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ABSTRACT 

 

Generally, the design of pull-out strength of the anchor bolt structure in concrete is based on 

standards with some parameters and limitations which is generally assumed that the load 

applied is static load, its failure is a single crack, and the stress is uniform stress. Many efforts 

have been done to analyze and get a better prediction of strength and behavior of anchor, by 

numerical analysis and experimental program. However, a numerical analysis, giving a better 

on figuring the failure modes and on the calculation result still need to explore. Hence, the 

experimental program and numerical analysis conducted in this study can give a better 

understanding of failure mechanism of anchor bolt and on strength analyzing. Predicting the 

performance of anchor bolt structures against pullout loading through full-scale tests is 

expensive and time consuming to perform. On the other hand, numerical analysis of anchor 

bolt structures generally based on Finite Element Method (FEM) is limited due to the mesh 

based technique. Furthermore, the numerical analysis is rather difficult to develop when 

working with non-elastic materials such as reinforced concrete. Smoothed Particle 

Hydrodynamics (SPH) method with particle based technique can be more reliable on figuring 

a large deformation of particles when the material deforms and moreover they can be 

accurately tracked. According to the characteristic of concrete is non-elastic material, the 

pressure dependent criterion is more appropriate to evaluate the accuracy of material strength 

and the plastic failure behavior of concrete/mortar under pull-out loads. In this analysis, the 

two-parameter pressure dependent model, Drucker-Prager (DP) is applied to concrete 

materials, whereas the pressure independent (von Mises -VM) criterion is employed to steel 

anchor bolt. Anchor bolt structure is one case of hybrid/composite structures, so when the 

different properties materials combined, the problem of bond character assumption between 

them arises. For further analysis, the developed bond character is applied to model 

specifically on the contact surface between concrete and steel anchor bolt. The simulated 

results using SPH conform to the design standard in term of the maximum loading capacity. 

Even though the loading capacity of numerical analysis results is in accordance with the 

design standards, however, it is still higher than the experimental result. Consequently a 



 

viii 

 

certain correction/ safety factor should be used when the numerical analysis will be applied to 

the design and analysis of anchor bolt structure. Finally, the numerical analysis using SPH 

method, applying the von Mises and Drucker-Prager constitutive model, and considering the 

bond character model is reliable to predict the failure mode and loading capacity of the anchor 

bolt in concrete under pull-out load. 
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CHAPTER I 

 

 

INTRODUCTION 

 

 

1.1 Anchor bolts and the pull-out failure 

 

Concrete is the most widely used construction material in the world with over 25 billion 

tons constructed every year. This number is predicted will continuously increase along with 

infrastructure developments (Schokker, 2010). Since Portland cement introduced by Aspadin, 

concrete to be the most important building material and widely used in numerous types of 

engineering structures. Its application in structures is mainly used as column, beam, slab, wall, 

deck and roof. Considering the availability of concrete material constituent at everywhere and 

simplicity of mixing and casting process promotes on using concrete material for many 

applications around the world. Furthermore, the strength and stiffness and the efficiency of 

concrete structures make it a suitable material for a broad range of structural application. 

Nowadays, due to a limited construction area, quality control necessity, reducing cost, 

technological development, and limited resource availability stimulate the concrete precast 

system and composite/hybrid structures. 

Anchorage of the steel bolt in concrete has gained special attention due to some global 

trends in the construction industry, such as, increasing use of pre-fabricated structural element 

(precast system) and hybrid structures, increased interest on structural retrofitting earthquake 

resistance, increased on strengthening and maintenance of existing or historical buildings, and 

other particular anchorage demands (Solomos and Berra, 2006). The purpose of anchor bolt 

used is to get a structure with a good strength and stability. In order to connect the other 

structural members to the concrete structures, the anchorage system (anchor bolt) is necessary 
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and plays an important role in many cases, for structural as well as nonstructural applications. 

Anchors are used for transferring load between concrete and other members (such as steel or 

wood element), and it is useful to improve the flexibility in the design of concrete structures. 

However, typically concrete or mortar (cementitious material) is a brittle material that 

performs well in compression but is significantly lower in tension. Thus, it should be deeply 

evaluated when tensile load is applied. 

The demand for the ability to connect components with each other is as old as building 

itself. The solution for the concrete and masonry construction offer different attachment 

methods, which are essentially the type of load transfer (positive locking, frictional and 

adhesive bond) as also differ by the type of installation (Eligehausen et al., 2006a). 

Anchorage systems comprise of a bolt element (anchor bolt) embedding in and the concrete 

base material. There are two anchorages to concrete classification, i.e. (i) cast-in-place and (ii) 

post installed. The post installed anchors may be either bonded or mechanical anchors (screw, 

expansion sleeve, and undercut types) (Eligehausen et al., 2006b). Based on provision codes 

and technical paper (ACI Committee 349, 2001; ACI Committee 318, 2011; and Fuchs et al., 

1995) the failure modes of anchor under tensile loading are categorized as: 

1. Anchor bolt failure: the stress of anchor bolt reaches its yield limit resulted from a 

sufficient embedment depth of anchor, confinement of concrete, and low ratio of the bolt 

diameter to the resistance of concrete.  

2. Concrete cone failure: the concrete suhrrounding the embedded anchor fails in tension 

originating from the head of anchor and propagating towards the surface which is in 

conical form. The inclination of the failure surface corresponding to the axis of anchor 

varies depending on the effective embedment depth of anchor, the diameter of anchor and 

the concrete behavior (Yang and Ashour, 2009). 

3. Anchor pullout: the concrete around the head of anchor fails in compression and from this 

point the fracture propagates shearing towards the surface. Anchor pull-through: the anchor 

bolt slides out of the anchor sleeve commonly due to the shearing adhesion of concrete and 

anchor is low. 
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4. Concrete splitting: the tensile failure along one or more surface planes of concrete 

surrounding the embedded anchor originating from the head of anchor and sides and 

propagating transversely with respect to the axis of anchor. 

Figure 1-1 shows an illustration of failure modes of anchor structures under pull-out 

load and general formulas to determine the maximum loading capacity. Concrete splitting 

failure is a special case when the anchors located close to an edge or to a corner, particularly 

when the thickness of the member is small (Huer and Eligehausen, 2007). Hence, the splitting 

failure will not consider in this thesis. Among these failure modes, concrete cone failure is the 

most common to be studied. Therefore, a proper estimation of the concrete cone capacity 

under tensile loads would be controlled by ductile yielding and the nominal strength of anchor 

(Yang and Ashour, 2009). Under static load, concrete cone failure is commonly estimated by 

the concrete capacity design (CCD) method (Fuchs et al., 1995) on which design provisions 

for anchorage systems of ACI 318-11 are referred.  

 

 

 

Figure 1-1: Expected failure modes and formulas under pull-out load  

 

The anchor bolt structure undergoes various loading conditions during their service life, 

all of which can produce the failure of the structure. In a real application the anchor bolt 

receives some load types, mainly: tensile, shear, and combination load. One of the important 

considerations for the effective use of structural materials is pull-out loading. However, to 
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el : Effective length of 
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yf : Yield strength of the 

bolt
0a : Nominal cross-sectional 
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cf ' : Compressive strength of 
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simplify this thesis is focused to analyze the anchor structure on concrete under the pull-out 

loading. Generally, a pull-out loading predominantly one of the accountability focuses for 

anchor structure both in steel anchor and concrete. In fact, an anchor structure under pull-out 

loading shows the dissimilar behavior due to differences the mechanical properties of steel 

anchor and concrete. Thus, loading type is one of the factors that should consider in the 

analysis and design of anchor structures. Figure 1-2 shows two samples of tensile failures of 

anchors, that are bridge restrainer systems on concrete pier and base plate of column. 

 

 

  

(a) Bridge restrainer system 

(Munemoto and Sonoda, 2012) 

(b) Base plate of column 

(https://www.osha.gov/doc/engineering/2012_r_04.html) 

Figure 1-2: Anchor failure on the bridge restrainer system and column due to pull-out load  

 

The aim of the present work is to contribute to a deeper understanding of the structural 

behavior of anchors in uncracked concrete under pull-out load. Therefore, in order to describe 

the maximum loads of the failure modes it is necessary to identify the main factors 

influencing the structural behavior. The structural behavior is theoretically investigated using 

the finite-element method and experimentally in single bonded anchors and fasteners group. 

The state of research on anchor bolt in the concrete and the proposed analysis and design 

concepts is discussed in detail, evaluated and extended. From the prior knowledge and the 

newly acquired theoretical and experimental results, a simple, user-friendly, economical and 

https://www.osha.gov/doc/engineering/2012_r_04.html
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sufficiently safe design model for individual with anchor bolt shall be developed under tensile 

loading in uncracked concrete. 

With regards to this, there has been a growing interest in the past few decades among 

the engineering community to understand the response of anchorage structures subjected to 

pull-out loads. The evaluation on pull-out load will affect jointed elements has been 

investigated experimentally in the study of Hoehler et al. (2011), Solomos and Berra (2006), 

Eligehausen et al. (2006b), Ozbolt et al. (1999), Primavera et al. (1997), Fujikake et al. 

(2003), Jang and Suh (2006), and Cook and Konz (2001). It also has been examined 

numerically in the study of Etse (1998), Ozbolt et al. (2006), Periskic et al. (2007) and Ozbolt 

et al. (2014). 

 

1.2 Analysis and design assumption problem and computational modelling phenomena 

1.2.1 Design standard equations of anchor bolt and assumption problem 

 

There are currently two main design method available to compute the cone failure 

strength of embedded anchor bolt under static tensile loading, namely Concrete-Cone Method 

(CCM) (Eligehausen et al., 2006a) and Concrete-Capacity Design (CCD) methods (Fuchs et 

al., 1995). In the CCM method, the tensile resistance can be expressed by a general basic 

equation of, 

 

ctcc fAP .  1.1 

 

where Ac is projected area of the cone failure of concrete and fct is concrete tensile strength. 

Then, CCM method generally considers a 45
o
 lateral failure cone, so for embedment depth hef 

and the tensile strength expressed by the cube strength of concrete as fct = k.fc
0.5

, the equation 

can be written, 
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The parameter k is units independent and to simplify the equation to be (Eligehausen, 2006a), 
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(a) Concrete-Cone Method (CCM) (b) Concrete-Capacity Design Method (CCD) 

Figure 1-3: Cone failure mode of anchor 

 

In the Japanese standard, however, the tensile strength of concrete is fct = 0.23.fc
(2/3)  

(JSCE, 

2010), so the equation to be, 

 


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The CCD method is intended to the concrete capacity of arbitrary fastenings under tension or 

shear load. The concrete capacity of single anchor under tension is calculated by assuming an 

inclination between the concrete surface and the failure surface of about 35
o
. The widespread 

failure surface should be observed about three times the effective embedment (hef). In the 

CCD method, it was assumed that there are several factors affected to the breakout resistance, 

such as: the nominal tensile strength of concrete and the projected failure area, with additional 

some calibration factors. Based on the proposed basic idea, the ultimate tensile strength is 

calculated as, 

 Pc 

Ac 

hef 

α ≈ 45o 

d 
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d 
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
 efefcc hkhkfkP  1.5 

where k1, k2, k3 are calibration factors (calibration for tensile strength of concrete, cone failure 

projected area and size effect, respectively) and they are simplified to be knc, so the equation 

becomes, 

 

5.15.0
.. efcncc hfkP   1.6 

 

where knc = 10 for cast in situ anchor bolt and 7 for post-installed anchor bolt (ACI 318, 2011). 

The CCD method was created to predict the failure loads of cast-in-place anchors and 

postinstalled concrete breakout failure (Eligehausen et al., 2006). Moreover, the CCD and 

CCM method assume that the tensile strength of concrete is fct = 0.48.fc
0.5

. 

In current design formulas, there is some problem related to the failure assumption of 

anchor bolt structure. First, on anchor bolt failure the standard assumed that the pull-out 

strength is affected by yield stress of anchor only. So, when the certain embedment depth used, 

the maximum strength due to the anchor bolt failure is constant even the depth of anchor 

increase. Some parameters affected is neglected in this assumption, such as size effect, 

tension softening, and other parameters. 

 

 

 

 

 

 

 

 

 

Figure 1-4: Maximum pull-out strength based on failure mode 
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Second, for the cone failure of concrete, the standard assumed that the tensile stress of 

concrete is uniform stress throughout the cracking concrete surface (Ac). In addition, standard 

design formula assumed that the crack path of concrete under pull-out load is only a single 

crack, starting from the end of effective depth and propagate to the surface of concrete with a 

certain degree‟s inclination. However, in real phenomena the cone failure developed may 

differ from design load, because several cracks may grow at the same time. 

Third, for the bond failure, the standard assumed that the shear stress is uniform over 

the breaking surface of concrete and parallel to the anchor. On the other hand, the bond stress 

may vary in accordance to the depth anchor. And also some parameters may affect to the bond 

characteristic such as adhesion, friction, and mechanical interlocking. NCHRP (2008) 

classifies factors affecting bond performance in two main categories, such as member 

properties and material properties. Some member property factors are transfer length, splice 

length, transverse of anchor bolt, casting position, and concrete cover and spacing of anchor 

bolts. Whereas, anchor bolt properties and concrete properties are classified as material 

properties. 

 

1.2.2 Computational modeling phenomena 

 

It is costly and time consuming to estimate the response of concrete structures under 

pull-out loading through full-scale in terms of providing the necessary test equipment, test 

material, and time to perform. Nowadays, the estimation of the anchorage concrete structure 

response under pull-out load by implementing numerical analyses is becoming more accurate 

and reliable. By combining between modern computer hardware and numerical hydrocodes, 

the accurate result and real figure has shown to a satisfactory level. The computer program 

that is currently developing in this field, the numerical models for the pull-out load 

assessment on concrete anchor bolt are fairly quick to obtain. Moreover, the computational 

simulation delivers a better understanding of the failure mode phenomena and it can be 

investigated thoroughly. 
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The analysis and design behavior of anchorage structures under pull-out loading are 

frequently rather complex. The complicated analysis is found when working with non-elastic 

materials such as the reinforced concrete. Thus, the conventional approach of structural 

analysis is not long enough to define the real behavior of concrete element under pull-out load. 

Therefore, solving problems in the computational solid mechanics using various grids or 

mesh-based methods such as finite-element method (FEM), finite-difference method (FDM) 

or finite-volume method (FVM) have been explored. The FEM, as one of the most popular 

numerical methods, has achieved great success in various areas. The FEM also has been 

widely employed for solving the linear-elastic and elastic-plastic failure problems, as well as 

has become a popular technique in civil engineering for predicting the response of structures 

and materials. In general, Finite element (FE) is a structural analysis method in which the 

problem in continuum mechanics is approximated by the analysis of an assemblage of FEs, 

which is interconnected at a finite number of nodal points and represents the solution to the 

problem. 

The main feature of the grid or mesh-based numerical model is by dividing a continuum 

domain into discrete small sub domains which is termed as discretization or meshing. A mesh 

(or grid) is developed by connecting the individual grid points (or nodes) together in a 

predefined manner with a topological map. Even though FE techniques already have a great 

success, however some of its techniques have certain inherent advantages and disadvantages, 

which exactly depend to a large extent on its particular application. Some problems related to 

the use of mesh are process of generating/regenerating an appropriate and effective mesh and 

difficulties to evaluate the reliability calculation of some mechanical behavior, such as shear, 

tensile, and flexural failure of concrete members. And among of these disadvantages, one 

notable weakness is that the FEM cannot figure the large deformation of failure member, so 

the real magnitude of failure cannot be identified. In the research papers of Etse (1998), 

Ozbolt et al. (2006), Periskic et al. (2007) and Ozbolt et al. (2014), they show the failure 

mode of anchor bolt structures analyzed by FEM (such examples as shown in Fig. 1-5) in the 

mesh-based numerical methods, particularly when working on large deformation problems. 
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1.3 Problem definition 

 

It has been acknowledged that many researchers (Etse (1998), Ozbolt et al. (2006), 

Periskic et al. (2007) and Ozbolt et al. (2014)) have successfully analyzed the elastic-plastic 

behavior of anchorage structures under pull-out loads using a FEM. However, simulation of 

solid mechanics problem due to large displacement can cause in the application of FEM 

problems. Their difficulties and limitations can be investigated from the shown figures in their 

paper. When the material deforms, the large relative movement (large deformation) of the 

connecting nodes cannot be tracked accurately. Thus, the connectivity of arbitrarily 

distributed particles should be applied to provide a stable numerical solution. Smoothed 

Particle Hydrodynamics (SPH) as the particle based technique can be a superior to the FEM to 

solve the limitation in the mesh based technique. During the process of computation, the SPH 

method does not require a pre-defined mesh to render any particle connectivities. The state of 

a system is represented by a set of discrete particles, without a fixed connectivity; hence, such 

methods are inherently well-suited for the analysis of moving discontinuities and large 

deformations such as the breaking and fragmentation on structures. Besides, the SPH particles 

having material properties are allowed to move in light due to the internal interactions and 

external forces. The main advantage of SPH method is the absence of a computational grid or 

mesh since it is spatially discretized into Lagrangian moving particles. This allows the 

possibility of easily modeling deformation and fragmentation with a complex geometry or 

arbitrary movement where large deformations occur. 
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(a) Mesh generation of complex geometry 

 

 

(b) Typical of crack patterns of small head 

anchor (Periskic et al., 2007) 

  

(c) Predicted crack patterns of anchor bolt 

(Ozbolt et al., 2014) 

  
 

(d) Crack patterns in the cross section 

(Ozbolt et al., 2014) 

Figure 1-5: Computational meshes for the pul-out analysis using grid-based method 

 

During the last few years, mesh-less methods has been widely and successfully applied 

to computation of solid mechanics problems. However, there is no researcher who study the 

anchor structure using mess-less methods, including SPH method. On the other hand, tensile 

response simulation of concrete structures using mesh-free techniques have been extensively 

presented such as in the study of Fukazawa and Sonoda (2011). This previous SPH analysis 

only considers the behavior of concrete and steel itself and ignore the effect of bond character 

in the interface zone. According to the bonding characteristics of concrete and anchor bolt, the 

bond character criterion is significantly important to evaluate accurate pull-out strength and 

failure mode of anchor bolt concrete/mortar under pull-out loads. 
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1.4 Objective of the research 

 

From the study overview and problem statement as explained in the preceding subtopics, 

the specific targets of this research are outlined as follows: 

 

a) To investigate the behavior of anchor bolt structures under pull-out loads in aspects of 

failure through an experimental work. 

 

b) To develop an analysis procedure using the SPH method and implement a proper 

constitutive model that can effectively simulate the failure mode of anchor bolt in 

concrete under pull-out loads. 

 

c) To implement the bond character model between mortar concrete and anchor bolt and 

investigate its effect to the pull-out loading capacity and failure mode. 

 

d) To get a deviation between the numerical and experimental model of anchor bolt by 

with and without considering the bond character. It will be useful to validate the 

numerical model when it will be applied in the analysis and design of anchor bolt. 

 

1.5 Scope and limitations of research 

 

Some parameters affecting the strength of anchor bolt is such as the mechanical 

behavior of materials, anchor depth and diameter of anchor. Moreover, the adhesion factor 

(bond) between concrete and anchor bolt also plays an important role on the pullout strength, 

and it still has not been studied entirely. Thus, an attempt has been made in the current study 

by developing a simple and reliable bond character model, with regards to assessing the 

response of anchor bolt structures due to pull-out loads in term of failure mode and reaction 

force. The numerical capabilities were extensively verified against experimental result. 
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This research is limited to the static pull-out load because it is the most applicable to 

civil engineering structures. In addition, the investigation and the computation schemes focus 

on the failure behavior of anchor bolt structures. The aim of this research is to focus on 

concrete/mortar failure simulation and also the yielding and failure of steel anchor. 

 

1.6 Organization of the thesis  

 

This dissertation presents and discusses the results of a numerical and experimental 

investigation of the failure mode and ultimate strength on the anchors embedded in concrete 

under pull-out loading. A literature review of the design formulas to predict the ultimate 

pullout capacity of anchors is provided in Chapter I. In this chapter a various different 

applications of anchor bolts are also reviewed. It is shown that the pullout failure is governed 

by the propagation of a single and discrete crack. This simplification resulted inaccurate result 

and may cause a premature failure. Furthermore, no provisions or investigations are available 

to evaluate bonding character of anchors embedded in the concrete matrix. It can be 

concluded that a better understanding of the effect of initial compressive strength of concrete 

and tensile fields on the load-carrying capacity of anchors is needed. 

The experimental part of this study is described in Chapter II. The shallow depth of 

anchors and normal strength of mortar is conducted to investigate the failure mechanisms of 

the anchors. Load displacement curves, ultimate load-carrying capacity and crack paths are 

presented and discussed. Finally, the experimental results compare to the various design 

standards. In Chapter III, the SPH method and numerical calculation setting are presented. A 

basic formulation and calculation procedure of SPH are expressed. Constitutive model 

consists of von Mises and Drucker-Prager are also described in this chapter. The boundary 

problem in SPH method tried to be solved by applying dummy particles. The result shows 

that the distribution of the dummy particles around the boundary area is very useful to solve 

mechanical problems under the free surface condition.  

In Chapter IV, numerical insights of the progressive pullout of anchors embedded in an 

unstressed concrete matrix are described. The low dynamic load is applied to the structures 
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and a perfect bonding between the concrete and anchor bolt is assumed. Constitutive model 

applied in this analysis consist of von Mises for the bolt and Drucker-Prager for the concrete. 

The effects of depth of anchor on the ultimate load carrying capacity and on the load 

displacement behavior are evaluated in terms of the failure mode analysis using the SPH 

method. It is also concluded that the SPH method adequately describes the large deformation 

of anchor failures. 

The bonding character of numerical model is developed in Chapter V, since a 

combination failure between bond failure and cone failure is generally found in anchor 

structures. In order to solve the phenomenon, a modified constitutive model is constructed 

and applied to simulate the effects of the bonding zone on developing cracks around the 

contact surface between anchor bolt and concrete. All models analyzed in Chapter IV are 

reinvestigated by applying the bonding character. Then, the numerical analysis results 

between without and with considering bonding character, obtained in Chapter IV and in this 

chapter respectively are compared and reviewed. 

In Chapter VI, numerical analysis of experimental model is conducted in with and 

without considering bonding character. Obtained results of the experimental program 

examined in Chapter II are compared to the numerical predictions gained in this chapter. 

Limits and differences between the experiments and the two analysis methods are discussed. 

Besides, these results are also compared to the standard design to verify the numerical 

analysis. The perfect bonding assumption explained in Chapter IV should be modified 

considering the bonding character between concrete and anchor bolt. Even though the loading 

capacity of numerical analysis results is in accordance with the design standards, however, it 

is still higher than the experimental result, consequently a certain correction factor should be 

used when the numerical analysis will be applied to the design and analysis of structure. 

Finally, in general, it can be concluded that there is a good correspond between experimental 

and numerical analysis. 

In Chapter VII, a series of conclusions of each chapter are redrawn together with some 

recommendations for the future research are proposed. 
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CHAPTER II 

 

 

EXPERIMENTAL TESTS 

 

 

2.1 Introduction 

 

The objective of this chapter is to describe in details about the pull-out behavior and the 

failure mode of the anchorage in mortar concrete. Preparation of samples were conducted at 

the Concrete Laboratory, and tests of anchor bolt under pull-out load were performed at the 

Structural and Earthquake laboratory, Kyushu University. This chapter will include all 

important data which are required to construct a computational model of the anchor bolt 

structure in the next following chapter. A detailed characterization of the results found 

through experimental program is provided for comparison and validation of the proposed 

computational model.  

In this experiment, the mortar block which only uses the fine aggregate has been chosen 

to eliminate the effect of aggregate on the crack propagation under tensile stress. The 

experimental work has shown that the anchor bolt under the pull-out load realizing a peak 

reaction force followed by cracking and concrete cone failure mode of the mortar block. To 

investigate further failure mode of the mortar block, further pull-out load has been imposed 

onto the specimen until the concrete cone was perfectly detached. The final angle of cone 

slope and cone failure area of the mortar block will be presented in the following sub-topics, 

where its common failure modes are most important for further analysis and comparison to 

the results of the numerical simulation.  
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2.2 Materials, mix proportion, anchor bolt depth 

2.2.1 Preparation of materials. 

 

Materials used for making mortar concrete in this research were ordinary Portland 

cement, normal fine aggregate (sea sand) and water. Ordinary Portland cement with bulk 

density (γc) 3.16 g/cm
3
 and blaine fineness or specific surface area (SSA) 3,390 cm

2
/g was 

used. The material data of fine aggregate, sea sand (washed) are SSD density (γs)= 2.58 g/cm
3
 

and fineness modulus (FM) = 2.77. 

The threaded bolt with diameter 16 mm is used for bolt anchor in this research. Some 

mechanical property data of the bolt are needed to evaluate the anchor structure by numerical 

model. Therefore, tensile test will be conducted to find the current mechanical properties of 

bolt, namely yield strength, yield strain, ultimate strength and ultimate fracture strain. 

 

2.2.2 Mix proportioning design of mortar. 

 

In this experimental test, we use mortar in order to eliminate the effect of coarse 

aggregate to the development of cracking propagation. In addition, it is assumed that the 

strength of cement mortars with certain mix proportion reaches 32 MPa for cube samples or 

29 MPa (fc ≈ 0.89 fcc) for cylinder samples after curing duration of 7 days. The proportion of 

materials are calculated (refer to ASTM C109-07, 2007) that the proportion of sand to cement 

is 2.75:1 (by mass) and water cement ratio (WCR) = 0.485. The porosity of mortar is assumed 

similar as normal concrete that is around 4.5%. Calculation of material needed for 1 m
3
 

mortar is shown in Table 2-1. 

 

Table 2-1: Mortar mix proportion and expected compressive strength
*) 

Water-cement 

ratio 

Cement 

(kg) 

Water 

(kg) 

Fine 

Aggregate 

(kg) 

Expected Compression 

Strength, 7 days 

(MPa) 

0.485 508.88 246.81 1,399.41 29 

 *)
 Materials needed for 1 m

3
 mixing, refer to ASTM C-109-07, 2007  
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2.2.3 Anchor bolt depth and sample size of mortar block. 

 

The model size should be decided and then prepare the sample models of concrete 

anchor bolt model. The size of samples refers to established experimental result by other 

researchers and compare them to the computational model results. For the first step, we 

consider the samples that it will break due to concrete failure only (cone failure mode). So, by 

assuming a perfect bonding between concrete and steel anchor, the cone failure mode should 

be found. 

Based on the some literatures (Solomos and Berra, 2006; Eligehausen et al., 2006b; 

Fujikake et al., 2003; Jang and Suh, 2006; Hoehler, 2011), the cone failure of anchor bolt can 

be found when the ratio between the depth (h) and diameter (d) of anchor (h/d) maximum 

equal to 5. However, to eliminate other unpredictable factors affecting the cone failure that 

may cause failure in shallow depth, we will conduct an experiment with a depth-diameter 

ratio equal to 3.5. This depth is chosen and considered with an assumption that the failure 

mode of anchor bolt is the cone failure mode. The depth of mortar is approximately 3 times of 

the depth of anchor. The concrete cover depth (the depth of concrete under the anchor bolt) is 

chosen thicker than the anchor depth which is 2 times of anchor depth, it is aimed to prevent 

an early cracking or spalling. Regarding the support distance, the ASTM standard (ASTM 

E488-96) stated that the distance between the support is no less than 4 times of the anchor 

depth. So that, we design with the distance of support as standard requirement. The detail size 

of anchor model can be seen in Fig. 2-1. 
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Figure 2-1: The size of anchor bolt specimen 

 

2.3 Experimental set up, equipment and procedures 

2.3.1 Wooden moulds preparation 

 

The wooden moulds were prepared to cast the five samples with all same size of mortar 

concrete block samples to maintain the fixed embedment depths. The inner surfaces of mould 

were used the watertight and slippery plastic surface for easier demoulding. The left and right 

of wooden mould was mounted upright and nailed wooden boards. And also two pieces board 

were flat nailed at the top and the middle position. The drill holes for 16mm diameter anchors 

were made in the flat wooden board to hold the steel anchor using 20mm drill bit. All of 

wooden mold elements are assembled with screw-nail to assure the adequacy of mould 

strength and no changing size when it is used. The component of wooden mould and final 

wooden mould structure is shown in Fig. 2.2. 
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(a) The wooden plates for assembling the moulds 

 

 

 

(b) Attached of strain gauges (c) Tensile test of anchor bolt 

  

Figure 2-2: The wooden moulds preparation 
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2.3.2 Testing of mechanical properties of steel anchor bolt 

 

The tensile test of steel anchor will be conducted to find its mechanical properties, 

namely yield strength, yield strain, ultimate strength and ultimate fracture strain. Figure 2-3 

shows the procedure of tensile test of anchor bolt. Before conducting tensile test, a strain 

gauge attached to the smoothed surface of anchor bolt. The purpose of attaching the strain 

gauge is to measure the strain of the bolt when tensile load is applied on it, and finally the 

mechanical properties of anchor bolt can be properly identified. A stiff machine with a 100 

ton maximum capacity is the main equipment for tensile test of anchor bolt. 

 

 
 

 

(a) Attached of strain gauges (b) Tensile test of anchor bolt 

  

Figure 2-3: Laboratory works of tensile test of anchor bolt 

 

 

2.3.3 Testing of mechanical properties of mortar 

 

Several tests will be conducted to find the mechanical properties of mortar concrete, 

namely compression test, split tensile test, and density. The measurement of compressive 

strength of mortar concrete was conducted in accordance with JIS A 1108, and the mean of 
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results obtained with some identical specimens was reported. Double face of sample 

smoothed by grinding was used before testing. A stiff machine with a 3000 kN capacity will 

be used to perform this test on 100mm x 200mm cylinder specimens. The displacement of 

each specimen was measured using a compressometer during the compressive strength test for 

determining the modulus of elasticity. The measurement of modulus elasticity of mortar in 

accordance with JIS A 1127, and the mean of several results obtained will be reported. 

The split tensile test will be conducted in accordance with JIS A 1113, and the average 

of split tensile strength will be obtained from several test data. A stiff machine with a 3000 

kN capacity will be used to perform this test on 100x135mm cylinder specimens. Figure 2-4 

shows the compression and split tensile test of mortar concrete. 

 

  

(a) Compression test of mortar (b) Split tensile test of mortar 

  

Figure 2-4: Compression and split tensile test of mortar 

 

 

2.3.4 Testing of pull-out load test 

 

A stiff machine with a 100 ton maximum capacity is the main equipment for anchor bolt 

test. A portal frame and a number of dial gauge will be used in this experimental program. 

There are two beams and base plate in this frame. The base plate and upper beam can move 
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up-down together, while the middle beam is still in the constantly position. The foundation 

that consists of concrete cylinder and steel plate put on the base plate. Procedure for testing of 

the anchor bolt test under pull-out load is: 

1) Arrange a certain distance between the base plate, middle beam, and top beam. 

2) Put some concrete cylinders and a steel plate on the top as a foundation. Also put two 

hydraulic jacks in the middle with the same level with the concrete cylinder. 

3) The mortar block together with support plate, steel plate and load cell are placed on 

the steel plate, and then arrange the position of the middle beam until the anchor bolt 

can be screwed with the extended steel rod. Fixed the anchor to the top of the beam. 

4) To get the displacement of anchor bolt, the mortar block sample was moved a few 

centimeters to up using hydraulic jack until touching and getting a fixed condition to 

the bottom side of the middle beam. 

5) Placed some the dial gauge (displacement gauge) to measure the displacement of the 

frame and anchor bolt. The bottom dial gauges (no 1 and 2) are positioned to measure 

the displacement of base plate to the middle of beam, while the top dial gauges (no 3 

and 4) are used to measure the gross of displacement of anchor bolt. On the other hand, 

the middle dial gauges (no 5 and 6) are used to measure the displacement of upper 

surface of concrete specimen. 

6) The pull-out load is gradually applied to the structure of mortar block until failure. 

An illustration of the structure for testing the anchor bolt under pull-out load can be 

seen in Fig. 2-5. 
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(a) Schematic of frame structure (b) Frame structure 

 

Figure 2-5: The structure of test equipment for pull-out test of anchor bolt 

 

 

2.4 Mixing and casting 

 

Mixing procedure for the mortar is as follows. The cement and aggregate were first 

poured into the mixing pan and then mixer started. Thirty second later, then the water was 

added to the mix. The mortar was then mixed for another two minute. While stopping for 

around 30 second, the mix is mixed by hand to prevent the cement agglomeration. A visual 

inspection on the consistency of fresh mortar was done to ensure that the aggregates had been 

evenly mixed with the paste. 

Other consistency testing by flow table test was done to ensure the paste is good 

workability. The flow table test is conducted by pounding the mortar on the standard steel 

table for 15 times in 15 second. The slump examined by table test is expressed by percentage 

comparison between the increasing diameter of mortar after pounding and initial diameter. 

The average slump of three mortar test is 26.1%.  

In general, each size of 100x200 mm cylinder for compression test, 100x135 mm 

cylinder for split tensile/ Brazilian test and 352x352x144 mm mortar block were cast for a 

batch of mortar concrete. Each five cylinder samples were used for compressive strength test 

and split tensile/ Brazilian test, and 5 mortar block samples for anchor bolt test. The cylinders 
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were cast in two layers, and whereby each layer was rammed by hand rodding for 8 times as 

the standard procedure and consolidated by vibration table for 15 second. A similar procedure 

was also applied for compacting the mortar block. The mixing and casting process of mortar 

concrete can be seen in Fig 2-6. 

 

 

 
 

 

(a) Mixing process (b) Flow table test 

 

 
 

 

 

(c) Compaction process of mortar block (d) Casting samples 

  

Figure 2-6: The mixing and casting process 

 

 

After casting, the samples were cured to a moist room at 20oC and 90 percent relative 

humidity for 24 hours. The weight of specimen was measured after being demolded and the 

volume of the specimen was obtained by averaging the diameter and height in three positions 
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of the specimen. After being demolded the specimens were covered by plastic bags and store 

in wet condition for curing at 20oC until a certain age for testing. Finally, the samples were 

mechanical tested after 14 and 35 days. 

 

2.5 Experimental results 

2.5.1 Tensile strength of anchor bolt 

 

The number of tensile test samples of anchor bolt is two samples. By averaging these 

two samples of tensile test, the mechanical properties of anchor bolt were found, that is 575 

MPa, 0.0054, 780 MPa, 0.152, and 161 GPa for yield strength, yield strain, ultimate strength, 

ultimate fracture strain, and modulus elasticity respectively. The stress-strain graph of tensile 

test of the anchor can be seen in Fig. 2-7. 

 

 

 

 

Figure 2-7: Tensile test of anchor bolt  

 

 

2.5.2 Compressive strength and modulus elasticity of mortar. 

 

The measurement of compressive strength of mortar concrete was conducted after 14 

days in accordance with JIS A 1108, and the mean of five results obtained with five identical 

specimens was reported. A stiff machine with a 3000 kN capacity was used to perform 

compressive test and split tensile test on cylinder specimens. The displacement of each 
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specimen was measured using a compressometer during the compressive strength test for 

determining the modulus of elasticity. The measurement of modulus elasticity of mortar in 

accordance with JIS A 1127, and the mean of five results obtained was reported. The 

compressive strength and modulus of elasticity of mortar for 14 days age test is 41.93 MPa 

and 25 GPa, respectively. 

To briefly evaluate the strength of anchor bolt, the similar age between the compressive 

strength and anchor bolt test should be used. To fulfill this requirement, we used the 

compressive test sample by coring the mortar block after the anchor pullout test finish. The 

procedure of preparing samples and measuring of compressive strength of mortar concrete by 

core drill was conducted in accordance with JIS A 1107. Ten samples were tested and 

obtained for 35 days age, and the mean of compressive strength is, namely 48.18 MPa and 27 

GPa for compressive strength and modulus elasticity, respectively. Figure 2-8 shows the core 

drill procedure and compression test of mortar concrete. 

 

 

 
 

 

(a) Core drill of mortar sample (b) Compression test of mortar concrete 

  

Figure 2-8: The compression test of mortar concrete 
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2.5.3 Tensile strength of mortar. 

 

The split tensile test was conducted in accordance with JIS A 1113, and the average of 

split tensile strength was obtained from five sample tests. Five samples were tested on 35 days 

age and the mean of split tensile strength is 3.31 MPa. By weighting and measuring the size, 

the density of mortar can be obtained, that is 2.22 kg/m
3
. The weighting procedure and split 

tensile test of mortar concrete are shown in Fig. 2-9. While, the complete data on mechanical 

properties of mortar can be found in Table 2-2. 

 

  

(a) Weighting of sample (b) Split tensile test of mortar concrete 

  

Figure 2-9: The split tensile test of mortar concrete 

 

 

Table 2-2: Mechanical properties of mortar 

 

Sample Compr. Strength Mod. Elasticity Sample Compr. Strength Mod. Elasticity Sample Split Tensile Strength

[Mpa] [Mpa] [Mpa] [Mpa] [Mpa]

1 46.35 27201.66 A1 52.39 27823.72 1 3.28

2 36.29 23465.70 A2 50.55 27277.62 2 3.02

3 37.45 24264.18 B1 48.76 27316.57 3 3.08

4 48.93 27387.01 B2 51.98 27859.42 4 3.44

5 40.62 23718.67 C1 48.04 27929.49 5 3.72

C2 44.64 26606.64

D1 48.93 27189.32

D2 50.32 27729.82

E1 41.22 25456.45

E2 44.96 25504.97

Average 41.93 25207.44 48.18 27069.40 3.31

14 days age 35 days age
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2.5.4 Anchor bolt structures under pull-out load test 

2.5.4.1 Reaction force and displacement 

 

After conducting the pull-out test to the anchor bolt structure, several data can be gained, 

such as the reaction force, displacement and failure mode. Figure 2-10 depicts the graph 

showing correlation between load and displacement of the anchor bolt. The displacement of 

anchor bolt was examined by dial gauge no 3 and 4. It can be seen that sample A and B tested 

in 14 days relatively have a lower load bearing capacity as well as their displacement than 

sample C, D and E evaluated in 35 days. All of the graphs show a similar trend that there is a 

slight drop of the reaction force at the early stage when the load apply around 3 kN. It is 

supposed due to a small crack developed, so the structure looses a loading capacity. However, 

after this first crack the structure looks more stiff and can support the load until the maximum 

capacity. The average of the maximum load capacity has been 18.23 kN for 14 days age test 

and 20.87 kN for 35 days age test, so there is an increasing the loading capacity around 16%. 

It is also noted that the increasing rate of load-displacement is similar for all samples, also 

similarity can be recognized on the decreasing rate. All of samples show a significant 

displacement before final loading capacity were reached, except sample E showing a direct 

failure after peak load is attained. This long displacement towards final loading is presumed 

by tension softening effect. 

 

2.5.4.2 Failure mode, cone failure area and concrete cone surface stress 

 

This experimental program uses a shallow depth of anchor bolt, with ratio depth to 

diameter of anchor equal 3.5. By applying this depth, the cone failure is expected and will be 

found in all samples. After examining the pull-out test applied to the anchor bolt structure, it 

can be notified that all samples have failures with the cone failure type, even they have a 

combination failure between cone failure and bond failure (see Fig. 2-12). 

Figure 2-11 shows the cone failure surface which is examined from the top. The area of 

cone failure surface can be divided by inner and outside area. The outside area is the total area 
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of cone failure before breaking, while the inner area is the conical form of concrete attaching 

to the pulled anchor bolt. The outside line is shown in Fig. 2-11(a) with a red line, while the 

inner line can be seen in Fig. 2-11(b) which is defined by a black line. 

 

 

Figure 2-10: Load-displacement of anchor bolt under Pull-out load test 

 

  

(a) Sample E - outside line (b) Sample E - inner line 

  

Figure 2-11: Cracking line on the concrete surface after pull-out load test 

 

 

 

 

(a) Failure of Sample E (b) Detail of failure sizes 

  

Figure 2-12: The side view of anchor failure and detail of failure sizes 
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Table 2-3: The detail of failure sizes of the inner side area of anchor bolt cone failure 

 

 

Table 2-4: The detail of failure sizes of the outside area of anchor bolt cone failure 

 

 

A side view of the combination between cone failure and bond failure of anchor bolt 

after the pull-out loading test can be seen in Fig. 2-12. This figure clearly shows how the 

bonding failure occurs at the end of anchor bolt, whereas the cone failure occurs in the near to 

concrete surface. Figure 2-12(a) shows the sample of side view of anchor bolt cone failure, 

while the illustration of detail size of this failure can be seen in Fig. 2-12(b). Furthermore, the 

measuring size for each side and the degree of cone slope (α) can be observed in Table 2-3 

and Table 2-4, that are inner side area and outside area, respectively. The degree of cone slope 

found by experiment is significantly lower than the design standard assumed, that is around 

15
o
 ~ 23

o 
for experiment compare to 35

o
 ~ 45

o 
for design standard. 

 

Table 2-5: The stress of concrete cone surface by experimental 

 

Sample Failure Concrete

type total side-1 side-2 side-3 side-4 Average depth [cm] side-1 side-2 side-3 side-4 Average tangent α ( 
o 

)

A cone and bond 5.5 2.8 2.8 2.9 3.2 2.9 2.6 7.8 6.5 5.9 6.7 6.7 0.383 21.0

B cone and bond 5.5 1.9 2.7 2.8 2.5 2.5 3.0 4.7 7.3 9.6 6.9 7.1 0.425 23.0

C cone and bond 5.7 3.1 3.4 3.8 3.5 3.5 2.3 6.4 6.5 9.5 7.2 7.4 0.304 16.9

D fail

E cone and bond 5.5 2.6 2.3 2.2 2.0 2.3 3.2 6.9 7.2 7.4 9.5 7.8 0.416 22.6

Average 5.6 2.8 2.8 7.3 20.9

Bond failure depth [cm] Width [cm] Cone slope

Sample Failure Concrete

type total side-1 side-2 side-3 side-4 Average depth [cm] side-1 side-2 side-3 side-4 Average tangent α ( 
o 

)

A cone and bond 5.5 2.8 2.8 2.9 3.2 2.9 2.6 7.5 8.0 7.5 6.7 7.4 0.347 19.1

B cone and bond 5.5 1.9 2.7 2.8 2.5 2.5 3.0 10.0 10.7 9.6 9.7 10.0 0.303 16.8

C cone and bond 5.7 3.1 3.4 3.8 3.5 3.5 2.3 9.3 6.0 9.5 7.2 8.0 0.281 15.7

D fail

E cone and bond 5.5 2.6 2.3 2.2 2.0 2.3 3.2 9.3 7.2 7.2 10.2 8.5 0.381 20.8

Average 5.6 2.8 2.8 8.5 18.1

Bond failure depth [cm] Width [cm] Cone slope

Sample Max laod [kN] note
*)

inner line outside line inner area outside area

Sample A  (14 days) 121.07 170.06 15.60 1.29 0.92

Sample B  (14 days) 135.52 286.12 20.86 1.54 0.73

Average 128.29 228.09 18.23 1.41 0.82

Sample C  (35 days) 128.52 192.15 19.80 1.54 1.03

Sample D  (35 days) 285.95 546.67 21.53 0.75 0.39 fail

Sample E  (35 days) 162.40 256.30 21.93 1.35 0.86

Average 145.46 224.22 20.87 1.45 0.94

Area [cm2] Cone stress based on experimental test [MPa]
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To determine the stress of the concrete cone surface, the area of the concrete cone 

surface should be calculated. The size of each cracking side refers to the grid with the size 5 

cm. The total inner and outside area of cone failure surface can be seen in Table 2-5. By 

assuming that the stress of concrete is uniform on the cone failure surface thoroughly, the 

cone stress can be determined by the maximum loading capacity and the concrete cone 

surface area. The result of cone stress of experimental test is shown in Table 2-5, that is 0.94 

MPa and 1.45 MPa for outside area and inner area respectively. 

 

2.6 Comparison between experimental result and standard design 

2.6.1 Comparison of cone stress. 

 

There are several data that can be collected by the experimental program, namely the 

mechanical properties of steel anchor and mortar, maximum loading capacity of anchor 

structure, and cone stress. On the other hand, some equations are already available to predict 

the cone stress of the anchor bolt structure, such as CCM (Eligehausen et al., 2006a), CCD 

(ACI 349, 2001; Fuchs et al., 1995) and Japanese standard (JSCE, 2010). To evaluate and 

validate the experimental result, we need to compare the experimental to the design standard, 

and in this case we only compare the tensile cone stress between the experiment result to the 

design standards. Table 2-6 and Fig. 2-13 show the comparison of cone stress between 

experimental result and design standard. The result reveals that the cone stress of the 

experimental result is extremely lower than the design standard, this is either in inner side 

area or outside area. It is predicted due to the cracking of samples of the experimental result 

spread widely with a lower cone slope and resulting wider cone area than the design standard. 

Moreover, the failure mode also affects the cone stress since the design standards which is 

assumed the cone failure mode have a higher stress than the experimental results having a 

combination failure mode, cone and bond failure. Refer to Fig. 2-13, it can be recognized that 

the cone stress of the outside area around two-third of the inner side area. It is also should be 

noted that the stress of experimental result less than half of the standard, either CCM and 

CCD or JSCE standard. The average of cone stress is 0.94, 1.45, 3.04 and 3.33 MPa for the 
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outside area, inner side area of experimental results, JSCE, and CCM and CCD standard, 

respectively. 

 

Table 2-6: Comparison of tensile cone failure stress between experimental and standard 

design 

 

 

 

 
 

Figure 2-13: The comparison of cone failure stress between experimental and standard 

design 

 

2.6.2 Comparison of maximum pull-out loading capacity. 

 

Pull-out loading capacity is one of the most important matter as well as one of crucial 

problem regarding the anchor bolt design. Many methods have been proposed to find a 

reliable design, either by experimental program or numerical approach. However, it still needs 

to evaluate due to many factors affecting the pull-out loading capacity of anchor bolt, such as 

mechanical properties of concrete and steel anchor, depth-diameter ratio of anchor, loading 

Sample Maximum

Compr. Stress prediction prediction note

 by CCM and CCD  by JSCE inner side crack outside crack

[Mpa]  [Mpa]  [Mpa] [Mpa] [Mpa]

A1 52.39 3.47 3.22

A2 50.55 3.41 3.14

B1 48.76 3.35 3.07
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C1 48.04 3.33 3.04
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D1 48.93 3.36 3.08

D2 50.32 3.40 3.13
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type, size effect, and many more. In this experiment, the pull-out loading capacity of normal 

strength mortar which is found by experimental program will be compared to the standard 

design. However, in this case only three well known standard design method will be 

considered, that is CCM method, CCD method and Japanese method. To design a single 

anchor, some parameters are needed, such as compressive strength of concrete, diameter of 

anchor, depth of anchor. 

 

Table 2-7: Comparison of pull-out loading capacity between experimental and standard 

design 

 

 

 

  
Figure 2-14: The comparison of pull-out loading capacity between experimental and 

standard design 

 

The mechanical properties of concrete and steel anchor have been already gained as 

well as the depth and diameter of anchor have been designed, so it has enabled to compare 

between experimental and design standard. The detail comparison result of the pull-out 

loading capacity of anchor bolt under static pull-out loading is presented in Table 2-7, and Fig. 

Sample Maximum Depth Diameter

Compr. Stress of anchor of anchor prediction prediction prediction Experimental note

(h) (d)  by CCM  by CCD  by JSCE result

[Mpa] [mm] [mm]  [N]  [N]  [N]  [N]

C1 48.04 57 16 27,688.02     29,828.76    39,593.82    

C2 44.64 57 16 26,687.87     28,751.29    37,698.46    

D1 48.93 16

D2 50.32 16

E1 41.22 55 16 24,067.55     26,186.87    33,548.49    

E2 44.96 55 16 25,137.74     27,351.30    35,552.11    

Average 46.35 25,895.29   28,029.56 36,598.22  20,865.00     
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2-14 also clearly shows this comparison. The result expresses that the loading capacity of 

experimental significantly lower than the design standard, even almost a half of JSCE 

standard. It is also can be noticed that the JSCE has the highest resistance (36.60 kN) than 

other standards, then followed by CCD method (28.03 kN) and CCM method (25.90 kN), 

respectively. While the experimental result has a load resistance equal to 20.87 kN. The 

design standards have a higher loading resistance than experimental result because the crack 

pattern is assumed a single crack and the cracks propagate from end of anchor to the concrete 

surface. It is absolutely assumed cone failure only without bonding failure. On the other hand, 

the experimental result clearly shows that the failure is a combination between cone failure 

and bond failure, so that the cone failure part is a shallow depth and the angle of cone slope 

(α=15
o
 ~ 23

o
) is smaller than design standard (α =35

o
 ~ 45

o
). 

 

 

2.7 Conclusion 

 

An experimental investigation into the behavior of anchor bolt structures under pull-out 

loads has been described. The failure mode, reaction force, and concrete cone stress of the 

anchor bolt structure have been discussed precisely in this chapter. Finally, a comparison 

between the experimental results and design standard has been presented. Based on the 

experimental results, the following conclusions were drawn: 

1)  The experiment resulted the combination failure mode, cone failure and bond 

failure, of anchor bolt under pull-out loading test. Furthermore, the degree of cone 

slope (α) for the inner side area and outside area is significantly lower than the 

design standard assumed, that is around 15
o
 ~ 23

o 
for experiment compare to 35

o
 ~ 

45
o 
for design standard.    

2) The cone stress of the experimental result is extremely lower than the design 

standard, this is either in inner side area or outside area. It is even less than half of 

the standard, either CCM and CCD or JSCE standard. This phenomena are predicted 

due to the cracking of samples of the experimental result spread widely with a lower 
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cone slope and resulting wider cone area than the design standard. It is also should 

be noted that the stress of experimental result less than half of the standard, either 

CCM and CCD or JSCE standard. The average of cone stress is 0.94, 1.45, 3.04 and 

3.33 MPa for the outside area, inner side area of experimental results, JSCE, and 

CCM and CCD standard, respectively. 

3) The loading capacity of experimental result is significantly lower than the design 

standard, even almost a half of JSCE standard. It may due to in the design standard 

the crack pattern is assumed a single crack and the cracks propagate from end of the 

anchor to the mortar concrete surface. Moreover, in the design standard it is 

absolutely assumed that the failure mode is cone failure only without considering 

bond failure. While, the experimental result clearly shows that the failure is a 

combination between cone failure and bond failure, so that the cone failure part is a 

shallow depth and the angle of cone slope is smaller than design standard. 
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CHAPTER III 

 

 

SPH METHOD AND NUMERICAL CALCULATION SETTING 

 

 

3.1  Introduction 

 

The overviews of some typical mesh-free based computational methods are briefly 

reviewed in this chapter. The numerical calculation scheme of SPH method and its continuum 

governing equation will be presented in the following sub-topics. Then, applications of the 

SPH method using existing constitutive model onto a pull-out load analysis of anchor bolt in 

concrete are presented.  

 

3.2 Review of mesh-free method 

 

Development of mesh-free method originally have been started since 1970s by 

introducing the moving least squares (MLS) approximation as a parallel path of constructing 

for particle approximations. Then, following by a diffuse element method (DEM) that used 

MLS interpolant in combining with Galerkin method to formulate a mesh-free computational 

formulation has been introduced by Nayroles et al. (1992). Based on DEM, Belytschko et al. 

(1994) modified the DEM and proposed the element-free Galerkin (EFG) method. Currently 

the EFG is one of the most popular meshfree methods for solving many solid mechanics 

problems.  
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The mesh-free methods were then advancing developed by comprising the generalized 

finite difference method (GFDM) which is introduced by Perrone and Kao (1975) to handle 

with the nodes that are arranged arbitrarily in the interest domain, to which the researcher 

made the earliest contributions. Mesh-free methods also include the hp-clouds method 

introduced by Duarte and Oden (1996), and the Meshless Local Petrov-Galerkin (MLPG) 

method has been introduced by Atluri and Zhu (1998). The characteristic of MLPG, it 

requires only local background mesh and does not need a global background mesh for 

integration. 

Smoothed Particle Hydrodynamics (SPH) method is one of the earliest mesh-free and 

particle methods. SPH originally intended for modeling astrophysical phenomena is proposed 

by Lucy (1977) and Gingold and Monaghan (1977). Recently this method has been widely 

extended for many applications to solve problems of solid as well as fluid mechanics. Because 

of the distinct advantages of the particle method, the SPH method was widely adopted as one 

of the efficient computational techniques to solve applied mechanics problems. 

The advantages of the mesh-free particle methods may be summarized as follows (Li 

and Liu, 2002): 

1) They can easily handle very large deformations, since the connectivity among nodes 

is generated as part of the computation and can change with time; 

2) The methodology can be linked more easily with a CAD database than finite 

elements, since it is not necessary to generate an element mesh; 

3) The method can easily handle damage of the components, such as fracture, which 

should prove very useful in modelings of material failure; 

4) Accuracy can be controlled more easily, since in areas where more refinement is 

needed, nodes can be added quite easily (h-adaptivity); 

5) The method can incorporate an enrichment of fine scale solutions of features, such as 

discontinuities as a function of current stress states, into the coarse scale; and 

6) Mesh-free discretization can provide accurate representation of geometric objects. 
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3.3 Smoothed particle hydrodynamics (SPH) method 

 

This thesis focuses on the SPH method that originally for modeling astrophysical 

phenomena in 3D open space and particular polytropes. SPH is a “truly” mesh-free particle 

method uses the integral representation for field function approximation. However, recently it 

is widely applied for continuum scale applications due to the collective movement of 

astrophysical particles is similar to the movement of a liquid or gas flow, and can be 

calculated by the governing equations of the classical Newtonian hydrodynamics. The 

methodology and its applications were further developed in several excellent review papers 

and book, including those by Monaghan (1988, 1992, 2005), Wingate and Miller (1993), 

Randles and Libersky (2000), and Liu and Liu (2003). Even though this method has been 

introduced in 1970‟s, however the development and application of SPH rapidly increased 

after 1990s due to their advantages. In the early applications on astrophysical, the SPH 

method was based on the Monte Carlo theorem and random sampling. In order to produce the 

rational explanation of this method, Gingold and Monaghan (1982) employed the kernel 

approximation, which can also serve as a smoothing interpolation field. Therefore, the 

foundation of SPH is the interpolation theory itself. The conservation equations of the 

continuum dynamics can be transformed into integral equations by using an interpolation 

function that gives the „kernel estimate‟ of the field variables at a point. Computationally, 

information is known only at discrete points, so that the integrals are evaluated as sums over 

the neighboring particles. The underlying grid is not needed because that function is evaluated 

using their values at the discrete neighboring points (particles) and an interpolation kernel. 

SPH technique is used in this study to investigate the structural response of the anchor 

bolt in concrete under pull-out loads. In the SPH method, the material is divided into a set of 

discrete elements denoted as particles. These particles have a spatial distance or smoothing 

length (h), over which their properties are smoothed by a kernel function. By summing the 

relevant properties of all particles within the range of the kernel, the mechanical quantity of 

any particle can be obtained. The superscript A and B are used in this thesis to denote the 
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target particle A and neighboring particle B, respectively. For example, to calculate field 

variable of particle A in the domain integral Ω, the integral of this particle is shown below,  
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Obviously, Eq. 3.1 is rigorous and exact. If the Dirac delta function is substituted by a 

smoothing kernel function W
AB

, approximation of f(x
A
) on the volume of integral Ω, can be 

obtained  
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where f(x
A
) and f(x

B
) are functions of target particle A and neighboring particle B, respectively. 

The particle A is weighted by kernel function W
AB 

(x
A 

- x
B
,h) and integral computation in Eq. 

3.3 is approximated by the summation of all neighboring particle B in the support domain kh.  

 

 

 

Figure 3-1: Particle approximation in in a three-dimensional problem domain Ω 
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Figure 3-1 shows the particle approximations in a three-dimensional problem domain Ω. 

The smoothing function, W
AB

 is used to approximate the field variables at particle A using 

averaged summations over particles B within the support domain kh. The three-dimensional 

illustration in Fig. 3-1 shows the target domain consists of particles as discretized of a body, 

where each particle is associated with certain field properties. These particles can be 

employed for integration, interpolation, and differentiation, even also for representing the 

material as mass particles. The volume of a sub-domain is lumped on the corresponding 

particle. Therefore, each particle is associated with a fixed lumped volume. If a volume, dv is 

associated with particle B to present the concept of particle mass m,  

 

B

B
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

  3.4 

 

By assuming the kernel function has a compact supporting radius of kh, an approximation 

form of Eq. 3.3 by the discretized particles becomes; 
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where, the summation is over all the particles (with a total number of N, including particle A) 

within the supporting domain Ω of the given particle A. Those influenced particles are the 

neighboring particles of particle A within the support domain kh. It is clearly shown that 

particle B has mass m
B
, density ρ

B
, position x

B
, and initial velocity v

B
 and other properties. 

Finally, the function of particle A is calculated by using the first-order partial 

differentiation of kernel functions to solve the Eq. 3.5. The first-order differentiation is only 

applied to smoothing kernel function as shown in Eq. 3.6. 
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where, ),( hxxW BAAB  represents the spatial derivative of the function ),( hxxW BAAB  . 

The smoothing kernel functions or smoothing functions plays a very important role in SPH as 

they determine the shape and dimension of the support domain of particles, effective support 

domain, consistency and accuracy of the approximation, and efficiency of the computation. 

The methods for function approximation are classified into three categories: 1) integral 

representation; 2) series representation, and; 3) differential representation. Generally, the 

kernel should satisfy the following requirements: 

1) Delta function property when h → 0, 
0

lim
h

 W
AB

(x
A
 - x

B
,h) = δ

AB
(x

A
 – x

B
) 

2) Normalized condition,   1),( BBAAB dxhxxW  

3) Compact condition, W
AB

 (x
A 

- x
B
,h) > 0 when x

B
 inside the support domain, otherwise 

W
AB 

(x
A 

- x
B
,h) = 0 

4) Monotonically decreasing function property with the distance r, r = |x
A
 - x

B
| 

5) Symmetric property, the smoothing function should be an even function  

6) Smoothing property, the smoothing function should be sufficiently smooth  

The first condition promises the convergence and this property makes sure that as the 

smoothing length tends to zero. The second condition ensures that the integral of smoothing 

function over the support domain to be unity for the normal arrangement of particles. The 

third condition allows the approximation to be generated only within a local representation. 

Besides, this property states that the smoothing function should be non-negative in the support 

domain, since negative value may cause a serious consequences in some unphysical 

parameters, such as negative density and energy. The fourth one arises from the theory of the 

physics, which means that the force exerted by one particle on the other decreases with the 

distance between them. A nearer particle should have a bigger influence on the particle 

consideration. The fifth property means that particles should have an equal effect if the given 

particles have same distance but in different positions. The last property aims to obtain better 

approximation accuracy by requiring that the kernel function must be differentiable at least in 

its first order (Liu and Liu, 2010). The continuity derivative of a kernel function will prevent 
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great fluctuation in the force felt by the particle providing the particle disorder is not too 

extreme. This is given by the method, that is the “smoothed” particle hydrodynamics.  

Basically, any function satisfying the above requirements can be employed as the kernel 

function of the SPH. Based on literatures, the following lists some of the smoothing function 

that the most commonly used by many researchers and practitioners.  

Figure 3-2 shows the bell-shaped function which is first utilized by Lucy (1977), the 

smoothing function in the first SPH paper. The smoothing function of bell-shaped is as 

follows. 
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R is the relative distance between particle A and particle B,  

 

h

xx

h

r
R

BA 
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where r is the distance between two particles. αD is a factor, namely 5/4h, 5/πh
2
, 105/16πh

3 
in 

one-, two- and three-dimensional space, respectively, so that the condition of unity can be 

satisfied for all the three dimensions. h is smoothing length defining the influence area of 

smoothing function W
AB

.  
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Figure 3-2: The smoothing function and its derivative W’ of Bell-shaped function 

 

Gingold and Monaghan (1977) in their original paper simulated the non-spherical stars 

using Gaussian smoothing function (Fig. 3-3) due to its stability and accuracy, especially for 

disordered particles. However, the function is not really compact and computationally more 

expensive since it never goes to zero theoretically, unless R approaches to infinity. It can take 

a longer distance for the kernel to approach zero and could produce a larger bandwidth in the 

discrete system matrix. 

 
2

),( R
DehRW   3.9 

where, αD is 1/π
1/2

h, 1/πh
2
, 1/π

3/2
h

3
,
 
respectively in one-, two- and three-dimensional space, for 

the unity requirement. 

 

      

Figure 3-3: The smoothing and its first W’ of Gaussian function 
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To get the narrower compact support and efficiency in computation of Gaussian kernel 

function, Monaghan and Lattanzio (1985)
 
proposed the smoothing function based on the cubic 

spline functions known as B-spline function. The graphic of B-spline function can be seen in 

Fig. 3-4, whereas the function is as follows, 
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where, αD is 1/h, 5/7πh
2
, 3/2πh

3
,
 
respectively in one-, two- and three-dimensional space, for 

the unity requirement. 

The B-spline function has been the most widely used smoothing function in the SPH 

literatures. However, the second derivative of the cubic spline is a piecewise linear function, 

and accordingly, the stability properties can be inferior to those of smoother kernels. After 

comparing to other kernel functions, finally this study uses B-spline function to get the stable 

condition of the calculation. 

 

      

Figure 3-4: The smoothing function and its first derivative W’ of B-(cubic) spline function 
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Morris (1994, 1996) proposed a higher order (quartic and quintic) splines (Fig. 3-5 and 

Fig. 3-6) that are more closely approximating the Gaussian and more stable. The equation of 

quartic spline can be obtained as below, 
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where, αD is 1/24h in one-dimensional space. 

 

      

Figure 3-5: The smoothing function and its first derivative W’ of quartic function 

 

Whereas the quintic spline equation is as follows, 
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where, αD is 120/h, 7/478πh
2
, 3/359πh

3 
in one-, two- and three-dimensional space, 

respectively. 
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Figure 3-6: The smoothing function and its first derivative W’ of quintic function 

 

 

3.4 Conservation equations and its approximation forms 

 

Response of structures due to the external force often behaves like fluids, the force 

propagates through internal elements or particles. Analytically, the equation of motion is the 

key descriptors of the dominated material behavior. The governing conservation equations of 

continuum mechanics for hydrodynamics with material strength are:     

  

a) The continuity equation 
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b) The momentum equation 
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c) The particle moving equation 
i

i v
dt
dx

  3.15 

 

The dependent variables of the above equations can be defined by the scalar density (ρ), the 

velocity components (vi), and the stress tensor (ζij), where the stress tensor can be 

decomposed into two symmetric tensors, the deviatoric stress tensor (ζ’ij) and the hydrostatic 

or spherical stress tensor as shown below; 
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As commonly used in engineering assumption, the stresses are positive in tension and 

negatively in compression. On the other hand, to set the displacement value, only three 

conservation equations are used in this study, which are, the continuity equation, momentum 

equation and particle moving particle. The detailed explanation of these three conservation 

equations will be described in the following sub-chapters. 

The independent variables are classified by the spatial coordinates (xi) and the time (t). 

The total time derivative operator (d/dt) is taken in the moving Lagrangian frame. The 

subscript i and j in the above equation are applied to symbolize the index notation. 

The particle approximation based on the Navier-Stokes equations is the main feature in 

SPH method. Considering the derivative form of smoothing function, it yields to: 
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3.4.1 Conservation of mass equation 

 

The density approximation is very important for deriving calculation in the SPH method. 

The density basically determines the particle distribution and the smoothing length evolution. 

For the density approximation, there are two methods of approximation forms for the density 

approximation. The first one is the summation density form, which directly applies the SPH 

approximations to the density itself, that is based on Eq. 3.5, 
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The Eq. 3-18 simply states that the density of a particle can be approximated by the weighted 

average of the densities of the particles in the support domain. By using this equation, only 

particle coordinates and masses are required to approximate the density, and the Eq. 3.13 is 

automatically satisfied. However, the disadvantage comes up due to the lack of particles, for 
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example, when it applies near boundaries and near the material interfaces (if different 

materials composed). The simply corrective approach is by using the Shepard interpolation 

technique proposed by Shepard (1968) to revise Eq. 3.17 as, 
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This permits reproducing exactly consistent functions. The other one is the continuity density, 

which approximates the density according to the continuity equation and time-dependent form. 

The equation is written as below; 
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For the continuity density approach, besides particle mass and positions, its velocity is also 

necessary in the calculation. This equation provides many advantages, that the use of the 

relative velocities in unsymmetrized form serves an approach to diminish particle 

inconsistency. Therefore, it can improve the approximation accuracy. When the calculation is 

applied to two or more different materials, and the ratio of their densities more than 2, the 

following formula is chosen according to Gray et al. (2001), 
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3.4.2 Conservation of momentum equation 

 

In solid mechanics, the constitutive model, in general, permits the stress to be a function 

of strain and strain rate. The strain rate tensor ij  can be derived from the velocity as, 
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In the SPH approximation, the Eq. 3.22 can be expressed based on particle approximation,  
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and the rotation rate tensor ijR  can be written as, 
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The derivation of particle approximation of momentum equation is similar to the 

continuity density approach, and usually incorporates some transformations. Applying the 

SPH particle approximation concepts to the gradient on the RHS of the momentum equation 

in Eq. 3.14 yields following equation 
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By considering the following identity, 
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The stress tensor ij  can be obtained based on the calculation of the elastic constitutive  

equation.  
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Substitute Eq. 3.26 into 3.25, yield to 
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Consider the following identity 
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and by applying the SPH particle approximation to the gradients, we can obtain, 
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3.29 

 

Monaghan (1992) stated that Eq. 3.29 had an advantage over Eq. 3.27 in that linear and 

angular momentums were conserved for its produced axisymmetric central force between pair 

particles. 
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3.5 Calculation scheme of SPH to the solid-state analysis  

 

The calculation scheme of this study has been shown in Fig. 3-6 and described as 

follows: 

 

1) The interactive particles in the influence area are defined prior updating the time 

increment. Where, only a fixed number of particles are within the support domain 

used in the particle approximations. 

2) Calculate the derivative of the kernel function using first-order partial differential 

form in Eq. 3.6. The B (cubic)-spline kernel function (Eq. 3.10) is used in this 

analysis.  

3) Compute the acceleration of particle A under the force thread using the momentum 

equation (Eq. 3.29). Then, update the acceleration, velocity and displacement of 

each particle. 

4) Compute the strain rate tensor and rotation rate tensor as in Eq. 3.23 and 3.24, 

respectively.  

5) Calculate the plasticity theory for yield criterion, the flow rule and the hardening 

rule of both materials, concrete/mortar and steel anchor bolt under the stress thread. 

Explanation of this calculation is described in the following section. 

6) The strain and stress calculations are updated due to the time increment and 

applying the constitutive equation, respectively. 
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Figure 3-7: Calculation flow of the SPH method algorithm 
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3.6 Constitutive model 

 

In general the mechanical behavior of material can be described as a mathematical 

description by weaving the relation between the stress and strain tensor in a material point of 

the body. This mathematical description is well-known as a constitutive model. The 

constitutive model plays an important role in the numerical analysis to simulate the material 

behavior. The constitutive models are developed and based on the elasticity and plasticity 

theory. The linear elasticity theory, generating the linear elastic model is derived from the 

generalized Hooke‟s law. The linear elastic model is widely applied to the elastic materials by 

assuming the material in following conditions: continuous, homogeneous, isotropic and linear 

elastic. When these conditions are achieved, the model can be constructed by elastic Young‟s 

modulus (E) and the Poisson‟s ratio (ν). Based on these parameters, more sophisticated 

models can be easily derived. In the numerical analysis, failure criteria are defined with stress 

invariants to simulate the strength of materials in various states, and they were developed by: 

1-parameter criterion and 2-parameter criterion. Even though other researcher have attempted 

to extend the application of plasticity model until 3- to 5 parameters, however, only 1- and 2- 

parameter criterion will be considered in this analysis to describe deformational 

characteristics of materials in the ultimate stress state. That is von Mises criterion (1-

parameter criterion) for steel anchor bolt and Drucker-Prager criterion (2-parameter criterion) 

for concrete. 

 

3.6.1 Elastic-plastic constitutive equation von Mises criteria 

 

The von Mises yield criterion is formulated as follows. Yielding or plastic condition is 

assumed will take place when the second invariant of deviatoric stress tensor, J2 reaches a 

certain value. This criterion is calculated based on distortional energy theory or shearing-

stress criteria, in which the yielding is occurred when distortional energy reaches a value that 

is equal to the distortional energy at yield in simple tension. The yield surfaces of VM in 
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principal stress coordinate demarcates a cylinder with radius y
3

2
 around the hydrostatic axis 

as shown in the Fig. 3-9. Moreover, the effect of hydrostatic pressure on compression domain 

is neglected in this criterion and this phenomenon is quite reasonable especially for metal 

plasticity. In this chapter, the VM yield criterion is employed to simulate the steel anchor bolt 

failure on anchor bolt structure under pull-out load.  

 

 

Figure 3-8: Graphic of VM cylinder with hardening criteria 

 

In the VM model, there are two limited conditions and they can be expressed by the function 

as follows, 

 

0)( 2
22  kJJfVM     elastic 3.30(a) 

0)( 2
22  kJJfVM     plastic 3.30(b) 

 

where k is the material constant and the second invariant of deviatoric stress, J2 can be derived 

as, 

 

ijijJ ''
2

1
2   3.31(a) 

hydrostatic axis

σ1

σ3

σ2

initial yield surface

subsequent yield 

surface
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and the deviatoric stress ζ’ij,  can be written as the inverse of Eq. 3.16. 

 

ijmmijij 
3

1
'   3.31(b) 

 

Details of steps of deriving the VM yield criteria based on incremental stress-strain are 

given below. By assuming that the total strain increment dεij as in Fig. 3-10 can be divided 

into increments of elastic strain, dε
e
ij and incremental of plastic strain, dε

p
ij components to 

yield 

 

p
ij

e
ijij ddd    3.32 

 

Whereas the incremental of plastic strain is computed using flow rule associated with the 

yield criterion f,  

 

ij
vm

p
ij

VM
f

d






  3.33 

 

 
Figure 3-9: Uniaxial stress-strain curve  

 

Figure 3-10 clearly shows that the equivalent plastic strains (dp
eqs) increase in accordance 

with the increasing of equivalent stress (dσeqs). Considering the theory of plastic work and 

dεp dεe

dζij

dεp
eqs

ζy

dζeqs

D
e
ijkl

σ



hardening
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work hardening, the equivalent plastic strain increment can be defined in terms of the plastic 

work per unit volume in the form  

 

p
eqseqs

p ddW   3.34 

 

Refer to Fig. 3-10, the incremental stress of VM is incorporated with hardening rule, 

where the hardening coefficient parameter is defined by the ratio of the increment of 

equivalent stress (dζeqs) to the increment of equivalent plastic strain (dε
p

eqs).  

 

p
eqs

eqs

d

d
H




'  3.35 

 

In general, the incremental stress can be expressed as 

 

e
kl

e
ijklij dDd    3.36 

 

Considering the incremental stress for the linear elastic path, substitute Eq. 3.32 and the 

incremental of elastic strain can be separated into 

 

 p
klkl

e
ijkl

e
kl

e
ijklij ddDdDd    3.37 

 

and fourth-tensor of elastic stiffness can be represented by Lamè constant as, 

 

)()( jkiljlikklij
e
ijklD m   3.38 

 

In plastic loading condition, both initial yield and subsequent stress states must satisfy 

the yield condition 

 

   0, p
eqsijVM kf   3.39 
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From Eq. 3.30(b), for yielding under a uniaxial state of stress incorporated with isotropic 

hardening, the function can be written as 

 

  0)(),( 2
22  p

eqs
p
eqsVM kJkJf   3.40 

 

In VM criterion, the yield surface expands uniformly with the expanding size is assigned by 

the value k
2
, which depends upon plastic strain history. The constant value, k

2
 can be 

expressed as in Eq. 3.41 by defining ζy = ζeqs when the yielding occurred. 

 

22

3

1
eqsk   3.41 

 

Substitute Eq. 3.41 into Eq. 3.40, the function becomes 

 

0
3

1
),( 2

22  eqs
p
eqsVM JJf   3.42 

 

then it is differentiated as, 
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 3.43 

 

By noting that ε
p

ij = ε
p

eqs when reaches the yield condition, Eq. 3.33 can be changed by  

 

eqs

VM
vm

p
eqs

f
d







  3.44 

 

Recall the yield condition in Eq. 3.39, the plastic flow is governed by the consistency 

condition, implying that  
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Then, Eq. 3.45 can be expressed by  
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3.46(a) 

 

From Eq. 3.46(a), insert the incremental of equivalent plastic strain in Eq. 3.44, the derivation 

in Eq. 3.43 and hardening in Eq. 3.35 into it, to obtain 
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Now, consider the stiffness matrix and substitute Eq. 3.32 into incremental of total strain, 

yield 
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and substitute Eq. 3.37 and 3.33 into 3.47, to get 
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Then, multiply Eq. 3.48 to the (∂fVM / ∂ζij) to form 
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Substitute 3.46(a) into Eq. 3.49, and also substitute Eq. 3.44 and get 
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Setting Eq. 3.50 and change the index notation appropriately in order to get the plastic 

multiplier form λvm 
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Then, recall the form of stress increment in Eq. 3.37. Substitute Eq. 3.33 and Eq. 3.51 into it, 

then we can get the stress increment as below 
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Rearrange Eq. 3.52 and substitute  3.46(b) into it and change the index notation to obtain  
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Substitute Eq. A.7 and A.19 [refer Appendix 1] into Eq. 3.53 to simplify the derivation 
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Then we can write  

 

2μζ’kl 2μζ’ij 

2μζ’ab 



 

Chapter III   SPH Method and Numerical Calculation Setting  

63 

 

kljlik

abab
eqs

klije
ijklij d

H

Dd 
m

mm






















''2'
9

4

'2'2

2
 3.55 

 

Finally, solve Eq. 3.55 by using the notation in Eq. A.11, thus, the incremental of stress for 

VM that used in this study can be simplified as below 
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and the matrix form of [D]
p

  can be formed by  
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3.6.2 Elastic-plastic constitutive equation Drucker Prager criteria 

 

Concrete is one of brittle materials having a high loading capacity in compression, and 

on the contrary in tension. It has not only differ in strength, but also in fracture behavior. The 

differences of mechanical properties and fracture behavior of concrete under compression and 

tension load induced the concrete may not appropriate to analyze by using one-parameter 

criteria, the von Mises yield criterion. In this analysis, two-parameter criteria (Drucker-Prager 

yield criterion) will be employed to investigate the fracture behavior of concrete. In a two-

parameter criteria the yielding of concrete under hydrostatic pressure in compression zone and 

fracture property in tension zone are combined, or in the other words the Drucker-Prager 

2

3
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p
 

Symmetry 
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criteria is basically the VM yield criterion which is extended by including the effect of 

hydrostatic pressure on the shearing resistance of the material. Figure 3-11 shows the graphic 

representation of linear DP yield surfaces in the principal stress space. The figure presents a 

phenomena of the pressure dependent flow due to the internal friction, which is a typical 

feature of brittle materials. 

 

 
 

Figure 3-10: Graphic of DP cylinder with hardening criteria 

 

In the DP model, there are two limited conditions and they can be expressed by the function 

as follows 

 

kIJIJfDP  1212 ),( < 0   elastic 3.58(a) 

kIJIJfDP  1212 ),( = 0    plastic  3.58(b) 

 

The stress point is on the yield surface if Eq. 3.58(b) is always satisfying, and hence the 

variation in  f  is zero. That is, 

 

0DPdf  3.59 (a) 

 

hydrostatic axis

σ1

σ3

σ2

initial yield surface

subsequent yield 

surface



 

Chapter III   SPH Method and Numerical Calculation Setting  

65 

 

The variation in  f  to be as follows 
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Considering the second invariant of deviatoric stress, J2 in Eq. 3.31(a) and I1 = ζijδij, the 

function in Eq. 3.59 can be derived to be; 
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Calculation of plastic strain incremental using flow rule associated with yield criterion fDP  

has been stated in Eq. 3.33. Then the result of substitution Eq. 3.60 into Eq. 3.33 is as follows, 
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 3.61 

    

where λdp is a plastic multiplier of the Drucker-Prager model. According to Eq. 3.32, the total 

strain increment dεij can be divided into elastic and plastic strain components, so the general 

incremental stress relationships can be written as, 

 

)(
p
klkl

e
ijklij ddDd  

 3.62 

 

and fourth-order tensor of elastic stiffness can be represented by Lamè constant as, 

 

)()( jkiljlikklij
e
ijklD m   3.63 

 

When material yielding under a uniaxial state of stress, ζy (ζy>0), f = 0 and thus k can be 

expressed as, 
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Figure 3-11:  Calculation of the parameter k using J2 – I1 plot 

 

 

yk 





 
3

1
 3.64 

 

Substitute Eq. 3.64 into Eq. 3.58, the effective stress ζeqs = ζy can be defined as, 
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Now calculate the effective plastic strain dεp by plastic work 
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Substitute Eq. 3.61 into Eq. 3.66 gives, 
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Expand Eq. 3.67 and use notation as Eq. A.21 in Appendix 1 to yield, 
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2

2

2
  or    peqsdp dIJ   12  3.69 

 

Substitute Eq. 3.65 (c) into Eq. 3.69 gives, 
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As a result,  
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 

3

1 dppd  3.71 

 

Let consider Eq. 3.61 to get the form of plastic multiplier λdp by squaring this equation, 
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 3.72 

  

By noting that 

 

3.,0.'  ijijiiijij   3.73 

 

and consider a notation in Eq. A.21 [Appendix 1]. Eq. 3.72 can be expanded and solved as, 

 

2J2 
ζii=I1 

√J2 
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
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Hence, 
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 3.75 

          

Substitute Eq. 3.75 into Eq. 3.71 in order to get dεp 
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In plastic loading condition, both initial yield and subsequent stress states must satisfy the 

yield condition 0))(,,( p
p

ijijDP kf  , where a yield criterion of DP is a function of stress ζij, 

plastic strain ε
p

ij and k (εp). Consequently, plastic flow is governed by the consistency 

condition, implying that, 
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
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 3.77 

 

Then, substitute Eq. 3.61, Eq. 3.62 and Eq. 3.76 into Eq. 3.77, we can get the consistency 

condition as; 

 

0 0 2J2 
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3.78 

Substitute Eq. 3.75 into Eq. 3.78 and change the index notation appropriately, it yields to 
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Setting Eq. 3.79 in order to get form of plastic multiplier
dp  

 


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 3.81 

 

For a general form of plastic multiplier 
dp , Eq. 3.81 can be used. Now let consider the 

hardening effect to the DP constitutive equation. Figure 3-13 shows the increasing of 

equivalent plastic strain also increases the equivalent stress. 

 

 

Figure 3-12:  Typical uniaxial stress-strain curve 
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dζeqs
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Then, the hardening modulus which is the ratio between the equivalent of stress to equivalent 

plastic strain can be expressed as, 

 

p

eqs
H








  3.82 

During plastic loading, the general form of the DP function can be written as, 
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The DP function in Eq. 3.83 can be derived to ζeqs, 
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and the derivation term of DP function to the incremental plastic strain dεp can be written as 

in Eq. 3.85 if we change the hardening modulus H from the Eq. 3.82, 
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Then, substitute Eq. 3.84 into Eq. 3.85, gives 

 

   H
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p
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 3
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
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 3.86 

 

In Eq. 3.58 and Eq. 3.83, the function does not depend on ε
p

ij. Therefore, when deriving the 

DP model, the term of ∂f / ∂εij can be eliminated in the general form of plastic multiplier as 

shown in Eq. 3.81. Let substituting Eq. 3.60, Eq. 3.63, and Eq. 3.86 into Eq. 3.81 to solve it 

and obtain 
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By using the notation in Eq. 3.73, we can solve Eq. 3.87. The detail of deriving the equation 

was elaborated in Eq. A.23 and Eq. A.24 [Appendix 1] and finally it was solved as, 
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Then, recall Eq. 3.62 and substitute Eq. 3.61 into it. 
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Substitute again the derivation form in Eq. 3.60 and Eq. 3.88 into Eq. 3.89, 
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Substitute D
e
ijkl in Eq. 3.63 for expanding [D]

p
 in Eq. 3.90 and modify the index notation, 
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Further derivation of Eq. 3.91 (a) can be found in Eq. A.27(a) to A.27(e) [Appendix 1]. By 

modifying the index notation, finally the [D]
p
 is, 
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Substitute [D]
p
 in Eq. 3.91(b) to Eq. 3.89 for expanding of dζij, the constitutive equation of 

DP can be expressed as, 
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and the plastic stiffness matrix form of [D]
p
 for DP model can be expressed as below 
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3.7 Combination of von Mises (VM) and Drucker-Prager (DP) failure criterion 

 

The elastic-plastic constitutive equation of pressure independent (VM) and pressure 

dependent (DP) criterion models have been explained in the previous sub-topic. Then, in this 

sub-topic the effect of mean stress on shear failure criteria is described. Figure 3-14 shows the 

combination of failure envelopes of pressure dependent (DP) criterion and pressure 

independent (VM) criterion model. 

 

 

Figure 3-13: Envelope for DP and VM models 

 

In above figure (Fig. 3-14), x-axis represents the first invariant of stress tensor (I1) as shown 

in Eq. 3.94. While, y-axis represents the second invariant of the deviatoric stress tensor (√J2). 
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where the two-parameter of this model, slope of failure line, α and intercept of the failure line, 

k can be defined as; 

 

 

 tc

tc











3      and   tk 





 
3

1
 3.95 

 

 

 

√J2 
 

𝛼 

𝑓𝐷𝑃  

 

𝑘 

 

𝑓𝑉𝑀  

 

Tensile cut-off 

- I1, comp 

𝜎𝑐

 3
 

 

𝜎𝑡

 3
 

  I1, tension 𝜎𝑡  
 

Red: DP envelope 

Blue: VM envelope 



Chapter III   SPH Method and Numerical Calculation Setting  

 

75 

 

3.8 Tensile softening – elastic degradation 

 

The tensile fracture of concrete is common prominent features on anchor structure 

failure mode occurred under pull-out load. As known that the tensile cracking degrades the 

stiffness of concrete material. Therefore, the local material orthotropy caused by tensile 

failure of concrete is deeply considered in this thesis. The plasticity and damage are directly 

defined after exceeding the tensile strength, ζt using the linear softening path. Figure 3-14 

shows the stiffness degradation of the concrete materials under tensile stress that can be 

identified by linear tension-softening path. In addition, the ultimate strain εcrc (crack, end 

point of softening path) is assumed. The adequate value of ultimate strain is chosen in order to 

prevent particle size dependency using the relation between fracture energy, Gf and particle 

size, d
ø
. The determination of ultimate strain can be obtained in the Appendix 2. 

 

 
 

Figure 3-14: Linear tensile strain-softening and fracture energy, Gf 

 

In order to express the cone failure of concrete, tension softening model is applied to 

our numerical analysis. A cracking of the material is assumed to arise in the direction normal 

to the principal tensile strain. And the stiffness decrease due to the cracking of the material. 

To prevent excessive local tensile failure, tensile softening model is adopted. The illustration 

of the condition can be seen in Fig. 3-15 that are: (a) Cone failure of concrete resulted by pull-

out load of anchor bolt; (b) stress-strain relationship commencing the tensile softening of 

concrete after the maximum tensile stress is exceeded; and (c) the decreasing of stiffness due 

ζt
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to the cracking damage with the direction of stress considered is perpendicular to the cracking 

path. 

 

 
 

 

 

 

(a) Cone failure (b) Tensile softening (c) Stiffness decreased due 

to damage 

Figure 3-15: Numerical method of cone failure 

 

The analysis flow of tensile softening and damage level is explained as follows.  

1) Principal value and the directions of stress and strain are calculated. In 

principal space, the principal strain and unit vector are i,pr and ei,pr 

respectively (Fig. 3-16 (a)). 

 

  
 

(a) Principal stress and strain space (b) Reducing tensile stress when ela is 

exceeded 

  

Figure 3-16: Principal stress and strain calculation 

 

2) If the principal strain exceeds the strain correspond to the elastic tensile 

strength (ela), the softening of principal stress is reduced by softening 

parameter ( i ) as shown in Eq. 3.96.  
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where, ty ,  is the tensile strength of concrete, 
ela  is the strain at the elastic 

tensile strength and 
u is the ultimate strain in tension which is defined by failure 

energy of concrete and particle length. The term which is multiplied by ty ,  in Eq. 

3.96 express reducing slope of tensile stress (see Fig. 3-16 (b)). 

3) Estimated the damage level in principal stress, then transformed into the global 

space. 

 

 

 
 

Figure 3-17: The chronology of calculation for damage parameter 

 

The damage level in principal space (Di,pr) can be estimated and modified in 

global space (Di) as shown in Fig. 3-17 and also computed by Eq. 3.97 and 3.98. 

The damage is only considered for the tensile strain, otherwise assumed zero. 
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4) Calculated the health level (Øi) in global space. The health level of material is 

demonstrated in Fig. 3-18. 

 

  
 

 

(a) Damage level in global space (b) Linear graph of damage-health level 

  

Figure 3-18: Damage-health level of material 

 

Finally, in order to calculate the damage parameter, the stiffness are corrected by the integrity 

tensor of damage level ( ij ). 

 

)1)(1( jiij DD   3.99 

 

Then, the damage formulations according to Eq. 3.99 are reproduced to the initial fourth-order 

isotropic elastic matrix to form the orthotropic constitutive equation.  

 

  kl
e
ijklijij D  .  3.100 

 

Finally, their damage stiffness matrix can be formed as shown in Eq. 3.101. 
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3.9 Boundary condition problem on SPH 

3.9.1 Boundary condition on the free surface 

 

Since the SPH method based on particle as discrete element and calculation of 

certain particle by summing over all the particles within the supporting domain of the given 

particle, and the summation of particles within the support domain is calculated for 

approximation of the field variable. Therefore, the number of particles which are arranged 

inner the support domain is important to ensure the accuracy of analysis.  The problem of 

particle deficiency is hampered near or on the boundary, which results from the integral that is 

truncated by the boundary. For these particles, only particles inside the boundary contribute 

to the summation of the particle interaction, and no contribution from outside since there 

are no particles beyond the boundary. It resulted one-side contribution and it does not give 

a good solution due to the velocity to be zero, see Fig. 3-19(a). 

Figure 3-19(b) shows a disadvantage of the SPH method about the arrangement of 

particle as above described. As shown in this figure, the particle A has sufficient numbers 

of particles within support domain to calculate SPH approximation. By contrast, particle B 

on the boundary cannot get enough number of particles due to the lack of particles at outer 

side of the surface. So, the SPH method requires a special treatment for free surface 

condition. In this study, the dummy particles are adopted to solve this problem. 

 

 

 

 

 
 

 

(a) Problem of particle deficiency on 

boundary (Liu and Liu, 2003) 

(b) The deficient condition of particle to be 

used for SPH approximation  

Figure 3-19: SPH kernel and particle approximation for interior and boundary particles. 

 

A

B
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3.9.2 Dummy particles and its effect to the numerical stability 

 

In this study, the dummy particles are used to treat a problem regarding the boundary 

conditions. The dummy particles are arranged around the surface of steel anchor bolt in one 

layer. They are placed symmetrically on the outside of the boundary. These dummy particles 

have the same material properties as the corresponding real particles. Calculation of velocity 

is one step in the SPH method, so it is assumed that there is a linear correlation of velocity (by 

interpolation) between a dummy particle and the closest real particle to calculate the velocity 

of dummy particles (Fig. 3-20). 

 

 

Figure 3-20: Dummy particle on the outside of the boundary 

 

To grasp the effect of dummy particles on the strain distributions, two kinds of pullout 

simulations of steel bolt with or without dummy particles are carried out as shown in Fig. 3-

21. The influence of dummy particles was investigated to evaluate the stress and strain of the 

anchor bolt, and analysis of result was focused on the stress and strain distribution. An 

investigation was conducted in the cross section of x = 0 (center line) to create a contour plot 

of the stress and strain distribution. Since the problem of particle deficiency exists on the 

boundary, the particles of bolt at around the surfaces do not satisfy in the unity condition. It is 

due to lack of particles used in particle approximation of SPH method. In contrary, particles at 

the center which have satisfied the unity condition do not need a dummy particle. Figure 3-21 

shows the three vertical lines of particle position in the bolt axis direction of structures with 

: Real particle : Dummy particle

Velocity

: Velocity distribution of the real particle

: Velocity distribution which is 

supplemented with dummy particles
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and without dummy particles. High depth embedment anchor model (h/d=10), with the 

diameter of the bolt 12 mm was used for the detailed analysis. Thus, the considered three line 

particles are (0, -6), (0, 0), (0, 6) in x-y coordinate, the strain distributions are compared by 

three kinds of observed points in Fig. 3-21 (points A, B and C). 

 

 

Figure 3-21: Initial position of dummy particles 

 

The example of the dummy particle effect to solve the particle deficiency problem is 

explained as follows. For the time increment = 4000 ms or the displacement = 0.2 mm, it 

resulted the stress and strain distribution (focused in z-direction only) for structures with and 

without dummy particles corresponding to the vertical distance from the upper surface of the 

concrete (see Fig. 3-22 and Fig. 3-23).  

 

  

(a) Without dummy particles (b) Dummy particles around bolt 

  

Figure 3-22: Strain in z-direction 
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(a) Without dummy particles (b) Dummy particles around bolt 

  

Figure 3-23: Stress in z-direction 

 

Based on Fig. 3-22 and Fig. 3-23, it can be seen that by placing a dummy particle 

around the surface of anchor bolt, there is an apparent improvement. In particular, the 

differences of stress and strain between the center and surface are very small. Thus, it is 

recognized that distributing the dummy particles around the surface of anchor bolt is very 

useful to solve mechanical problems under the free surface condition. Furthermore, 

distributing the dummy particles at around the peripheral surface of the anchor bolt is very 

useful to solve the particle deficiency at the boundary of the anchor bolt. Considering the 

effect of vertical position of particles to the stress and strain, it can be notified that the top 

three layers of particles indicate a drop in the stress and strain value. It is predicted that the 

constant velocity of loading was applied to this layer. Moreover, the anchor particles that 

close to the concrete surface also exhibit a reduced stress and strain. It is reasonable since the 

particle at the support domain fully contributed on calculating a target particle of anchor 

particle. 

 

 

3.10 Conclusion 

 

This chapter precisely explains about the numerical calculation setting and presents a 

solution of the particle deficiency problem around the boundary area in the SPH method. A 
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basic formulation and calculation procedure of SPH are expressed. Constitutive model 

consists of von Mises and Drucker-Prager are also described in this chapter. Dummy particles 

apply to solve the boundary problem on the anchor bolt since it is a slender rod and only a 

few particles constructed on its cross section, so it may result inaccurate result and difficult to 

justify the failure mode of the anchor bolt. The result shows that the distribution of the 

dummy particles around the boundary area is very useful to solve mechanical problems under 

the free surface condition. 
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CHAPTER IV 

 

 

NUMERICAL ANALYSIS WITH PERFECT BOND OF ANCHOR AND CONCRETE 

 

 

4.1 Introduction 

 

The embedded anchor bolt is used in many concrete structures such as bridge restrainer 

systems on the concrete pier. In general, failure mode of them under pull-out load are 

classified as the fracture of anchor bolt or the failure of concrete. Possible failure modes and 

design formulas of pull-out load are bolt, cone, and bond failures. The design strength is 

generally defined as the smallest load of these predicted failures. Actually, to prevent the 

brittle failure of concrete, embedment depth of the anchor bolt is decided more than certain 

times to the diameter of anchor in the design. However, it is difficult to presume the failure 

mode and in some cases embedment depth of anchor bolt is not sufficient due to the 

configuration of reinforcing bars in concrete. Therefore, to guarantee the safety of concrete 

structures with embedded anchor bolts is difficult and it is very important to construct an 

accurate evaluation method on the load bearing capacity of anchor bolt.  

Many analytical studies on the mechanical problem of concrete structures using FEM 

have been already carried out, such as Etse (1998), Ozbolt et al. (2006), Periskic et al. (2007) 

and Ozbolt et al. (2014). However, it is still difficult to simulate the discontinuous 

phenomenon such as crack growth problem. Thus, Smoothed Particle Hydrodynamics (SPH) 

is applied in this study since it can evaluate discontinuous displacement field and it is 

expected to simulate the local failure phenomena such as cone failure or bond failure between 

anchor bolt and concrete due to their meshfree concept. In this chapter, pull-out load 

simulations of anchor bolt by SPH are conducted. In particular, the perfect bond between steel 
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anchor and concrete is assumed and the effect of embedment depth of anchor bolt on their 

failure mode and ultimate pull-out strength are investigated. 

 

4.2 Numerical analysis of pull-out simulation models 

 

This has been generally known that the mortar/concrete is a brittle material. The tensile 

strength of mortar/concrete materials is much lower than the compression strength; hence, in 

many cases the failure of concrete structures is mainly caused by tensile failure. In this 

analysis, the elastic-plastic constitutive equation of pressure independent, the Von Mises 

criteria (VM) is assumed for steel anchor bolt, while to express the effect of confined pressure 

on the concrete strength, the Drucker-Prager (DP) yield criterion is applied on mortar/concrete 

material. 

 

4.2.1 Tensile failure mechanism of anchor bolt with various anchor depth 

4.2.1.1 Pull-out simulation models 

 

There are some parameters affecting the strength of anchor, one of the most giving a 

significant effect is the depth of anchor bolt in concrete. Therefore, in this chapter we try to 

apply an SPH method to analyze the strength of anchor bolt by considering variations of 

anchor bolt depths. To analyze the pull-out simulation model, the description of the model is 

as follows. 

 

(1) Mechanical model of concrete 

To express the effect of confined pressure on the concrete strength, the Drucker-Prager 

yield criterion was applied. In this analysis, it was assumed that the cone failure of concrete 

occurs by tensile failure in maximum principal stress direction. To prevent excessive local 

tensile failure, tensile softening model is adopted. The analysis flow of tensile softening is as 

follows. 

1) Principal value and the directions of stress and strain are calculated. 
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2) If principal strain exceeds the strain correspond to the tensile strength, the 

softening of principal stress is calculated using Eq. 4.1. 
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where, ty ,  is the tensile strength of concrete, 
ela  is the strain at tensile strength 

and 
u is the ultimate strain in tension which is defined by failure energy of 

concrete and particle length. The term which is multiplied by ty ,  in Eq. 4.1 

express reduced slope of tensile stress. 

3) Modified principal stresses are transformed into stress component in the global 

coordinate system. 

Herein, the reality is that there is no interaction through the crack, however SPH method 

has a potential to act each other across the crack because the particle within influence domain 

can affect due to their nonzero stresses. So, in this study, the threshold value of maximum 

principal strain 
max  is defined and all stress components of the particle cut-offed if the 

maximum principal strain reach to this threshold value. This numerical procedure has been 

explained in the sub Chapter 3.8. 

 

 (2) Mechanical model of anchor bolt 

Yield condition of anchor bolt is evaluated by conventional Von Mises yield criteria and 

isotropic strain hardening is assumed. As to the fracture of anchor bolt, cut-off model is also 

adopted. In particular to prevent the interaction through the fracture surface, equivalent plastic 

strain limit is defined by their threshold value. 

 

(3) Analytical model 

Figure 4-1 shows an analytical model in this study. The model comprises anchor bolt (a 

diameter size 12mm) with embedment depth h at the center of concrete block. The parameter 

k in this figure is the factor associated with the distance from the center to outside boundary 
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edge. The diameter size of each particle is 3 mm in this model. In addition, dummy particles 

such as Fig. 3-21 in the Chapter 3 are applied to the lateral sides of anchor bolt. Pull-out load 

is acted in the anchor bolt particles from the top layer to the third layer by 0.5 m/s constant 

velocity. As to the boundary condition of analytical models, vertical displacement restraints 

are applied in the four corners on upper surface shown in Fig. 4-1. Therefore the pull-out 

bearing force is calculated as the total reaction force on these four corners. Furthermore, to 

calculate accurate bearing force, dummy particles shown in Figure 4-2 are also applied. The 

adhesive condition between anchor bolt and concrete is assumed as a perfect bond condition 

in this analysis. Figure 4-3 shows a schematic view of the stress-strain curve of concrete and 

steel material and Table 4-1 shows applied material properties in this simulation.  

 

 

Figure 4-1: Analytical model 

 

 

 

Figure 4-2: Detail of particle arrangement as support 
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Figure 4-3: Stress-strain relation of concrete and steel 

 

Table 4-1: Material properties of each material 

 

 

4.2.1.2 Analysis result and discussion 

 

In this chapter pull-out analyses are conducted in order to investigate the failure mode 

and pull-out strength. Five patterns of embedment depth with ratio of embedment depth to 

diameter of anchor, h/d = 2,4,6,8,10 are used in this simulation. 

Figures 4-4~4-8 show the pull-out load and displacement relations and the distributions 

of a maximum principle strain of concrete, the equivalent plastic strain of anchor bolt are also 

shown in these figures. Furthermore, concrete particles in black color represent cut-off 

treatment due to the tensile failure of concrete. In this analysis, the behavior under constant 

speed pull-out load is calculated by time integration scheme, hence, oscillation of reaction 

force is shown. However, the smoothing procedure of the graphs is applied to find a reliable 

result.  
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In addition, Fig. 4-4 and Fig. 4-5 indicate that the bolt does not generate a plastic 

deformation, therefore, equivalent plastic strain of bolt is not observed. From these results, 

cone failure of concrete must develop from the bottom of bolt. When the cone failure is 

approximately generated, reaction force reaches to the maximum pull-out resistance, and 

followed by a gradual decline. This pull-out load decrease is due to the development of tensile 

failure of concrete. As shown in Fig. 4-4 and Fig. 4-5, it is presumed that cone failure is the 

most probable failure mode in shallow embedment depth cases. 

 

 

 
(a)  relation of reaction force and displacement 

 

 

 

 

  

(b) maximum principal strain distribution of  concrete 

 

Figure 4-4: Pull-out analysis result of anchor bolt (h / d = 2)  
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(a) relation of reaction force and displacement 

 

 

 

 

   

(b) maximum principal strain distribution of  concrete 

 

Figure 4-5: Pull-out analysis result of anchor bolt (h / d = 4) 

 

 

 

 

   
(a)  relation of reaction force and displacement 

 

Figure 4-6: Pull-out analysis result of anchor bolt (h / d = 6) 
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(b) equivalent plastic strain distribution of  bolt 

  

 

 

 

  

(c) maximum principal strain distribution of  concrete 

 

Figure 4-6: Pull-out analysis result of anchor bolt (h / d = 6) (continued) 

 

 

 

 
(a)  relation of reaction force and displacement 

 

Figure 4-7: Pull-out analysis result of anchor bolt (h / d = 8) 
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(b) equivalent plastic strain distribution of  bolt 

 

 

 

 

 

(c) maximum principal strain distribution of  concrete 

 

Figure 4-7: Pull-out analysis result of anchor bolt (h / d = 8) (continued) 

 

 

 

 
(a)  relation of reaction force and displacement 

 

Figure 4-8: Pull-out analysis result of anchor bolt (h / d = 10) 

 

 

 

 

 

[ m ]

130000

104000

78000

52000

26000

0

[ m ]

15000

12000

9000

6000

3000

0

-20

0

20

40

60

80

0 0.1 0.2 0.3 0.4 0.5

L
o

a
d

 [
k

N
]

Displacement [mm]

Displacement : 0.18 [mm]

(first peak load)

Displacement : 0.33 [mm]

(Maximum load)

Displacement : 0.38 [mm]

(80% of Maximum load)

Displacement : 0.45 [mm]

Displacement : 0.18 [mm]

(first peak load)

Displacement : 0.33 [mm]

(Maximum load)

Displacement : 0.37 [mm]

(Starting of tensile failure of 

anchor bolt )

Displacement : 0.45 [mm]



Chapter IV   Numerical Analysis with Perfect Bond of Anchor and Concrete 

 

96 

 

 

 

 

 

 

(b) equivalent plastic strain distribution of  bolt 

 

 

   

 

 

 

(c) maximum principal strain distribution of  concrete 

 

Figure 4-8: Pull-out analysis result of anchor bolt (h / d = 10) (continued) 
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also the middle of bolt is observed and these crack paths develop at different timing, loading 

and unloading are shown in this simulation. A sudden reduction of pull-out strength at around 

0.55 mm displacement is assumed due to the anchor bolt failure. Considerable maximum 

principal strain growth of concrete is not recognized during the bolt failure process. So, this 

case can be evaluated as the bolt failure mode. Finally, as shown in Figure 4-7 and 4-8, the 

bolt failure patterns which are similar as the result of h/d = 6 are recognized. Furthermore, the 

tendency that pull-out failure displacement becomes smaller when the embedment depth of 

bolt is deeper.  

The influence of embedment depth on the load-bearing capacity based on our results is 

represented in Fig. 4-9. Besides, in Fig. 4-10, the influence of embedment depth on the load-

bearing capacity by the design load equation is represented (JSCE, 2010 and Fujikake et al., 
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2003). In fact, bonding failure is not considered in this analysis because the perfect bonding 

between bolt and concrete is assumed in our analysis model. The Fig. 4-9 shows, for the 

shallow depth of anchor (with h/d less than 6), the pull-out strength increase significantly in 

accordance to the increasing of embedment depth. In this range, concrete failure or cone 

failure of concrete is gained. The significant increasing of reaction force is gained due to the 

reaction force is directly affected by the depth of anchor. In contrast, when the anchor depth is 

higher than 6, the graph shows that the reaction force is a relatively constant. It is due to the 

structure has been in anchor bolt failure condition. So, there is no a significant effect of the 

depth of anchor bolt to the pull-out strength. 

 

 

  
 

Figure 4-9: Influence of embedment depth into load-bearing ability based on the analysis 

 

  

Furthermore, by comparing between the analysis result and the standard design equation, 

a similar pattern between them is found. There is a rapid increasing of pull-out strength in 

accordance to increase in depth of anchor, then followed by a constant strength. And also the 

failure mode change from cone failure to bolt failure with an increasing of depth-diameter 

ratio of anchor until a certain depth. However, the analytical pull-out strength due to the cone 

failure is quite different from design load, it is supposed because several cracks grow at the 

same time in the numerical analysis. Whereas, the standard design formula assumes only one 

crack path considered. 
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Figure 4-10: Influence of embedment depth into load-bearing ability based on the design 

equation 

 
   

Based on all these figures (Fig. 4-4 ~ 4-10), the trend is that the failure mode can 

change from cone failure to bolt failure because of increase of embedment depth. In the next 

step, a quantitative evaluation of pull-out resistance will be constructed by using several 

parameters such as by considering the bonding character model between concrete and anchor 

bolt, and we seek to improve the accuracy of design load equation of embedded anchor bolt. 

 

4.3 Conclusion 
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results show that the SPH method adequately describes the large deformation of anchor 

structure failures. 

However, bonding failure is not considered in this analysis because the perfect bonding 

between bolt and concrete is assumed in our analysis model. By ignoring the effect of bond 

character, the numerical analysis may result a higher pull-out strength and a real failure 

behavior cannot be gained. According to the characteristics of concrete, steel anchor bolt and 

bond character between them, the bonding criterion is significantly important to evaluate the 

pull-out strength and failure mechanism of anchor bolt structure in concrete under pull-out 

load. 
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CHAPTER V 

 

 

NUMERICAL ANALYSIS WITH CONSIDERING THE BOND CHARACTER 

 

 

5.1 Introduction 

 

As discussed in Chapter IV, the perfect bonding between concrete and steel anchor bolt 

was assumed, including the contact surface between concrete and embedded anchors. By 

assuming the perfect bonding, analysis result shows that only two kinds of failure mode can 

be distinguished, that is cone failure and bolt failure. However, in real applications the 

combination of cone and bond failures may be found. This combination of failure mode was 

also confirmed by the experimental results explained in Chapter II. To improve the numerical 

model developed in Chapter IV, therefore, the bonding character model will be proposed and 

applied to all models examined in Chapter IV. These results, then, will be compared to the 

obtained results on Chapter IV and the comparison will be focused on the loading capacity 

and failure mode of anchor bolt structures under pull-out loads. Some parameters, such as the 

constitutive model of materials, size of anchor structures, material properties, and other 

parameters will be fully adopted from the models investigated in Chapter IV. 

 

5.2 Bonding character model  

 

Bonding character model is the constructed model to provide the possibility of bond 

failure in the interface area between the concrete and anchor bolt particles by conducting a 

number bonding particles in the interface area. Since the mechanical properties of concrete 

are significantly lower than the anchor bolt particle, hence it is assumed that the bonding 
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particles, the particles that may lose in bond or failure due to bond/shear, have the material 

properties equal to the concrete particles, such as Young‟s modulus (E), density, yield stress, 

etc. Let us consider Fig. 5-1 describing the schematic of bond elements and slip boundary area 

in global coordinates. 

 

 

 

                                    
 

Figure 5-1: Schematic of bond link element and slip boundary 

 

Bonding character is defined by 2 parameters: the bond stress and bond strain relationship, 

and bond failure expression of bonding particle.  

 

 

 

                                                              
 

Figure 5-2: Schematic of cross product vector of normal and slip vectors 

 

In global space the stress is arranged to normal stress (n), shear stress (s), and cross product of 

them (s x n) as shown in Fig. 5-2. However to evaluate the bond condition, the stress in global 

space should be translated to the local space and divided by 3 vector components: normal 

: bolt particles  

: bonding particles  

: concrete particles  

slip surface  

: bolt particles  

: bonding particles  

: concrete particles  

slip surface  

z 

x 
y 

n 

s 

s x n 



Chapter V   Numerical Analysis with Considering the Bond Character 

 

103 

 

vector of slip surface, slip direction vector of slip surface, and cross product vector as shown 

in Fig. 5-3. 

 

 

 

                                                                    
 

Figure 5-3: Schematic of cross product vector in local coordinate 

 

The numerical analysis results of every particle in the local coordinate should be plotted in 

bond stress-strain relationship and transformed into the global coordinate, see Fig. 5-4. 

 

 
(a) Calculation of bond 

stress-strain in local 

coordinate  

(b) Bond stress-strain 

relationship 

(c) Transformation in the 

global coordinate   

   

Figure 5-4: Transformation of bond stress and bond strain from local to global coordinate 

 

To evaluate the bond condition, the particle approximation is treated as a continuum. In the 

SPH method, the neighbor particles are bound to the target particle (the bonding particle), see 

Fig. 5-5. 
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Figure 5-5: Particle pair of bonding particle 

 

The modified bond stress-strain relationship as well as the condition bond of pair between 

bond particles and other particles around them can be illustrated, see Fig. 5-6(a). In order to 

define bond stress and bond strain, we transform the stress and strain tensor from global to 

local system (slip coordinate system) to verify the bond condition in slip surface direction. 

When the ultimate bond strain of particle is exceeded, which is in the green area in the Fig. 5-

6(b), the bond failure is occurring which is indicated by vanishing the line of the bond particle 

pair as shown in Fig. 5-6(c). The judgement of bond failure considering the contact state is 

determined by taking into account the friction (Coulomb friction) with the coefficient of 

friction (μ) = 0.6 (Sonoda et al., 1995). 

 

                                  
 

 

(a)  Bond pair of bond 

particles 

(b) Judgement of bond 

failure 

(c) Bond failure indication 

  

Figure 5-6: Procedures of bond failure judgement 

 

Pull-out loading transferred from anchor bolt to concrete generate a shear stress at the 

bonding shear zone. In this analysis, the fracture energy obtained by shear is assumed equal to 

the fracture energy of tension. Under the pull-out load on the anchor, the bonding shear may 

reach an ultimate stress and generate a bond failure. The failure of bond may occur when the 

ultimate bond strain is reached which is taken account of perfect elastic-plastic approach (see 
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Fig. 5-7(b)). On the other hand, the ultimate tensile strain is counted between the elastic zone 

having no crack and the completely cracked portion, wcrc. The fracture energy (Gf) of tensile 

fracture is projected as the area below the curve correspond to the maximum elastic tensile 

strain (σmax) towards the completely cracked portion (wcrc) (see Fig. 5-7(a)). Verification for 

safety of concrete under shear are considered in a fracture process zone. The fracture energy 

(Gf) of shear is equal to the energy required to form a unit area of completely sliding crack 

and a loose bond. That is the area under the curve, which is a perfect-plastic shear curve 

expressing the relationship between the transferred stress and sliding crack (see Fig. 5-7(b)). 

Since the fracture energy obtained by tensile and shear is assumed equal, as a result the limit 

shear strain in a particle (u,bond) can be obtained. 

 

 

 
 

(a) Tensile softening of mortar/concrete (b) Stress-strain relation of bond shear of mortar  

  

Figure 5-7: Stress-strain relation of bond shear and bonding shear softening of mortar 

   

For general application, refer to Ikki et al. (1996), the maximum shear strength of 

concrete is shown in Eq. 5.1. This equation was obtained by testing the embedded reinforce 

steel bar in concrete under static pull-out load. The maximum shear stress between concrete 

and reinforce steel bar (ηmax) may be calculated as, 
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where, f’c is the compressive strength of concrete (MPa). While the shear modulus (G) can 

be found by the following equation. 

 

)1(2 


E
G  5.2 

 

where, E is Young‟s elastic modulus of concrete (MPa), and υ is poisson‟s ratio of 

concrete. Based on elasticity principles, the elastic strain (e) is as follows, 

 

G
e

max
   5.3 

 

The total of the fracture energy (Gf) of shear is assumed equal to the tensile fracture (as 

described in Eq. A.31, Appendix 2), so the ultimate bond strain (u,bond) can be computed as, 

 

bonduf wG ,max
2

1
   (for tensile)    )( ,max ebondufG     (for shear) 5.4 

 

Finally, the bond ultimate strain of concrete is; 

 

e
f

bondu
d

G




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

max

,  5.5 

 

where, d
Ø
 is the diameter particle model of concrete (mm). The detail calculation of the 

bond ultimate strain of concrete for numerical model will be explained in Sub-chapter A-5, 

Appendix 2. 
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5.3 Comparison between the analysis model with and without considering bonding 

character 

5.3.1 Load carrying capacity 

 

The loading capacity and the failure mode of anchor bolt structures will be investigated 

in this chapter. Five various anchor depths will be observed as examined in Chapter IV. The 

variation of embedment depth with h/d = 2, 4, 6, 8, 10 are used in this simulation. 

Figure 5-8 shows the maximum loading capacity of various anchor bolt depths. The 

figures illustrate that for model without bond character, the loading capacity increases rapidly 

in accordance to increasing the ratio of anchor depth between 2 to 6 and followed by a small 

increase in the ratio 6 to 8, then finally a relatively constant load is notified between the ratio 

8 and 10. The rapid increase of loading capacity indicates that the failure mode may be the 

cone failure. On the other hand, the bolt failure may be gained when the constant loading 

capacity of structures is detected. These analyses have been explained in detail in Chapter IV. 

By applying the bond character, a significant change in the performance of loading capacity is 

reported. Almost all of the ratio of anchor depths have smaller loading capacity compared to 

the model without considering the bond character, except the ratio equal to 2. However, a 

relatively linear increasing of loading capacity is achieved by implementing bond character in 

accordance with the increasing of ratio depth to diameter of the anchor bolt. This linear 

increasing of loading capacity indicates that all models may have an identical failure mode. 

 

 

Figure 5-8: Maximum loading capacity of various anchor bolt depths 
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Effect of applied bond character for the model can be examined by the ratio of loading 

capacity with bond character to without bond character as shown in Fig. 5-9. In general the 

loading capacity with considering bond character should have a lower loading capacity than 

without considering the bond character, so that the ratio of loading capacity should be less 

than or equal to 1.0. It is due the bond character is applied to get a possibility bond failure on 

the model. However, a strange result is gained on the ratio of anchor depth equal to 2 which is 

the ratio of loading capacity higher than 1. This condition occur may due to the shock effect 

of reflection load, because of the applied load is the dynamic pull-out load and the size of 

model is a small model and very shallow anchor depth. For further analysis of the effect of 

bond character, the ratio of anchor depth equal to 2 will be ignored. 

 Figure 5-9 demonstrates that the ratio of loading capacity decreases in accordance with 

the increasing ratio of anchor depth until h/d equal to 8. It indicates that the bond character 

may have a significant effect on developing the combination of the failure mode, which may 

be constructed between bond and cone failure. Moreover, the depth of bond failure may 

increase in accordance with the increasing ratio of anchor depth. However, the ratio of 

loading capacity returns to a high value even nearly to 1,0 for the ratio of anchor depth equal 

to 10. It means that for the deeper anchor the bond character will not affect to the loading 

capacity and it also may not affect to the development of bolt failure.  

 

   

Figure 5-9: Ratio of loading capacity between with and without considering bond character 
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5.3.2 Failure mode  

 

Figures 5-10, 5-13, 5-16, 5-19, and 5-22 show the relation of load-displacement of 

various anchor bolt depths. In this analysis result, the behavior of anchor structures under low 

dynamic in constant velocity pull-out load is calculated by time integration scheme. Hence, 

oscillation of reaction force is recorded. However, a filter by implementing the average 

frequency is applied to make easier on identifying the trend of the graph. 

Figures 5-11, 5-12, 5-14, 5-15, 5-17, 5-18, 5-20, 5-21, 5-23, and 5-24 show the failure 

mode of various anchor bolt depths. These figures also display the distributions of a 

maximum principle strain of concrete, the equivalent plastic strain of anchor bolt, and the 

bond of pair between bond particles and other particles. These figures represent the 

investigation in two conditions, that is with and without bond character at the displacement of 

each maximum loading capacity. Figures in the red color boxes (□) represent the result with 

bond character, whereas the figures in the blue color boxes (□) represent the result without 

bond character. Each figure consists of three rows, the top row represents the distributions of 

a maximum principle strain of concrete, the middle row corresponds to the equivalent plastic 

strain of anchor bolt, and the bottom row represents the bond of pair between bond particles 

and bolt particles. The cut-off procedures for concrete material is still adopted from the 

models in Chapter IV, which is concrete particles in black color represent cut-off treatment 

due to the tensile failure of concrete. The white color of anchor bolt indicates the particle of 

bolt already in a failure condition. And vanishing of the line in bond pair particles indicates 

the bond failure occur.  

Considering the Fig. 5-10 ~ 5-15, it can be seen the results of the shallow depth of 

anchor that are h/d = 2 and 4. Both of these models have a similar trend which is in the 

relation load-displacement, a linearly decreasing on the loading capacity is found in the model 

without bond character. However, a difference performance is shown after applying the bond 

character in the model. In the model h/d=2, the displacement of the maximum loading 

capacity is relatively constant around 0.21 mm (see Fig. 5-10 and 5-11). On the other hand, a 

significant decreasing on the displacement of the maximum loading capacity in the model 
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h/d=4, that is 0.305 mm for model without bond character to be 0.16 mm after applying bond 

character (see Fig. 5-13 and 5-14). 

Analysis of the failure mode shows an obvious result that by applying the bond 

character, a bond failure is gained in the both models. In addition, a smaller displacement on 

the bond failure is found in the deeper of anchor (see Fig. 5-12 and 5-15). Finally, by 

combining the result between with and without bond character we can predict the real failure 

of anchors. A fully cone failure or bond failure may be found in the model h/d=2, on the other 

hand, based on bond character effect a combination failure between the bond and cone failure 

may be gained on the model h/d=4. 

 

 

 

Figure 5-10: Load-displacement of Model h/d = 2 
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(a) Displacement: 0.21 mm (maximum load of 

with bond character) 

(b) Displacement: 0.22 mm (maximum 

load of without bond character) 

  

Figure 5-11: Displacement on the maximum load of Model h/d = 2 

 

 

   

Figure 5-12: Failure mode analysis considering bond character for Model h/d = 2 
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Figure 5-13: Load-displacement of Model h/d = 4 

 

 

 

(a) Displacement: 0.16 mm (maximum load of 

with bond character) 

(b) Displacement: 0.305 mm (maximum 

load of without bond character) 

  

Figure 5-14: Displacement on the maximum load of Model h/d = 4 
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Figure 5-15: Failure mode analysis considering bond character for Model h/d = 4 

 

Figures 5-16 ~ 5-18 show the results of the anchor depth h/d= 6. A fluctuated loading 

capacity is found in the model without considering the bond character. While the premature 
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character to the model. The displacement of the maximum load reduces from 0.37 mm to be 

0.17 mm for without and with bond character respectively (see Fig. 5-16 and 5-17). A 

significant declining on the maximum loading capacity is also found from 54.94 kN to be 

40.88 kN after applying the bond character.  

An evident result is presented with an analysis of the failure mode. For the model 

without bond character, even though the final failure mode is bolt failure, however the 

maximum loading capacity is gained before developing the bolt failure (see Fig. 5-16 and Fig. 

5-17). In contrast, a bond failure is obtained by applying the bond character in the model (see 

Fig. 5-18). Finally, by combining the result between with and without bond character we can 

estimate the real failure of anchors. Considering the maximum load of model without bond 

character, which is found in smaller displacement than of bolt failure displacement, and also 

bond character effect, a combination failure between the bond and cone failure may be gained 

on the model h/d=6. 
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Figure 5-16: Load-displacement of Model h/d = 6 

 

 

 

(a) Displacement: 0.17 mm (maximum load of 

with bond character) 

(b) Displacement: 0.37 mm (maximum 

load of without bond character) 

  

Figure 5-17: Displacement on the maximum load of Model h/d = 6 
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Figure 5-18: Failure mode analysis considering bond character for Model h/d = 6 

 

Considering the Fig. 5-19 ~ 5-24, it can be seen that the results of the various depths of 

anchor that are h/d = 8 and 10. Both of these models have a similar trend which is in the 

relation load-displacement, a suddenly decreasing on the loading capacity is found in the both 

models with and without bond character. A lower loading capacity and displacement on this 

loading is exhibited after applying the bond character in the model. In the model h/d=8, there 

is a significant decreasing in displacement of the maximum loading capacity from 0.33 mm to 

0.175 mm for without and with bond character respectively (see Fig. 5-19 and 5-20). On the 

other hand, even though having a similar maximum load, however the differences of the 

displacement are significantly high in the model h/d=10, that is 0.35 mm for model without 

bond character to be 0.20 mm for applying bond character (see Fig. 5-22 and 5-23). 

By applying the bond character, an undoubted result is exhibited on analysis of the 

failure mode, that is gained the bond failure in the both models (see Fig. 5-21 and 5-24). 

Finally, by combining the result between with and without bond character the real failure of 

anchors can be predicted. A combination failure between the bond and cone failure may be 

gained on the model h/d=8. However, a fully bolt failure or combination between the bond 

and cone failure may be found on the model h/d=10, due to the bond character effect is nearly 
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1.0, the load-displacement pattern is almost coincident between with and without bond 

character, and the bolt particles show the changing color toward bolt failure (see Fig. 5-22 and 

5-24). 

 

 

Figure 5-19: Load-displacement of Model h/d = 8 

 

 

 

(a) Displacement: 0.175 mm (maximum load of 

with bond character) 

(b) Displacement: 0.33 mm (maximum 

load of without bond character) 

  

Figure 5-20: Displacement on the maximum load of Model h/d = 8 
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Figure 5-21: Failure mode analysis considering bond character for Model h/d = 8 

 

 

 

Figure 5-22: Load-displacement of Model h/d = 10 
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(a) Displacement: 0.20 mm (maximum load of 

with bond character) 

(b) Displacement: 0.35 mm (maximum 

load of without bond character) 

  

Figure 5-23: Displacement on the maximum load of Model h/d = 10 

 

 

  

Figure 5-24: Failure mode analysis considering bond character for Model h/d = 10 
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Figures 5-10 ~ 5-21 (for h/d <= 8) indicate that the bolt particles does not generate a 

plastic deformation, therefore, equivalent plastic strain of the bolt is not observed. From these 

results, cone failure or bond failure of concrete may develop and need to further investigate. 

In contrary, since the bolt particles generate a plastic deformation in the model h/d=10, 

therefore the bolt failure may occur in this model and need further investigation (see Fig 5-23 

and 5-24). Considering all these figures, only Fig. 5-11 and 5-12 (for h/d= 2) that represent 

the cut-off procedure which is indicated by the black color on concrete particles. However, 

this cut-off condition does not reach the surface of concrete. It means that the cone failure 

may not occur in model h/d=2. Let us consider the bond pair particles on each figure. The 

bond failure is recognized in all models with h/d = 2 ~ 10 which is shown by Fig. 5-10 ~ 5-24, 

even though the Fig. 5-24 indicates the development of bolt failure.  

 

   

 

Figure 5-25: Maximum loading capacity considering to various of the anchor depths 

 

Figure 5-25 shows the summary of the maximum load capacity considering to various 

of the anchor depths. The graph depicts the numerical analysis without considering bond 
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numerical analysis with bond character and design standard code. In this term, only the 

Japanese design standard code is considered (JSCE, 2010; Fujikake et al., 2003). Regarding 
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in the numerical analysis without considering the bond character, that is a change from cone 

failure to be bolt failure when the depth of anchor more than 6. A similar tendency is also 

notified in the design standard results, that is a change from cone failure to be bond failure. 

 

 

5.4 Conclusion 

 

The bond character of numerical model was proposed in Chapter V, since a combination 

failure between bond failure and cone failure is generally found in anchor structures. In order 

to solve the phenomenon, a modified constitutive model was constructed and applied to 

simulate the effects of the bonding zone on developing cracks around the contact surface 

between anchor bolt and concrete. All models analyzed in Chapter IV were re-investigated by 

applying the bond character. Then, the numerical analysis results between without and with 

considering bond character were compared and reviewed. The result shows that by applying 

the bond character model, the loading capacity of all anchor bolt structure models reduced. 

Furthermore, the effect of applying bond character to the failure mode, the bond failure mode 

was gained on all models, and only bolt particles of h/d=10 sample generated a plastic 

deformation. By integrating the failure mode between with and without bond character, a 

combination failure between the bond and cone failure might be gained on all models, even a 

fully bolt failure also might be occur in the model h/d=10. By comparing among numerical 

model with bond character, without bond character, and design standard, the failure mode of 

some models had been changed. The model with h/d <= 4 calculated by design standard and 

with h/d <= 6 of numerical analysis without considering bond character showed cone failure, 

however the failure of this model was changed to be bond failure after applying bond 

character model. The model with h/d > 6 and without considering bond character exhibited 

the bolt failure mode, whereas the design standard with h/d > 4 showed the bond failure. On 

the other hand, the bond failure was gained for the numerical analysis by considering the bond 

character in all models.  
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CHAPTER VI 

 

 

NUMERICAL-EXPERIMENTAL COMPARISON 

 

 

6.1 Introduction 

 

In order to verify the numerical analysis results, we need to compare the numerical 

analysis and the experimental results. The detail procedures and results of the experimental 

program have been explained in Chapter II. Thus, this chapter more focus on numerical 

analyzing on the earlier chapter, then comparing and verifying the analysis results to the 

experimental result at the end of the chapter. 

The simulation of failure mechanism of anchor bolt under pull-out is more complex 

than generally a tensile failure of beam because it is affected by properties of concrete and 

bond performance. According to the design standards (ACI 318, 2011; and JSCE, 2010), the 

bond character between concrete and steel anchor bolt is still not considered. Commonly the 

bond failure is considered only as a standalone failure without combining to the cone failure. 

Consequently, the pull-out strength of anchor bolt may be overestimated and it may cause an 

early failure as well as reducing the safety of structures. Even though many researchers have 

studied the anchor bolt structures by either numerical analysis or experimental test, however, 

they did not clearly evaluate the bond character phenomena. Whereas, the combination failure 

between bond and cone failure commonly occurs in the real application of anchor bolt 

structures. 

The aim of this chapter is to simulate the tensile failure under pull-out load on anchor 

bolt structures with and without considering the bond character. By considering the bond 

character between concrete material and anchor bolt in the numerical analysis, then verifying 
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the analysis result to the experimental results, a real-like failure mechanism could be found 

and finally a reliable numerical analysis can be gained. This chapter also presents the 

derivation of the proposed constitutive model of shear bond failure to demonstrate the shear 

stress of concrete material at the interface zone. It is assumed that all stress components have 

an elastic shear limit, and the failure of bond may occur when the ultimate bond strain is 

reached which is taken account of perfect elastic-plastic approach, and concrete completely 

lose its shear strength. In this analysis, the fracture energy obtained by shear is assumed equal 

to the fracture energy of tension. The issue in the numerical analysis of shear bond failure and 

its solutions will be discussed later. The effectiveness of considered bond character in the 

proposed numerical scheme will be studied by simulating numerically the experimental model. 

There are three experimental results that will be compared to the numerical analysis results, 

that is loading capacity, displacement, and failure mode. 

 

6.2 Bonding mechanism 

 

In this research, we investigate the numerical model of the anchor bolt structure using 

two assumptions, namely perfect bonding and bond character considered between mortar 

concrete and anchor bolts. The correlation between mortar concrete and steel anchor surface 

on the perfect bonding model is assumed that without a slip or shear failure at the interface 

area between anchor and mortar concrete. The possibility failure is taken into account by 

considering the ultimate strain of steel or concrete. Hence, the probability failure of the 

anchor bolt structure is cone failure or anchor bolt failure only. 

Bonding shear between concrete and steel anchor is unavoidable phenomena in the 

anchor structure mainly due to pull-out load on the anchor. The transfer of load at the steel 

anchor/mortar bond interfaces is shown in Fig. 6-1. The bond shear between concrete and 

anchor is directly applied on the cast-in-place anchor. The pull-out load is transferred from the 

threaded rod into the mortar concrete. Some researchers have studied on bonding behavior of 

anchor. Cook et al. (1998) compared the worldwide database of behavioral models of single 
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anchors. The result indicates that their failure load might be approached by a uniform bond 

stress model. The uniform bond stress model (Nη) for cast-in-place anchor is: 

 

efahdN    6.1 

 

The uniform bond stress is valid for 4 ≤ hef/da ≤ 20 and da ≤ 50 mm with the bond area 

πdhef ≤ 58,000 mm
2
. 

Investigation of Eligehausen et al. (2006), however, indicated that the actual bond stress 

distributing along the embedment length at peak load is nonlinear with higher bond stresses at 

the embedded end of the anchor and the lower bond stresses in the concrete surface. The shear 

stress distribution of bonding area is calculated as below. 
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Figure 6-1: Mechanism of load transfer of anchor bolt 

 

The above equation (Eq. 6.2) was based on bonded anchor research and taken 

account of the effective depth of anchor bolt (hef) and diameter of anchor (da). However, 

for general application, refer to Ikki et al. (1996) the maximum shear strength of mortar 

concrete is shown in Eq. 5.1 in Chapter V. Then the limit shear strain in a particle (u,bond) 
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based on the fracture energy has been explained in Eq. 5.1 to Eq. 5.5 in Chapter V. The 

example of calculating the tensile ultimate strain and the bond ultimate strain of mortar for the 

experimental model is explained in Appendix 2, in Sub-chapter A-4 and Sub-chapter A-6 

respectively.   

 

6.3 Numerical analysis of experimental model 

 

The model as same size and properties as the experimental sample performed in this 

study can be seen in Fig. 6-2. A model series consisted of a concrete block in which a straight 

threaded anchor bolt with a diameter size 16 mm bar were installed with an embedment depth 

3.5 times to the diameter anchor bolt size, that is 56 mm. The compressive and tensile 

strength of mortar used in this model is 48.18 MPa and 3.31 MPa, respectively which 

corresponds to the experimental test result. The constant velocity rate of pull-out load applied 

to the top of anchor bolt particles is 0.05 m/s. The diameter size of each particle (mortar 

concrete and anchor bolt) is 4 mm in this model. Regarding the boundary condition of 

analytical models, the vertical displacement restraint is applied on the four sides of the top 

surface as displayed in Fig. 6-2. The pull-out loading capacity is calculated as the total load 

on these four sides. In addition, to calculate an accurate loading capacity, a similar method of 

dummy particles which is shown in Figure 3-21 (in Chapter III) are also applied to the lateral 

sides of the anchor bolt. The bonding condition between anchor bolt and concrete is assumed 

as both the perfect bond condition and the bond character considered. Figure 6-3 shows a 

schematic of the stress-strain curve of concrete and steel material based on experimental 

results as explained in Chapter II.  
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Figure 6-2: Model of the anchor bolt structure 

 

 

 

 

Figure 6-3: Stress-strain relation of mortar and steel anchor. 

 

 

6.3.1 Numerical analysis of experimental model with and without considering the bond 

character 
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The loading capacity and displacement analyzed is for both perfect bonding model 

(without bond character) and bond character considered model (with bond character). Figure 

6-4 depicts a correlation between loading capacity and displacement of anchor bolt with and 

without bond character model. It shows that the loading capacity of model without bond 
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character is slightly higher than model with bond character and even they are almost same, 

they are about 34.34 kN to 33.61 kN respectively. Furthermore, this condition is also found 

on the displacement of the maximum loading capacity, an insignificant longer displacement is 

obtained on the model without bond character which is 0.1775 mm. It is longer than the 

model with bond character which is only 0.156 mm. Even though having lower maximum 

strength and also shorter its displacement, however, it can be noted that the model with bond 

character has a slightly higher on its stiffness. 

 

     

Figure 6-4: Load-displacement of the experimental model anchor bolt under pull-out load 

 

 

6.3.1.2 Failure mode of anchor bolt structure 

 

Figure 6.5 interprets the distributions of a maximum principle strain of concrete, the 
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bond character, whereas the figures in the blue color boxes (□) represent the result without 

bond character. The plot analysis model was conducted by the model with the size of model 

structure and material properties equivalent to the experimental test. In this figure, we 
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therefore, equivalent plastic strain of the bolt is not further observed. Moreover, the bond 

condition between bond pair, the figures (Fig. 6-5 (X-3)) demonstrate that no bond failure 

occur on the maximum loading capacity. Eventhough the cut-off procedure does not show in 

the figures (Fig. 6-5 (X-1)), however it can be presumed that cone failure is the most probable 

failure mode in both with and without bond character model. 

 

  

(a) Displacement : 0.156 mm (b) Displacement : 0.1775 mm 

  

Figure 6-5: Displacement on the maximum load of the experimental model 

 

Note :  
Figure (a-) and (c-)  : with bond character model    

Figure (b-) and (d-)  : without bond character model 

Figure (a-) and (b-)  : at the maximum displacement of with bond character model (0.156 mm) 

Figure (c-) and (d-)  : at the maximum displacement of without bond character model (0.1775mm) 

Figure (-1)  : maximum principal strain distribution of concrete 

Figure (-2)  : equivalent plastic strain distribution of anchor bolt 

Figure (-3)  : bond of particle pair between concrete particle and anchor bolt particle 

 

Analysis of the failure mode of the sample without bond character can be seen in Fig. 6-

6. The bottom figures of Fig. 6-6 obviously reveal that the anchor bolt particle is still in 

elastic condition since the color of these particles remain in purple color as the lowest 

indicator of strain. And, when the top figures of Fig. 6-6 are deeply considered, the fracture of 

concrete propagate from the bottom of anchor bolt and develop a cone form of fracture. Then 
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finally it reached nearly the concrete surface at the time of maximum strength. When the cone 

failure is approximately generated, loading capacity reaches to the maximum pull-out 

resistance, and followed by a gradual decline. The decreasing of pull-out load is due to the 

development of tensile failure of concrete particles. It can be concluded that only the cone 

failure of concrete occurs in the model without considering the bond character. However, the 

complete separation of the concrete blocks have not been finally expressed. In the figures, 

concrete particles in black color represent cut-off treatment due to the tensile failure of 

concrete. It is presumed that cone failure is the most probable failure mode. 

 

    

Figure 6-6: Failure mode analysis without considering bond character for the experimental 

model 

 

By applying the bond character between anchor bolt and concrete to the model, a 

similar failure mode result is gained. Analysis of the failure mode of the sample with bond 
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deformation, therefore, equivalent plastic strain of the bolt will not be further observed. A 
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it can be clearly notified that the loading capacity gradually decrease after the maximum load, 

it indicates that the cone failure occurs by this model.  

 

  

Figure 6-7: Failure mode analysis considering bond character for the experimental model 
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cone failure mode is obtained which is similar to the without bond character model. 

Comparison of experimental model between with and without considering the bond 

character, the failure mode shows an obvious result that by applying the bond character a 

similar failure mode, that is cone failure, is gained. Based on bond character effect, a 

combination failure between the bond and cone failure may be gained on the experimental 

Displacement : 0.228 [mm]

(80% of Maximum load)
Displacement : 0.298 [mm]

(Starting bond failure)

[ m ]

130000

104000

78000

52000

26000

0

Displacement : 0.156 [mm]

(Maximum load)

Displacement : 0.45 [mm]

(  )

[ m ]

152000

121000

912000

608000

304000

0

[ m ]

9500

7600

5700

3800

1900

0

[ m ]

152000

121000

91200

60800

30400

0



Chapter VI   Numerical-Experimental Comparison 

 

132 

 

model when the depth anchor is varied or the numerical model is modified, so it will 

correspond to the laboratory experimental result. 

 

6.3.2 Comparison between experimental results and numerical model 

 

A high pull-out loading capacity is one of the most expected on the anchor bolt structure. 

However, due to a complexity of factors affecting the capacity, some approached methods 

still need to be evaluated to find a reliable design, either by experimental program or 

numerical method. Here is a comparison of pull-out loading capacity between the 

experimental results, numerical model, and design standard. The result of each approached 

method has been discussed in the previous chapter. 

The typical load-displacement graphs for all experiment samples and numerical results 

indicate that the maximum loading of the numerical analysis, both with and without 

considering bond character are higher than experimental results and design standard, except 

the JSCE standard which is having the highest loading capacity. Even though their loading 

capacities are higher than others, that is around 30 to 35 kN for experimental model with and 

without bond character respectively, however the differences of displacement show a 

significant gap which is only 0.15 to 0.18 mm for the numerical analysis and in contrary 

around 2 to 2.5 mm for the experimental results. This disparity probably due to the relaxation 

of the top support plate of the experimental sample, since it is difficult to make the sample in 

a flat condition during experimental test, consequently we used the wedges and put the wedge 

under the top support plate to solve the problem. As a result, the displacement of the 

experimental result cannot be used and directly compared to the numerical analysis result. 

The comparison of maximum loading capacity between the design standard, numerical 

analysis and experimental results is plotted in Fig. 6-8. Three well known design standard 

method will be considered as a comparison, namely CCM method (Eligehausen et al., 2006), 

CCD method (Fuch et al., 1995; ACI 318, 2011) and Japanese method (JSCE, 2010; Fujikake 

et al., 2003). The graph clearly shows that the experiment results have the lowest strength 

than others. The numerical analysis shows that the closest result in the design standard is the 
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JSCE method. On the other hand, the JSCE method has the highest strength than other design 

standard. The loading capacity of the experimental result is around a half of JSCE design 

standard and the numerical analysis. The CCM and CCD design standard is the closest to the 

experimental result. 

 

  

Figure 6-8: The comparison of pull-out loading capacity between experimental, numerical 

and design standard 

 

Considering deeply to the numerical analysis results in Fig. 6-8, it is clearly shown that 

by applying the bond character the pull-out loading capacity reduces 2% from 34.34 kN to 

33.61 kN. And if we compare between the numerical analysis result with bond character and 

the experimental result, the loading capacity of numerical result is higher around a half (61%) 

than the experimental result, that is 33.61 kN and 20.87 kN respectively. In this research, the 

loading capacity of JSCE and CCD method is 75% and 34% higher than the experimental 

result that is 36.60 kN, 28.03 kN and 20.87 kN respectively. Based on this comparison, it can 

be concluded that when the numerical analysis will be applied to the design and analysis of 

structure, a certain correction/safety factor should be used to get a reliable numerical method 

in analyzing the anchor bolt structures and to get a safe structure. The numerical analysis also 

needs a correction factor when it is compared to the CCD method which is adopted by ACI 

318 and might be adopted also by other design standard, to get a reliable strength.  
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6.4 Conclusion 

 

This chapter presents a comparison between the numerical results, design standard, and 

experimental results. Constitutive model applied in the numerical model consisted of the von 

Mises for steel anchor bolt and Drucker Prager for concrete. The size and material properties 

of model were fully adopted from the experimental tests in Chapter II. The numerical model, 

in this chapter, was divided by the model with and without considering the bond character. In 

addition, the perfect elastic-plastic for bonding characteristic was applied with the calculation 

of the limit ultimate strain of shear by considering the fracture energy which is equal to the 

fracture energy of tensile softening. By applying the bond character, the change condition was 

found in the bonding properties of the particle pair in the concrete interface area. The 

vanishing process of bond on the particle pair in the concrete interface area (the bond between 

bonding particles and other particles) were found. However, the starting bond failure arose 

after the maximum loading capacity, and until the end of considered analysis only a few bond 

pairs vanished. Moreover, the concrete particle in the cracking path reached an ultimate strain 

and cut-off procedure was applied (it was confirmed by black color in concrete particles). So, 

this case can be recognized as the cone failure mode. This failure mode was evidenced by the 

figures that the bond failure does not reach the top surface of concrete by the end of 

considered analysis. 

The numerical analysis results were compared to the experimental results and the design 

standard equation to verify the accuracy of results. Comparison of the numerical analysis 

results between with and without considering bond character shown that by applying the bond 

character the pull-out loading capacity reduced 2%. On the other hand, the numerical analysis 

result with bond character showed higher around a half (61%) of loading capacity than the 

experimental result. In general, it can be concluded that the certain correction factor should be 

used when the numerical analysis will be applied to the design and analysis of anchor bolt 

structures. Moreover, the numerical analysis also needs a correction factor when it is 

compared to the CCD method, which is adopted by ACI 318 and might be adopted also by 

other design standard, to get a reliable strength. Finally, the proposed numerical method may 
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reliable to use for design and analysis the anchor bolt structures, and the correction factor 

should be used to get the safe structures. 
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CHAPTER VII 

 

 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 

 

 

7.1 Conclusions 

 

A certain conclusion of each chapter has been described precisely in the appropriate 

chapter. However, to give an overview of all conclusions, the following paragraphs will 

briefly illustrate the phase of this study as well as the individual achievement for every 

chapter.  

In Chapter I, the main objective and scope of the study were declared. A literature 

review of the design formulas to predict the ultimate pull-out capacity of anchors was 

provided. After that, the assumed problems in the design and analysis of anchor bolt 

structures in the design standards were presented. Then, following by a concise review of 

mesh-free methods and explanations of the essence of SPH formulations. 

The experimental part of this study was described in Chapters II. The shallow depth of 

anchors and the normal strength of mortar was conducted to investigate the failure 

mechanisms of the anchors. A series of anchor mortar blocks were cast and static load was 

applied to all samples. The failure mode, loading capacity, and concrete cone stress of the 

anchor bolt structure were presented and discussed. Finally, a comparison between the 

experimental results and design standard has been presented. The experimental results show 

that: 1) The experiment resulted the combination failure mode, cone failure and bond failure, 

of anchor bolt under pull-out loading test. Furthermore, the degree of cone slope (α) for the 

inner side area and outside area is significantly lower than the design standard assumed, that 

is around 15
o
 ~ 23

o
 for experiment compare to 35

o
 ~ 45

o
 for design standard. 2) The cone 
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stress of the experimental result is extremely lower than the design standard, this is either in 

inner side area or outside area. It is even less than half of the standard, either CCM and CCD 

or JSCE standard. This phenomena were predicted due to the cracking of samples of the 

experimental result spread widely with a lower cone slope and resulted wider cone area than 

the design standard. It was also should be noted that the stress of experimental result less than 

half of the standard, either CCM and CCD or JSCE standard. The average of cone stress is 

0.94, 1.45, 3.04 and 3.33 MPa for the outside area, inner side area of experimental results, 

JSCE, and CCM and CCD standard, respectively. 3) The loading capacity of experimental 

result is significantly lower than the design standard, even almost a half of JSCE standard. It 

may due to in the standard design the crack pattern is assumed a single crack and the cracks 

propagate from end of the anchor to the concrete surface. Moreover, in the design standard it 

is absolutely assumed that the failure mode is cone failure only without considering bond 

failure. While, the experimental result clearly shows that the failure is a combination between 

cone failure and bond failure, so that the cone failure part is a shallow depth and the angle of 

cone slope is smaller than design standard. 

In Chapter III, the numerical calculation setting and a solution of the particle deficiency 

problem around the boundary area in the SPH method was presented. A basic formulation and 

calculation procedure of SPH were expressed. Constitutive model consists of von Mises and 

Drucker-Prager were also described in this chapter. Dummy particles apply to solve the 

boundary problem on the anchor bolt since it is a slender rod and only a few particles 

constructed on its cross section, so it may generate inaccurate result and difficult to justify the 

failure mode of the anchor bolt. The result shows that the distribution of the dummy particles 

around the boundary area is very useful to solve mechanical problems under the free surface 

condition. 

In Chapter IV, the numerical calculation setting and several examples of the analysis on 

the strength of anchor bolt under pull-out load were precisely explained. The effect of anchor 

bolt depths were investigated by the proposed numerical method. By adopting the VM model 

for anchor bolt and DP model for concrete and applying cut-off procedure, the ultimate pull-

out strength and failure mechanism can be evaluated. The change of load-displacement 
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behavior, failure mode and maximum pull-out strength due to the embedment depth can be 

expressed by using the proposed SPH analysis and it adequately describes the large 

deformation and failures of concrete structure with the anchor bolt. However, bonding failure 

between bolt and concrete was not considered in this analysis. By ignoring the effect of bond 

character, the numerical analysis may give a higher pull-out strength and it is preferable to 

consider the possibility of bond failure in the next step. 

The bond character of numerical model was proposed in Chapter V, since a combination 

failure between bond failure and cone failure is generally found in anchor structures. In order 

to solve the phenomenon, a modified constitutive model was constructed and applied to 

simulate the effects of the bonding zone on developing cracks around the contact surface 

between anchor bolt and concrete. All models analyzed in Chapter IV were re-investigated by 

applying the bond character. Then, the numerical analysis results between without and with 

considering bond character were compared and reviewed. The result shows that by applying 

the bond character model, the loading capacity of all anchor bolt structure models reduced. 

Furthermore, the effect of applying bond character to the failure mode, the bond failure mode 

was gained on all models, and only bolt particles of h/d=10 sample generated a plastic 

deformation. By integrating the failure mode between with and without bond character, a 

combination failure between the bond and cone failure might be gained on all models, even a 

fully bolt failure also might be occur in the model h/d=10. By comparing among numerical 

model with bond character, without bond character, and design standard, the failure mode of 

some models had been changed. The model with h/d <= 4 calculated by design standard and 

with h/d <= 6 of numerical analysis without considering bond character showed cone failure, 

however the failure of this model changed to be bond failure after applying bond character 

model. The model with h/d > 6 and without considering bond character exhibited the bolt 

failure mode, whereas the design standard with h/d > 4 showed the bond failure. On the other 

hand, the bond failure was gained for the numerical analysis by considering the bond 

character in all models.  

In Chapter VI, a comparison between the numerical results, standard design, and 

experimental results were presented. Constitutive model applied in the numerical model 
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consisted of the von Mises for steel anchor bolt and Drucker Prager for concrete. The size and 

material properties of model were fully adopted from the experimental program in Chapter II. 

The numerical model, in this chapter, was divided by the model with and without considering 

the bond character. In addition, the perfect elastic-plastic for bonding characteristic was 

applied with the calculation of the limit ultimate strain by considering the fracture energy 

which is equal to the fracture energy of tensile softening. The result shows that by applying 

the bond character, the change condition was found in the bonding properties of the particle 

pair in the concrete interface area. On the other hand, there was no concrete particle that 

reaches an ultimate strain (no black color in concrete particles). It can be recognized that the 

bond failure mode was obtained. Comparison of the numerical analysis results between with 

and without bond character considered shown that by applying the bond character the pull-out 

loading capacity reduced 2%. On the other hand, the numerical analysis result with bond 

character showed a higher around a half (61%) of loading capacity than the experimental 

result. In general, it can be concluded that the certain correction factor should be used when 

the numerical analysis will be applied to the design and analysis of structure. Moreover, the 

numerical analysis also needs a correction factor when it is compared to the CCD method, 

which is adopted by ACI 318 and might be adopted also by other standard design, to get a 

reliable strength. Finally, the proposed numerical method may reliable to use for design and 

analysis the anchor bolt structures, and the correction factor should be used to get the safe 

structures. 

 

 

7.2 Recommendations for future research 

 

 In order to obtain more reasonable and realistic estimation of loading capacity and 

failure mode of anchor bolt in concrete under pull-out load, further study on SPH calculations 

and other numerical technique should be conducted numerously, especially when involving in 

the large deformation state. Considering on some limitations such as time constraints, 
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expensive cost in term of providing experimental tests, inadequate or difficulties on laboratory 

activities, some general recommendations are as follows; 

1) Firstly, the experimental tests can be conducted on various anchor mortar blocks to 

validate further numerical simulation by respecting in a different way designed 

anchors. Some improvement in term of providing the appropriate loading support 

on frame or changing the testing method is necessary to avoid significant deviation 

on displacement. 

2) When formulating the tensile and compressive softening technique for the concrete 

materials, the parameters such as the limit ultimate strain and cut-off procedure 

should be designated appropriately to enhance the failure mode estimation. Indeed, 

prior to perform the numerical method, the test data of materials should be able to 

support the development of constitutive material models. 

3) An advanced modification of the bond character should be developed prior to 

achieve more realistic results of failure mode, and combination of failure mode can 

be gained in accordance to the experimental result. 

4) Some discrepancies between numerical and experimental results such as 

displacement and failure mode can be improved by modifying the bond character 

model and yield criteria of the constitutive parameter model. However, 

improvement of yield criteria requires the increase of parameter identification. 

5) Since the advantage of SPH methods is very suitable to simulate problems with 

large deformations, further studies can be applied in those fields such as anchor bolt 

in concrete under various dynamic loads by implementing the proposed model.  
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APPENDIX 1 - Derivation of notation 

 

 

Some notations are used to simplify the derivation of stress increments of elastic plastic 

constitutive equations as well as its derivation of constitutive matrix forms for each yield 

model. This appendix chapter presents some of the derivation of notation that used in the 

yield criterion derivation. Besides, solving of some equations is also presented. 

 

 

A-1  Notation used in the von Mises criterion derivation 

 

Now, let consider the fourth-tensor of elastic stiffness in Eq. 2.49 (Chapter II) and 

multiply it to the deviatoric stress ζ’kl to form  

 

  kljkiljlikklijkl
e
ijklD ')()(' m   A.1 

 

Substitute Eq. 2.42(b) (Chapter II) into Eq. A.1 to get  

 

  klmmkljkiljlikklijkl
e
ijklD m

3
1

)()('   A.2 

 

Expand Eq. A.2 

 

ijalakklmmijalakkljkiljlikklmmjkiljlikklkl
e
ijklD m

3
1

)(
3
1

)(' 

 

A.3 

 

By noting that  
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alakklklkljiijijjlikkl   ,, and 3. ijij   A.4 

 

Solve Eq. A.3, 

 

ijalakklmmijalakkljkiljlikklmmjkiljlikklkl
e
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3
1

)(
3
1

)(' 

 

A.5 

 

One can be written as 

 

   jiijmmjiijkl
e
ijklD mm 

3
1

'  A.6 

 

Finally, solve Eq. A.6 by substituting the relationships of deviatoric stress in Eq. 2.42(b) 

(Chapter II), yield to 

 

ijijmmijijmmijkl
e
ijklD '2

3
1

2
3
2

2' mmmmm 




   A.7 

 

In this study, the materials are considered to follow associated flow rules of plasticity. 

This means that the yield function, f can be assumed to be the same.  

 

0)( 2
22  kJJf DD  A.8 

 

where 

 

ijijDJ ''
2
1

2   A.9 

 

and by substituting Eq. 2.52 (Chapter II) and Eq. A.9 into Eq. A.8, the function can be 

expressed  

 

3 ζaaδij δaa 

0 
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0
3
1

''
2
1 2  eqsijijf   A.10 

 

Finally, we write the notation as below 

 

2

3
2

'' eqsijij    A.11 

 

By considering the normality rule  as in Eq. 2.44, which is the plastic potential function is 

assumed to be the same with the function, f. We substitute Eq. A.8 and A.9 into the 

differentiation form as well as change the index notation; it can be written as below 
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Differentiate Eq. A.12 
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Firstly, solve the LHS of Eq. A.13 
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where 
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'
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 A.15 

Then, the differentiation of LHS can be written as 
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Now, solve the RHS of Eq. A.13 by substituting Eq. 2.42(b) and considering Eq. A.15 leads 

to 

 

   mnrjrinjmimnrrmn
ijij
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By noting that  

 

iijlijij  '  A.18 

 

Finally, combine the solution of LHS and RHS as in Eq. A.16 and A.17, respectively. Thus, 

the differentiation of Eq. A.13 can be expressed as 
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A-2  Notation used in the Drucker Prager criterion derivation 

 

Noting that 
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Solve the following plastic multiplier for Drucker Prager, λdp;  
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By using the notation in Eq. A.22 and Eq. A.22, we can solve Eq. A.23(a) as;  
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and finally it is solved as, 
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The general incremental stress relationship (dζij) is solved as follows, 
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Substitute the derivation form in Eq. 2.59 into Eq. A.25, 
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Develop the plastic stiffness matrix, 
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Substitute D
e
ijkl in Eq. 2.62 for expanding [D]

p
 in Eq. A.27, 
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A.27(c)  
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Substitute λdp in Eq. A.24 into [D]
p
 in Eq. A.27(d), and modify the index notation. 
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Then expand dζij in Eq. A.26, finally the constitutive equation of DP can be expressed as; 
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APPENDIX 2 - Calculation of ultimate strain, εcrc 

 

 

In order to restrain the cracking of concrete and mortar material, ultimate strain εcrc is 

calculated by fracture energy, Gf and depend on the particle size. In this thesis, anchor bolt in 

concrete and mortar block were used for the validation of numerical analysis. The fracture 

energy of concrete and mortar are calculated, refer to JSCE standard.  

 

 

A-3 Calculation of ultimate tensile strain of concrete material for the numerical model 

 

Use the formulation as below, 

 






0

dG f  A.29 

 

and use the relationships between stress and crack opening relationships in Fig. A-1 

 

 
Figure A-1: Relationships between stress cracking zone and crack opening 

 

Thus, 

 

ζt 

w, cracks opening 

ζ 

wcrc 

Gf 
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crctf wG 
2

1
  A.30 

 

where wcrc is ultimate crack opening. Refer to JSCE standard, based on tension softening of 

normal concrete, the fracture energy (Gf) may be obtained as, 

 

  3

1
'

3

1

max10 cf fdG   A.31 

 

then, the ultimate strain (crc)   can be calculated as, 

 




d

wcrc
crc   A.32 

 

where dmax is the maximum size of aggregate (mm), f‟c is the characteristic compressive 

strength of concrete (MPa), and d
Ø
 is the particle diameter of material model. If the 

compressive strength of concrete is assumed 24.5 MPa and maximum diameter of aggregate 

is 20 mm. Thus, the fracture energy is; 
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1

3

1

5.242010fG 79.37 N/m A.33 

 

meanwhile, the tensile strength, ζt is 3.57x10
6
 N/m

2
. Therefore, 

 

crcw)1057.3(
2

1
37.79 6  A.34 

 

Get the ultimate crack opening 

 

510446.4  crcw m A.35 

 

Finally, the ultimate strain can be calculated as below if the particle size, d
Ø
 is 0.003 m, 
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A-4 Calculation of ultimate tensile strain of mortar in the experimental model 

 

Calculation of the ultimate strain for the numerical analysis of experimental model is as 

follows. 

From the experimental test data, the compressive strength of mortar is 48.18 MPa and 

maximum diameter of aggregate is 5 mm. Thus, the fracture energy is; 
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meanwhile, the tensile strength, ζt is 3.31x10
6
 N/m

2
. Therefore, 
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22.62 6  A.38 

 

Get the ultimate crack opening 

 

510760.3  crcw m A.39 

 

Finally, the ultimate strain can be calculated as below if the particle size, d
Ø
 is 0.004 m, 
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A-5 Calculation of ultimate shear strain of concrete material for the numerical model 

 

The ultimate tensile strain is counted between the elastic zone having no crack and 

the completely cracked portion, wcrc. The fracture energy (Gf) of tensile fracture is 

projected as the area below the curve correspond to the maximum elastic tensile strain 

(σmax) towards the completely cracked portion (wcrc) (see Fig. A-2(a)). A shear softening 

curve expresses the relationship between the transferred stress and sliding crack, and the 

area below the curve correspond to the fracture energy (Gf) of shear, which is equal to the 

energy required to form a unit area of completely sliding crack and a loose bond (see Fig. 

A-2(b)). In this analysis the fracture energy obtained by tensile and shear is assumed 

equal, as a result the limit shear strain in a particle (u,bond) can be obtained as below. 

 

  
 

(a) Tensile softening of mortar/concrete (b) Stress-strain relation of bond shear of mortar  

  

Figure A-2: Stress-strain relation of bond shear and bonding shear softening of mortar  

   

Refer to Ikki et al. (1996), the maximum shear strength of mortar concrete is shown 

in Eq. A.41. The maximum shear stress between concrete and reinforce steel bar (ηmax) 

may calculate as, 

 

59.75.249.0'9.0 3

2

max

3

2

 cf   N/mm
2 A.41 

 

where, f’c is the compressive strength of concrete (MPa). While the shear modulus (G) can 

be found by the following equation. 

Gf

σ

σmax

Wcrc

w

bondo

τ, bond

G

G

- τ, max
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e,bond
u,bondbond
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where, E is Young‟s elastic modulus of concrete (MPa), υ is poisson‟s ratio of concrete. 

Based on elasticity principles, the elastic strain (e) is as follows, 
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e


  A.43 

 

Calculation of fracture energy (Gf) of shear is equal to the tensile fracture. Based on Eq. 

A.31 and A.33, so the ultimate bond strain (u,bond) can be computed. Finally, the bond 

ultimate strain of concrete is; 
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A-6 Calculation of ultimate shear strain of mortar in the experimental model 

 

In this analysis the fracture energy obtained by tensile and shear is assumed equal, 

as a result the limit shear strain in a particle (u,bond) can be obtained. Refer to Ikki et al. 

(1996), the maximum shear strength of mortar concrete is shown in Eq. A.45. The 

maximum shear stress between concrete and reinforce steel bar (ηmax) may calculate as, 
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where, f’c is the compressive strength of mortar (MPa). While the shear modulus (G) can 

be found by the following equation. 
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where, E is Young‟s elastic modulus of concrete (MPa), υ is poisson‟s ratio of concrete. 

Based on elasticity principles, the elastic strain (e) is as follows, 
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
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Calculation of fracture energy (Gf) of shear is equal to the tensile fracture. Based on Eq. 

A.37, so the ultimate bond strain (u,bond) can be computed. Finally, the bond ultimate strain 

of concrete is; 
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