewpoint plane (s, t) and the slant of ray
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Fig. 4.1 Background distortion from different objects.

Fig. 4.2 Background distortion from changing viewpoints.
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(u,v) (see Figure3.5). Figure4.3aillustrates the functioning of a camera array and shows

the relation between light field and phase space representations. Figure4.3ashows only a

2D slice of the light field and phase space for ease in understanding.
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(b) Distorted light field.

Fig. 4.3 Light field propagation.

Figure4.3adepicts a scene where there is no object between background and camera;

i.e., light propagates in free-space with no refraction, reflection, scattering, or absorption.

As illustrated, if rays emitted from a point in the background are straight, the observed light

field has constant disparities over the images for the different viewpoints. The rays from

the same point are distributed on a line in thesu-phase space (Figure4.3a), and the slope
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of the line depends upon the distance between camera and background. In fact, these rays

are distributed on a hyperplane instuv-space because the actual light field and phase space

is in a 4D space. In contrast, if a transparent object intervenes between background and

camera, the ray distribution deviates from the line or the hyperplane (Figure4.3b). This

LFD is caused by refraction occurring within the transparent object, which is characterized

by the material (refractive index) and the shape. This is called LFD feature in that it is to be

used as a feature in transparent object categorization.

Here, the author denotes an arbitrary point in the image taken from the center viewpoints

(0,0) asp(0,0,u,v) and the corresponding point in the image taken from another viewpoint

(s, t) as p′(s, t,u′,v′). To make the LFD feature independent of the position of the point

(u,v) and(u′,v′), relative differences are used. and the relative differences are defined by

the following expression,
{

∆u= u′−u

∆v= v′−v
(4.1)

In the experiments, an optical flow algorithm is used to obtain the correspondences between

the central viewpointview(0,0) and viewpointsview(s, t). The author uses large displace-

ment optical flow (LDOF) [73, 74]in this work. Finally, the LFD feature is defined as the

set of relative differences,

LFD (u,v) = {(s, t,∆u,∆v)|(s, t) 6= (0,0)}, (4.2)

where 2m+1 and 2n+1 are the numbers of viewpoints.

4.2 Light Field Linearity

The LFD feature has an important property called light field linearity (LF-linearity). This

property of the LFD feature can be used to describe the likelihood of a pixel being the

Lambertian background. It is useful in both transparent categorization and segmentation

applications.

As described in Fig.4.3, the disparities in a transparent object include the refraction

effect. Thus, the LFD features coming from the transparent object are more distorted than

features from the background, and these features deviate from the hyperplane given by the

Lambertian reflection in the phase space. The hyperplane in thestuv-space containing point

p(0,0,u,v) can be described as:

n1s+n2t+n3∆u+n4∆v= 0, (4.3)
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where(s, t,∆u,∆v) is as before, i.e., the viewpoint coordinates and the difference between

the corresponding image points. As the positions of the viewpoints should be calibrated in

advance, we can easily obtain their coordinates.(n1,n2,n3,n4) is the unit normal vector~n

of the hyperplane. This vector is estimated by fitting(s, t,∆u,∆v) from all M viewpoints:
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︸ ︷︷ ︸

~n

= 0. (4.4)

Then singular value decomposition method is used to calculate A⊤A = UDU⊤, and the lin-

ear least-squares solution to~n is the column ofU associated with the smallest eigenvalue

in D, where the smallest eigenvalue is the least-squares errorE(u,v). Smaller errors imply

better linearity, and larger errors indicate that the feature deviates strongly from the hyper-

plane. Because this errorE(u,v) describes the linearity of the LFD feature, This is called

LF-linearity in this work. This important property is used to define the regional term in the

energy function.

4.3 Occlusion Detector

The background can be occluded by foreground objects in different viewpoints. This is

an important cue for determining the boundaries between theforeground and background.

The occlusion boundary is often detected by comparing the appearance of points over time

as the camera or object moves. In a light-field image, the occlusion points can be detect-

ed by checking the consistency of the forward and backward matching between a pair of

viewpoints, as illustrated in Fig.4.4.

Let us denote an arbitrary point in the image captured by the central viewpointview(0,0)

as p(0,0,u,v), and the corresponding point in the image captured by another viewpoint

view(s, t) as p′(s, t,u′,v′). Here,(s, t) are the coordinates of the viewpointview(s, t), and

(u,v) are the coordinates of the point in the image plane (as shown in Fig. 4.3). The

system also attempts to find the point in the central viewpoint view(0,0) that corresponds to

p′(s, t,u′,v′), which is denoted asp′′(0,0,u′′,v′′).

The consistency is independent of the intensity at each point, so the geometric error of

the forward and backward matching can be simply calculated as:

e(s, t,u,v) = dist(p(0,0,u,v), p′′(0,0,u′′,v′′)), (4.5)
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view(0,0) view(s,t)

p’’ (0,0,u’’,v’’) p’ (0,0,u’,v’)

p (0,0,u,v)

e (s,t,u,v)

Fig. 4.4 Checking the consistency of the forward and backward matching between a pair of
viewpoints.

wheredist(p, p′′) is the Euclidean distance betweenp andp′′.

In the non-occlusion case, pointsp(0,0,u,v) and p′′(0,0,u′′,v′′) should be very close,

which means the errore(s, t,u,v) will be very small. If this consistency requirement is not

satisfied, the point is either occluded in the correspondingviewpoint, or the optical flow

has been incorrectly estimated. The small values are mainlyfrom noise, and the large error

values do not have much physical meaning. Hence, the LF-consistencyc(s, t,u,v) is defined

by binarizing the errore(s, t,u,v).

c(s, t,u,v) =







0, e(s, t,u,v)< τ

1, e(s, t,u,v)≥ τ
. (4.6)

whereτ is a tolerance interval that allows the noise introduced by the optical flow calculation.

Zeros are assigned to consistent points and ones to inconsistent points.

The LF-consistency has different patterns when the occlusion boundary appears in d-

ifferent directions. Fig.4.5 shows an example of a point that has both consistency and

inconsistency in different viewpoints. Based on the observations, the author has designed

a series of occlusion detectorsF(s, t,θ) to detect the occlusion boundaries between fore-

ground and background. The detectors of 5× 5 case, which are used in the experiments,

are shown in Fig.4.6, andθ is the normal direction of the occlusion boundary. The size

of occlusion detector is corresponding to the number of viewpoints. The non-zero values in

the detector indicate a point is occluded in the corresponding viewpoint.

The LF-consistencyc(s, t,u,v) and occlusion detectorF(s, t,θ) are used to decide the

likelihood of a pixel(u,v) being the occlusion boundary in the directionθ :

O(u,v,θ) = ∑
s

∑
t

c(s, t,u,v) ·F(s, t,θ). (4.7)
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Fig. 4.5 An example of the pixel at occlusion boundary. The pixel in the center viewpoint
can find the corresponding point from the viewpoints in the left 3 columns (shown in blue
dots), but the corresponding point cannot be found in the right viewpoints where the point
is occluded by the foreground object (shown in red dots). Theblue dots have good LF-
consistency, while the red dots are with poor LF-consistency.

The direction with largest response of all the detectors will be chosen as the occlusion

direction:

θ̃ (u,v) = arg max
θ

O(u,v,θ). (4.8)

4.4 Summary

In this chapter, novel descriptors are proposed, which are useful for the transparent object

applications. LFD feature is firstly proposed to describe the deformation of light rays in a

light field image. And then LF-linearity is proposed to describe the likelihood of a light ray

comes from Lambertian object or not. Finally, occlusion detector is proposed to describe

the light rays are occluded in the reference viewpoint or not.
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(a) θ = 0 (b) θ = 45 (c) θ = 90

(d) θ = 135 (e) θ = 180 (f) θ = 225

(g) θ = 270 (h) θ = 315

Fig. 4.6 Occlusion detectorsF(s, t,θ) in eight different directions.



Chapter 5

TransCat: Transparent Object

Categorization

Transparent objects are made of refractive materials, suchas glass or plastics, and distort

rays emanating from the background scene. The appearance ofa transparent object is highly

dependent on the background, from which its texture and colors are largely borrowed. Thus,

it is extremely challenging to recognize the transparent object from the background. And

there are few techniques for dealing with the transparent object categorization task. Howev-

er, many scenarios in our everyday life deal with transparent objects. For example, when a

robert is working in an environment full of transparent object, such as cleaning glasses in

a kitchen, it should recognize the different types of the glasses, and decide what to do for

different types of the transparent object.

In this chapter, a methods is designed to deal with the transparent object categorization

task. The output of the system answers the question "which category of the transparent

object is recognized?"

5.1 Background

Object categorization is the problem of training a classifier to recognize categories of ob-

jects, and then using the classifier to indicate an image belongs to which category. In recent

years, the BoF-based approach has been attracting much attention in the research of image

annotation and object categorization. Local features, such as SIFT, are widely used owing

to their invariance to scaling, rotation and illumination [75–77]. Local features are divided

into several clusters and a representative feature in each cluster is assigned by vector quan-

tization. Objects in the same category are expected to have similar frequency within this
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representative feature. This approach implicitly assumesthat the majority of local features

are extracted from an object’s surface rather than the background. Therefore, if local fea-

tures are drawn from a more dominant background than an object’s surface, existing learning

and recognition methods perform poorly. A transparent object yields less information about

its appearance. Its actual appearance depends largely on the visible background as viewed

through the object. In consequence, extracting background-independent local features from

a transparent object area is difficult. Thus, these approaches find local transparent structure

by applying a latent factor model before quantizing into a visual word representation [49].

Although such approaches recognize a transparent object without any knowledge of back-

ground scenes at test time, the learning step requires many training images in which the

transparent object is captured under various environments.

In this work, LFD feature is used to describe the transparentobject. Different objects

produce different distortions, each carrying intrinsic characteristics of the transparent object,

namely the refractive index of material and the shape of object, both of which influence the

distortion.

5.2 Proposed method

In this section, the algorithm of the proposed transparent object categorization is described.

Figure5.1 shows the overview of the proposed algorithm. The author used a commercial

light field camera, Pro Fusion25 (ViewPlus Inc.), which has 25 VGA resolution (640× 480

pixel) cameras. This camera system can simultaneously capture images from 25 viewpoints

(5 horizontal× 5 vertical). The author transformed the 25 captured images to a rectified

light field image(s, t,u,v) as shown in Figure5.2 by the camera array calibration method

described in Chapter3.

In the LFD feature acquisition stage, the correspondences between the image of the

central view and those of the other viewpoints are obtained by optical flow algorithm. A

disparity between two corresponding pointsp(0,0,u,v) andp′(s, t,u′,v′) can be calculated

from Eq. 4.1. An LFD feature is composed of these disparities, which is represented by

Eq. 4.2. Colors representation is used for indicating LFD featuresin this thesis. Figure

5.3-top shows the examples of the correspondences between the center of three views. The

author describes the 2D disparity vectors to color representations as shown in Fig.5.3-

bottom. Each cell corresponds to a specific(s, t) coordinate; hue and saturation of each cell

represent the direction arctan(∆u/∆v) and the length
√

∆u2+∆v2 of the vector, respectively.

In the experiments, the author uses the large displacement optical flow (LDOF) method

[73, 74] to obtain the correspondences between the the center viewpoint and the other 24
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ct A Object B Object C

Learning samples

LFD feature acquisition

Vector quantiza tion

Representa tive LFD fea tures

Vector quantiza tion

K-means clus te ring
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Output:
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His tograms of LFD fea tures

His togram

of LFD fea tures

LFD fea tures LFD fea tures

Object A Object B Object C

LFD feature acquisition

Fig. 5.1 Overview of the algorithm. The input of the proposedalgorithm is the light field im-
age as shown in Figure5.2. The LFD features are obtained by disparities of the center view
and those of the other viewpoints. LFD features are described as colored vector representa-
tion as shown in Figure5.3. And the feature vectors are quantized to a set of representative
LFD features. Then the histogram is calculated for each input light field image based on
the representative LFD features. The output is done by comparing the histogram of the test
image and the training data set.
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Fig. 5.2 Light field image.
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p(0,0,u,v)p'(-1,0,u',v')
p'(1,0,u',v')

u,v

(-1,1,Δu,Δv) (0,1,Δu,Δv) (1,1,Δu,Δv)

(-1,0,Δu,Δv) (1,0,Δu,Δv)

(-1,-1,Δu,Δv) (0,-1,Δu,Δv) (1,-1,Δu,Δv)

Δu

Δv

Fig. 5.3 LFD feature and corresponding points. This is an enlargement of the central images
of Figure5.2. The LFD is also an example of 3×3 case; these images are actually taken
by a 25-viewpoint light field camera. Hue and saturation of the color represent the direction
and length of the(s, t,∆u,∆v) vectors. The bottom right shows the reference color wheel for
visualisation.
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viewpoints. As a result, the LFD feature is represented as a 24x2-dimensional vector for

each point which describes the disparities between the center view and the other views. The

LFD features are pixel-wise extracted in an image. The LFD features coming from the

transparent object have larger distortion than these from background, since the disparities

containing refraction effect deviate from hyperplane assumed as Lambertian reflection in

the phase space as described in Figure4.3.

The proposed method filtered out the background LFD featuresaccording to the LF-

linearity. In order to make the measurement of LF-linearityindependent of the viewpoint

number, the deviation from the hyperplane is defined as the root mean square error,

dev=
√

E/M, (5.1)

whereE is defined in Sec.4.2.

The back ground LFD feature is filtered out by a certain threshold valueth. When

dev< th, the author considers the LFD features are from the background; whendev≥ th,

the LFD features come from the transparent object. The background LFD features are

filtered out in this way. As a result, a set ofN LFD features can be obtained from the single

light field image. The selection of the threshold valueth is described in Section5.4.1.

Training and categorization processes are performed by a typical BoF approach. The

LFD features are used as visual words. In the training phase,the LFD features are quantized

by k-means clustering for obtaining visual words. The system represents the categories of

transparent objects as patterns of histograms of the visualwords. In the testing phase, the

system extracts LFD features from input image as a same manner described above, and

calculates the similarities of the distances by histogram matching for categorization. Finally,

the system determines the category of the object as a minimumdistance of the matching.

5.3 Experiments

The author performed some experiments in laboratory setting as well as real scenes to eval-

uate the performance of the proposed method.

5.3.1 Assumption

The author evaluated the proposed method by categorizationof transparent objects in a

laboratory setting and real environments under the following assumptions;

• There is one transparent object as a categorization targetin a scene.
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• The target object appears in all of the viewpoints of the LF camera.

• Relative positions and poses of the camera and target object are almost same between

a training and testings.

• Background is reasonably far away from the object.

• Background scenes have sufficient textural information.

5.3.2 Experimental Setting

In the experiments, the author used 5× 5 viewpoints to acquire the LFD features, and a

reference position for learning the bag of LFD features. Thecamera position is 40 cm in

front of the transparent object for both lab setting and realscenes. The background is 150

cm behind the object for lab setting, and farther than 100 cm for real scenes.

The optimal threshold valueth for filtering out the LFD features come from the back-

ground and the number of clustersK for the BoF approach are determined based on the

parameter optimizations experiments (Section5.4.1). The valuesth= 0.25 andK = 1000

are chosen for the evaluation. And the task of proposed method is to categorize 18 vari-

ous shapes of the objects (Figure5.4) into the 18 categories under the various background

textures.

5.3.3 Categorization Results in Lab

The author performed some categorization experiments in a laboratory setting. The author

used a projector and screen for a backdrop of a scene. There are 10 different scenes, as

depicted in Fig5.5.

The author calculated recognition ratio among the 18 objects using leave-one-out cross

validation for scenes, 1 scene is used for training and the other 9 scenes for testing, so there

are totally 10×9 = 90 test images for each object. The categorization result isshown in

Figure5.6. We can see the categorization accuracy for each transparent object from5.6a,

most of the objects can be well categorized by the proposed method based on LFD feature,

while some of them got lower categorization results. The confusion matrix shown in Figure

5.6b can tell us some objects are easy to be miss classified as otherobjects, such as the

Object A is easy to be confused to Object O since their front view is similar, and Object

Q and Object E are confused to each other. So these objects gotlower recognition ratios

than others. The proposed method achieved 84% of average categorization accuracy over
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(a) Object A (b) Object B (c) Object C (d) Object D

(e) Object E (f) Object F (g) Object G (h) Object H

(i) Object I (j) Object J (k) Object K (l) Object L

(m) Object M (n) Object N (o) Object O (p) Object P

(q) Object Q (r) Object R

Fig. 5.4 Target transparent objects.
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(a) Background A (b) Background B (c) Background C

(d) Background D (e) Background E (f) Background F

(g) Background G (h) Background H (i) Background I

(j) Background J

Fig. 5.5 Ten background patterns.



58 TransCat: Transparent Object Categorization

0

0.1

0.2

0

0.5

0.6

0.7

0.8

0

1

A B C D E F G H I J K L M N O P Q R

R
ec

o
g

n
it

io
n

 r
a

ti
o

(a) Recognition ratio for each transparent object.

A
ct

u
al

 C
la

ss

Predicted Class

A B C D E F G H J K L M N O P Q R

A 0

B

C

D 0

E 0

F

G 0

H 0

0 0

J

K

L

M 0

N 0

O 0

P

Q 0

R 0

(b) Confusion matrix for transparent object categorization.

Fig. 5.6 Categorization result for Lab setting.
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the 18 objects in front of 10 different backgrounds, although it realized transparent object

categorization from a single-shot image.

Figure5.7 shows the differences of the 4 of 1000 (K = 1000) frequent visual words as

primal LFD features described by color representation. Figure5.7ashows the frequent LFD

features obtained by different objects with the same background. The patterns of the LFD

features are different for the different objects, despite these objects look similar visually as

they were placed in front of the same background. Also the LFDfeatures come from the

different regions of the objects. It means that each object was uniquely modeled by the

LFDs. Figure5.7ashows the proposed method utilizes not only the silhouette LFD features

but also the inside region of the object.

In contrast, Figure5.7bshows the LFD features from the same object placed in front of

different backgrounds. It shows that these LFD patterns arethe similar and coming from

similar regions of the object, although the visual appearance so different among the back-

ground differences. The author confirmed that LFD feature isirrespective of the background

difference, since the LFD feature does not model the intensity pattern but the geometrical

distortion caused by object refraction.

5.3.4 Categorization Results for Real Scenes

The author also performed real experiments in indoor and outdoor settings (Figure5.8).

Objects were placed about 40 cm from the camera against real backgrounds of structures at

various depths, i.e., distances sufficiently far (more than1m) from the objects. The training

data set is same to the Lab setting. Table5.1 shows the average recognition ratios for

different number of transparent objects under three different scenes.

Table 5.1 Recognition ratios for real experiment.

6 objects 10 objects 15 objects 18 objects

Proposed LFD feature 0.766 0.678 0.587 0.533
Standard SIFT 0.160 0.108 0.075 0.063

The author also used a similar categorization method in using the SIFT feature. Numbers

of clustersK for the SIFT approach was also set toK = 1000. The Table5.1shows that the

proposed method achieved an average 76.6% accuracy for 6 transparent objects and 53.3%

for 18 transparent objects. On the other hand, the ratios of the standard SIFT are the almost

chance rates. It is not discriminative to the object patterns at all, since the SIFT features

mainly come from the background patterns.
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Object P

Object J

Object C

(a) Different objects with same background.

Background A

Background B

Background C

(b) Same object with different backgrounds.

Fig. 5.7 Examples of primal LFD features by color representation. Each row shows the
different object or different background. The 1st column shows the objects and regions of
the pixels where the primal LFD features come from. The 2-5 columns indicate the frequent
LFDs describing the objects. The colors of the bounding box of the LFDs are corresponding
to that of the regions in the 1st column. Hue and saturation ofthe LFDs represent direction
and length of the(s, t,∆u,∆v) vectors on 5×5 viewpoints as similar to Figure5.3.
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(a) Indoor. (b) Outdoor.

Fig. 5.8 Examples of the real scenes.

5.4 Performance Analysis

5.4.1 Parameter Optimizations

As describe in the overview of the proposed algorithm (Section 5.2), the number of LFD

features is depend on the threshold value for filtering, and the number of visual words is

decided by K-means clustering. In order to find the optimal parameters in the system, the

author conducted a serial of experiments under the same condition described in Section

5.3.3with different threshold values and number of clusters.

The threshold value is used to filter out the LFD features fromthe background. When

this value is small, the features from the background cannotbe filtered out. And when it is

getting larger, the LFD features inside the transparent object will be filtered out as well. The

cluster numberK = 1000 is used in this experiment. Figure5.9ashows the categorization

results under different threshold values. When the threshold value is 0, the features from the

background will be dominant and the categorization resultsis near 25% decreased from the

best accuracy. The result shows that the best threshold value isth= 0.25, and this value is

used for all of the other experiments.

The number of clusters is related to the number of visual words in the system. Regarding

to the computational cost, this number is very important. The number of clusters should be

carefully determined in order to get the balance of categorization speed and accuracy. Figure

5.9bshows that the categorization accuracy is getting better during the number of clusters

increase. The recognition ratio almost saturated when the cluster number is over 1000, so

the best choice of the cluster number for 18 different objects isK = 1000.
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Fig. 5.9 Recognition ratios for different parameters.
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5.4.2 Effect of Camera and Object Settings

The author evaluated how the various camera and object settings affect the performance of

the proposed method in this section. The author used the sameconditions to the experiments

for the laboratory setting as described in Section5.3.2. The author investigated the effect

on the categorization accuracy under various conditions, including camera positions, back-

ground distance, object rotations in three directions, additional lighting conditions, noise

levels of the images and the number of viewpoints.
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Fig. 5.10 Recognition ratios for different camera positions.

The author moved the camera over a range of±10 cm from the reference position 40 cm.

Figure5.10shows that as the camera moves away from the reference position, recognition

ratios worsen because the LFD features are distorted when the distance between the camera

and object changes. Moving away from the reference positionincurs greater error than

moving closer to the object. We could consider the margins for object deviation to be about

5 cm if we accept a 10% decrease in the recognition ratio.

The author also moved the background position over the rangeof 50 cm to 250 cm from

the object, while the reference position of the background was 150 cm. Figure5.11shows

the recognition ratio decreased when the background displaced from the reference position.

The direction of ratio decrease is opposite to that of the camera position change as shown in

Figure5.10. The ratio is not so changed when the background is away from the object, while

it is steeply decreased when the background position is approaching to the object. This is

because that the LFD difference caused by the depth disparity is nonlinearly occurred, near

position is larger and far is small. The background positiondoes not affect much about

the recognition ratio when it is far away enough, and this method can be applied to more
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Fig. 5.11 Recognition ratios for different background positions.

realistic no planer scene background, if it can be assumed that the background objects of the

scene are placed reasonably far distance, e.g. more than 100cm.

x

y

z

Fig. 5.12 Illustration of rotation.

The author analyzed how the rotations affect the performance by rotating the objects

or camera in three different directions as illustrated in Figure5.12. The author rotated the

objects up to 40 degrees along their central axes (z-axis). Figure 5.13cshows the results

splitting to a symmetric group (Objects A-I) and an asymmetric group (Objects J-R) of the

objects, as well as overall ratio. As expected, the ratio of the symmetric group is invariant to

poses, since the shape and its LFD features would not be changed. The ratios of asymmetric

group decrease gradually and the limitation on object pose variation is within 20 degrees
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(a) Different rotation angles along x-axis.
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(b) Different rotation angles along y-axis.
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Fig. 5.13 Recognition ratios for rotation along different directions.
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Fig. 5.14 Recognition ratios for different additional illumination angles.

if 20% degradation can be accepted in recognition ratios. Because it is difficult to rotate

the object along x and y axes, the author relatively rotated the camera instead. The author

rotated the camera over a range of±10 degrees along x-axis from the reference position,

and the results are shown in Figure5.13a. The system can get more than 70% accuracy if

the rotation is within±5 degrees. The rotation along y-axis was up to 40 degrees, andthe

accuracy gradually decreases as shown in Figure5.13b. The recognition ratio can stay over

70% if the rotation is within 10 degrees along this direction.

The author also evaluated effects of illumination change for categorization. The author

placed an additional point light source to the global illumination that was used in the all

of the experiments. The author changed the direction of the light source from above (0

degree) to the side (90 degrees) with respect to the target object. There were inter-reflections

and specular reflections from the light source and these effects were changing as the light

source was moving. Figure5.14shows the recognition ratios across the lighting directions.

The left most label indicates the recognition ratio withoutthe additional point light source

which is same condition of learning setting. This figure shows that the internal and specular

from the light source contaminated the LFD features and decreases averagely 15% of the

categorization accuracy. It is not strongly related to the directions of the settings.

Some experiments are conducted to analyze how the input noise affects the performance.

The author first estimated the input noise of the light field image by capturing several images

with constant intensity. The average intensity was calculated as the constant intensity, and

the standard deviation of all the pixels was calculated fromthe mean intensity. The average

standard deviation of input noise is 0.032, and the author intentionally increased the noise

by adding zero-mean Gaussian noise to the original light field image. The additional noise
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Fig. 5.15 Recognition ratios for different noise level.

standard deviation was up to 0.3. The categorization results can be seen in Figure5.15. If

we want to get the accuracy over 70%, the noise standard deviation should be controlled

under 0.08.
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Fig. 5.16 Different viewpoint settings.
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Fig. 5.17 Recognition ratios for different number of viewpoints.

In order to evaluate how the number of cameras affects the categorization results, the

author decreased the viewpoints to 5 views (Figure5.16a) and 3×3 views (Figure5.16b).

By moving the 5×5 viewpoints light field camera on a robot arm, the viewpointscan be

increased to 9×9 (Figure5.16d) and 13×13 (Figure5.16e) as well. The author kept the

same horizontal and vertical baseline for all the settings,and only increased or decreased

the density of the viewpoints. Figure5.17shows that the recognition ratio, not as expected,

is not so affected by the number of the viewpoints. This is because there are only 18 objects

in the experiments, and the variation of the LFD for discriminating 18 objects is limited.

5.4.3 Effect of Texture

The background patterns used in the experiment have complextextures (see Fig.5.5) from

which correspondence detection can be easily performed. Meanwhile, LFD features cannot

be appropriately extracted in certain background scenes (Figure 5.18). Because textural

information is minimal, correspondences between the viewpoints are difficult to find. In

Figure5.18a, the LFD features were extracted from only the edges of the transparent object,

with no LFD feature taken interior to the object. For anotherbackground (Figure5.18b),

LFD features were wrongly extracted exterior to the transparent object (see the top-left part

of the figure). Therefore, the performance is affected by theaccuracy in correspondence

detection.

The author evaluated how many LFD feature points are needed for accurate categoriza-

tion in simulation. First, to obtain ideal feature points, adot pattern was displayed as a

background to the transparent object for easy to detect the correspondence of the LFD fea-
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(a) Uniform background. (b) False in uniform pattern.

Fig. 5.18 Falsely detected feature points.

tures. A total ofN dots were captured; note that the number ofN corresponds to the whole

number of pixels. Second, a percentaged% of LFD features were randomly selected. Then,

leave-one-out cross validation was performed to acquire the categorization accuracy. This

procedure was repeated 100 times ifd was less than 1%, otherwise, just ten times.

The recognition ratio curve is plotted in Figure5.19. This figure shows that the proposed

approach requires at least 3% of the LFD features to obtain almost 100% categorization

accuracy. In terms of practical uses, extracting LFD features for at least 3% of the image

size is not such a difficult problem. Therefore, the proposedLFD feature is considered

effective in transparent object categorization.
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Fig. 5.19 Recognition ratio vs. density of feature points.

The author also evaluated mistracking for estimating the LFD vectors. The author used

the same simulated features above and randomly selected 3% of the features. The author
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added zero-mean Gaussian noise with different standard deviations to the LFD features to

simulate tracking noise. The recognition ratios across different standard deviation of noise

(Figure5.20) show that ratios decrease when error levels increase. The author confirmed

that less than 5.0 pixels of the error is required if the desired recognition ratio is over 70%.
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Fig. 5.20 Recognition ratio vs. tracking noise.

5.5 Summary

In this chapter, the LFD feature and LF-linearity are applied to transparent object catego-

rization task. Several related works of object categorization are reviewed, and the problem

statement is presented. The experimental results show the proposed method using light field

image outperforms the conventional method using the image captured by a regular camera.

Moreover, the limitations of the proposed method are analyzed, and applicable condition is

clearly described.



Chapter 6

TransCut: Transparent Object

Segmentation

Previous chapter proposed a method that can recognize the different categories of the trans-

parent objects. In our daily life, we have another scenario that a machine is operating in

living rooms or offices, it should recognize the fragile objects such as glasses, vases, bowls,

bottles, jars, to name a few, and avoid touching them. This task is to find the transparent

objects in the environment, and it is also challenging to separate the transparent object from

the other Lambertian objects.

In this chapter, the author propose a method to deal with the transparent object segmen-

tation task. The output of the system can recognize whether there is a transparent object and

where it is in the image.

6.1 Background

Image segmentation is a fundamental problem in computer vision. The goal of segmen-

tation is to simplify and/or change the representation of animage into something that is

more meaningful and easier to analyze [78]. For example, it is very important to separate

foreground objects from the background in applications such as object detection, object

recognition [79], and surveillance tasks [80]. Numerous methods have been developed to

deal with the image segmentation problem, including techniques based on thresholding [81],

partial differential equations [82], and graph partitioning [83, 84]. However, none of these

methods are suitable for the segmentation of transparent objects from an image. It is almost

impossible to achieve stable transparent object segmentation in a 2D image using these con-

ventional image segmentation approaches. The difficulty ofdealing with such objects means
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Fig. 6.1 Transparent object segmentation from a light field image. The left side shows the
captured light-field image, and the right-hand side is a magnification of the central viewpoint.
The output after segmentation of the transparent object is shown on the bottom-right.

that transparent object segmentation is a relatively untouched field. In this work, transpar-

ent object can be segmented from the 4D light-field images (see Fig. 6.1). The proposed

method can automatically segment the transparent objects without any interaction.

An energy function is defined in the proposed method, which utilizing the LF-linearity

and the output of occlusion detector. There are various strategies for optimizing energy func-

tions. The combinatorial min-cut/max-flow graph-cut algorithm is widely used for energy

functions defined on a discrete set of variables. Greig et al.[85] were the first to realize that

powerful min-cut/max-flow algorithms could be used to minimize certain energy functions

in computer vision applications. The energy function encodes both regional object infor-

mation and the regularization of the image smoothness. The regional information usually

comes from user interaction [84, 86], particularly in image editing applications. Automatic

segmentation approaches that do not require user interaction have been developed in recent

years. An object segmentation framework [87] has been proposed for the automatic extrac-

tion of candidate objects by solving a sequence of constrained parametric min-cut problems.

Another method [88] estimates whether a pixel is inside the foreground object based on the

point-in-polygon problem, whereby any ray starting from a point inside the polygon will

intersect the boundary of the polygon an odd number of times.In the proposed method,

the author uses occlusion to detect the boundary of a transparent object, and this occlusion

boundary also allows us to determine which side is the background. The system detects
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the occlusion boundary by designing a series of occlusion detectors to check the pattern of

forward-backward matching consistency in all viewpoints.The forward-backward match-

ing consistency has been used in many previous studies such as [89]. For more sophisticated

occlusion detection strategies, the author refers to [90] and the references therein.

6.2 Proposed method

The goal of this work is to segment transparent objects by using LF-linearity and occlusion

detector. The author formulates the segmentation task as a pixel labeling problem with two

labels (transparent objects as the foreground and other objects as the background). Later

part of this chapter, the author will describe each pixel asp= (0,0,u,v) and some variables

with subscriptp indicate the variables at pixelp of the center viewpoint, since the proposed

method solves the pixel labeling problem in 2D image space. Similar to other segmentation

methods [84, 86], the author defines an energy function to evaluate the labeling problem:

E(l) = ∑
p∈P

Rp(lp)+α ∑
(p,q)∈N

Bp,q ·δ (lp, lq), (6.1)

wherelp is the label of an image pixelp (lp = 0 denotes a background pixel,lp = 1 denotes

a foreground pixel),Rp(lp) is the regional term that measures the penalties for assigning lp

to p, Bp,q is the boundary term for measuring the interaction potential between pixelsp and

q, N is the neighborhood set,α adjusts the balance betweenRp(lp) andBp,q ·δ (lp, lq), and

δ (lp, lq) =

{

1, i f l p 6= lq

0, i f l p = lq
(6.2)

The segmentation task aims to determine the labeling that minimizes Eq.6.1. The graph-cut

algorithm is used to optimize the energy function.

In this section, the regional termR(lp) and the boundary termBp,q are defined for trans-

parent object segmentation.

6.2.1 Regional term

It is assumed that all Lambertian objects in the image shouldbe labeled as background, and

the refractive transparent object should be labeled as the foreground. As illustrated in Fig.

6.2, the background and the occluded areas (shown in blue and green) should be labeled as

the background, and the transparent object (orange) shouldbe labeled as foreground.
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Fig. 6.2 Properties of different components in an image containing a transparent object. The
Lambertian background (blue) has good LF-consistency , thetransparent object (red) has
poor LF-linearity exlude the occlusion area , and the occlusion boundary (orange) can be
detected by occlusion detector .

The Lambertian object has good LF-linearity while the transparent object has poor LF-

linearity. The occlusion area also has poor LF-linearity and can be detected by the occlusion

detector, so the transparent object locates in area with poor LF-linearity other than the oc-

clusion area. The case of the occlusion area with good LF-linearity rarely occurs because,

when the forward-backward matching is not consistent, the LF-linearity will be poor. There-

fore, the region with good LF-linearity should be background. When a pixel belongs to

the background, the penalty for labeling this pixel as a Lambertian object or occlusion area

should be low, while the penalty for labeling this pixel as part of a transparent object should

be high. The opposite is true when a pixel belongs to the foreground.

Before defining the regional term of the energy function, theLF-linearity E(u,v) is first

scaled to the range[0,1] using a sigmoid function:

Ẽp = sigmoid(E(u,v),a,b), (6.3)

wheresigmoid(ϕ,a,b) is the function:

sigmoid(ϕ,a,b) =
1

1+exp(−a(ϕ −b))
, (6.4)
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a controls the steepness of the function, andb is the shift, which acts as the threshold value

here.

The regional term for a pixelp is defined as:

Rp(0) = β Ẽp · (1− Õp), (6.5)

Rp(1) = Ẽp · Õp+(1− Ẽp), (6.6)

whereÕp = O(u,v, θ̃), which is the maximum response from the occlusion detectorsde-

scried in Eq. 4.7 and Eq. 4.8. Rp(0) assigns a large penalty to pixels that have poor

LF-linearity exclude the occlusion area, andRp(1) assigns a large penalty to pixels with

poor LF-linearity inside the occlusion area or pixels with good LF-linearity. β adjusts the

balance betweenRp(0) andRp(1).

6.2.2 Boundary term

In the boundary term of the energy function, the pairwise potentials between two neighbor-

ing pixels should be defined. The proposed method is defined inthe 4-neighbor system,

so each pixel has two horizontal neighboring pixels and two vertical neighboring pixels.

We utilize the maximum response of the occlusion detectors (Eq. 4.7) to assign pairwise

potentials.

The boundary term applies a penalty when neighboring pixelsp, q are assigned different

labels. Given a pixelp (see Fig.6.3), the weight of its 4 neighboring edges can be described

as:







wp,q1 = Õp

wp,q2 = wp,q3 = wp,q4 = 0
, if θ̃ = 0, (6.7)







wp,q1 = wp,q2 = Õp/
√

2

wp,q3 = wp,q4 = 0
, if θ̃ = 45, (6.8)

and so forth. The entire definition of the edge weight can be found in the AppendixA.

The weight for each edge is calculated twice aswp,q andwq,p, and the penalty for as-

signing different labels top andq is defined as:

Bp,q = exp(−γ · (wp,q+wq,p)). (6.9)
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Fig. 6.3 Definition of energy for the pairwise potentialBp,q. The example shows the max-
imum responseOp,θ̃ comes fromθ̃ = 0, hence a small penaltyBp,q1 is assigned to the
corresponding edge (blue)

The weight is small in the background and foreground regions. The penalty of the region

is high in the case of assigning different labels to the neighboring pixels. It works easy

to propagate the same labels in the same regions. In contrast, the occlusion boundary will

have large values of̃Op, and it stop to propagate the label between the different regions. γ
controls the rate of the importance of the penalty.

6.3 Experiments

As there are no light field datasets available for the evaluation of transparent object seg-

mentation, the author captured the necessary light field data. The author shall demonstrate

the proposed transparent object segmentation method on various examples, including single

and multiple objects segmentation with different backgrounds. The author also compared

the results with those given by LF-linearity thresholding and the finding glass method [21].

6.3.1 Assumptions

To ensure the effectiveness of the matching process, the experiments were conducted under

the following assumptions:

• All viewpoints of the light-field camera can capture the entirety of the target objects.
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• The degree of reflection on the surface of the target objectsis relatively low.

• The background is relatively far away from the target objects.

• The background scenes have sufficient textural information.

6.3.2 Results and discussion

In the experiments, the author used a light-field camera with5×5 viewpoints (ProFusion

25, Viewplus Inc.) to acquire the images. The author placed the target objects about 50

cm from the camera, with the background a further 100 cm behind the objects. The author

captured seven transparent objects (shown in Fig.6.4) with seven different background

scenes (shown in Fig.6.5). The backgrounds include indoor scenes such as a library and

outdoor scenes such as a city backdrop seen through a window.

As mentioned in Sec.4.3, an optical flow algorithm is used to obtain the corresponding

points p, p′ and p′′ in the central viewpointview(0,0) and the other viewpointsview(s, t).

The author utilizes the optical flow algorithm proposed in [73], which integrates descriptor

matching into variational motion estimation. Although this optical flow algorithm is very

accurate, it cannot deal with textureless regions, and suchareas will cause problems when

the matching is not correct. For this reason, the author removes those textureless regions for

which the squared horizontal intensity gradient averaged over a square window of a given

size is below a given threshold [91]. The parameters used in all experiments are fixed to the

same values. The parametersα, β , γ are determined based on the preliminary experiments,

and setα = 70, β = 4.5, γ = 4.5 which are suitable for the captured dataset. Parametera

decide the thresholding is hard or soft,b is determined by the level of least-squares error,

andτ is related to the accuracy of optical flow and image resolution. The values, which are

suitable for the captured dataset, are selected asa= 0.5, b= 5 andτ = 8.

The author compared the proposed segmentation results withthose from LF-linearity

thresholding and the finding glass method. For the thresholding method, the system simply

filtered out the Lambertian background by removing feature points whose least-squares error

E(u,v) is below a certain threshold, i.e.,E(u,v) < th. In the experiments, the author set

th=7 which is the optimum value for this method. The finding glass method [21] utilized 6

different cues from the appearance, such as color, blurriness and texture, to detect the edges

in the glass region. The author implemented this method as described in [21] and applied to

the central view of the captured dataset.

Figure6.6shows the results for the same scene with different objects,and Fig.6.7shows

the segmentation results for the same object with differentbackgrounds. We can see that,

simply LF-linearity thresholding will result in holes inside the target object at points where
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(a) Object 1 (b) Object 2 (c) Object 3

(d) Object 4 (e) Object 5 (f) Object 6

(g) Object 7

Fig. 6.4 seven transparent objects of various shapes for theexperiments.
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(a) Scene 1 (b) Scene 2 (c) Scene 3

(d) Scene 4 (e) Scene 5 (f) Scene 6

(g) Scene 7

Fig. 6.5 Seven different backgrounds for the experiments. These include indoor and outdoor
scenes in both day and night.



80 TransCut: Transparent Object Segmentation

F-measure Recall Precision

Finding glass 0.30 0.82 0.19
LF-linearity thresholding 0.50 0.65 0.41

Proposed method 0.85 0.96 0.77

Table 6.1 Quantitative comparison of three methods. The results are averaged over the single
object dataset with 7 objects and 7 scenes.

the light field is nearly linear, and mismatched regions fromoutside will be included in the

object. The finding glass method falsely detected the rich texture background as glass, since

this method is not suitable for rich texture images, which ismentioned as the limitation in

the paper. The proposed TransCut method gives very stable results for various objects in

different scenes. Further results can be found in the Appendix B.

The author determined the ground truth by manually labelingall pixels, and quantitative-

ly compared the segmentation results. This comparison is tabulated in Table6.1. F-measure

has been used to compare the performance of each algorithm. This metric is the harmonic

mean of the precision and recall, i.e.,

F =
2∗Precision∗Recall
Precision+Recall

, (6.10)

whereRecall=TP/(TP+FN), andPrecision=TP/(TP+FP) (TP=True Positive, FN=False

Negative, FP=False Positive).

Different transparent object combinations in seven different scenes were performed in

the experiments. The results of experiments including multiple objects are shown in Fig.6.8

and Fig.6.9. These images show that the proposed method is effective when there is more

than one object in the scene, whereas the other two methods donot produce good results in

such scenarios.

Moreover, the experiments with real scene were conducted aswell. Four different ob-

jects were captured in the real scene as shown in the left column of Fig. 6.10, and the

segmentation results are shown in the right column. The results show that the proposed

method works successfully in the real scene although it is not perfect.

6.4 Summary

In this chapter, the LF-linearity and occlusion detector are applied to transparent object

segmentation task. The author reviewed several related works of the image segmentation
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Fig. 6.6 Comparison of segmentation results for the same scene with different objects. The 1st row shows the image from the
central viewpoint. The 2nd, 3rd, and 4th rows show output from the finding glass, LF-linearlity thresholding, and proposed TransCut
methods, respectively. The last row shows the manually labeled ground truth.
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Fig. 6.7 Comparison of segmentation results for the same object in different scenes. The 1st row shows the image from the central
viewpoint. The 2nd, 3rd, and 4th rows show output from the finding glass, LF-linearity thresholding, and proposed TransCut methods,
respectively. The author refers to the 3rd object in the lastrow of Fig. 6.6 for the ground truth.
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Fig. 6.8 Comparison of segmentation results for object 4 andobject 5 combination in different scenes. The 1st row shows the image
from the central viewpoint. The 2nd, 3rd, and 4th rows show output from the finding glass, LF-linearity thresholding, andproposed
TransCut methods, respectively.
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Fig. 6.9 Comparison of segmentation results for object 6 andobject 7 combination in different scenes. The 1st row shows the image
from the central viewpoint. The 2nd, 3rd, and 4th rows show output from the finding glass, LF-linearity thresholding, andproposed
TransCut methods, respectively.
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Fig. 6.10 Four different objects in the real scene. The left column shows the central view of
the light field image, and the right column shows the segmentation result.
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task in the beginning, and then described the proposed method. Finally, the experimental

results show the proposed method using light field image can get stable and impressive

results, which outperforms the conventional method using an image captured by a regular

camera.



Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis, the author introduces that some computer vision problems can be solved by

light field image, and this new technique is called light fieldvision.

The author presented a model of a camera array for light field acquisition, which in-

cludes a rigid constraint between viewpoints. A calibration algorithm with global optimiza-

tion based on the rigid-constrained model was proposed for the light field camera. The

proposed algorithm extends Zhang’s well-known method, andconsists of two steps: closed

form initialization and non-linear refinement. It is ratherfaster than conventional calibra-

tion methods that do not have the rigid-constraint. The proposed method is not restricted

with respect to the number of viewpoints or alignment of cameras. Simulation experiments

show that the proposed algorithm yields better results thanthe linear solution, the method

where each viewpoint is refined independently, and the Bundler. The proposed method was

also applied to the calibration of a commercial light field camera, and the results show that

all intrinsic and extrinsic parameters were optimized witha total re-projection error smaller

than 0.4 pixels. The author also performed a digital refocusing experiment on a captured

light field image. The calibrated light field image was effectively refocused on the required

target, whereas this was not possible for the rough calibrated light field image.

Compared with conventional cameras, which capture 2D images from a single perspec-

tive, light field cameras obtain richer 4D images that include both the angular and positional

information of the light ray space. The new feature extracted from the light field image also

has more advantages than the features from the object appearance. The LFD feature models

the distortion from differences in corresponding points between viewpoints in the 4D light

field, whereas common features, such as gradients or edges, model the appearance. This is

an entirely original concept for feature description with the advantage that LFD is less affect-
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ed by background changes, as it uses patterns of ray distortions caused by the transparent

objects, not patterns from the appearance of objects. LF-linearity is an important property

of LFD feature, and the LF-linearity can describe the likelihood of a light ray comes from

Lambertian object or not. The proposed occlusion detector is very useful to describe the

light rays are occluded in the reference viewpoint or not.

LFD feature and LF-linearity are successfully used in the transparent object categoriza-

tion application. The proposed transparent object categorization method achieved on aver-

age 84% accuracy with 18 objects in lab setting and 53.3% in the real scene setting, while

standard SIFT is not working at all. The author discussed about parameter optimizations

and limitation analysis of the method in some experiments, such as: threshold value of the

LFD, number of clusters, density of the texture, camera and background positions, object

rotations, lighting conditions and the number of cameras.

LF-linearity and occlusion detector have been applied to the segmentation of transparent

objects. Unlike conventional methods, the proposed technique does not rely on color infor-

mation to distinguish the foreground and background. The author has used LF-linearity and

occlusion detector in 4D light field space for describing a transparent object, and designed

an appropriate energy function utilizing the LF-linearityand occlusion for pixel labeling by

graph-cut. The results show that this method produces stable results with various objects in

different scenes.

7.2 Future Work

The work presented in this thesis still has many limitations, and there are several possible

directions to improve the current results.

The datasets in this thesis are captured by camera array where the camera baseline is

large and viewpoint number is few. An straightforward future step is to capture the light

field image using a lenslet camera, such as Lytro Illum, and extend the proposed algorithms

to be suitable for the new dataset. The current results are not yet perfect, as the assumptions

produce some limitations. The feature descriptors can be designed in a more sophisticated

way in order to overcome the limitation in scale and rotationchange. Thereafter, the new

feature descriptors can be used in more flexible environment. For the object categorization

application, it is obvious that good segmentation can help get good categorization results,

so combining the proposed segmentation method with categorization task is a meaningful

future work.

The work presented in this thesis introduces light field vision, which opens a door to

solve the problems that conventional computer vision techniques cannot deal with, and it
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suggests several directions for new research. Here are few more possible directions are

worthy to explore.

Light field vision for non-Lambertian object recognition and reconstruction.

In this thesis, the author applies the light field vision to transparent object recognition,

and it will be more interesting if the target objects are generalized to all the non-Lambertian

object including the specular and glossy objects. Moreover, because the light field camera

captures rich 4D information of the scene, the 3D object surface can be reconstructed from

the a single-shot light field image. Object recognition can be performed for the reconstructed

3D object which will make the recognition more robust.

Machine learning for light field vision.

The author uses Bag-of-Feature method for transparent object categorization in this the-

sis. Other machine learning methods can also apply to the light field vision. The features

extracted from the light field images have more information than the features from a single-

view image. Machine learning methods can utilize the features from light field images to

train a sophisticated model in order to deal with different types of applications.
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Entire definition of the edge weight
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Appendix B

Additional results for transparent object

segmentation

Images from the central viewpoint

Results from Finding glass

Results from LF-linearity thresholding

Results from ransCut

 

Fig. B.1 Object 1.
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Images from the central viewpoint

Results from Finding glass

Results from LF-linearity thresholding

Results from ransCut

 

Fig. B.2 Object 2.

Images from the central viewpoint

Results from Finding glass

Results from LF-linearity thresholding

Results from ransCut

 

Fig. B.3 Object 3.
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Images from the central viewpoint

Results from Finding glass
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Fig. B.4 Object 4.
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Fig. B.5 Object 5.
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Fig. B.6 Object 6.
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Fig. B.7 Object 7.
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