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Abstract

In this paper, we construct a base change lifting for an APF extension
of a mixed characteristic local field.

1 Introduction

Let p be a prime number. In this paper, we shall construct a local base change
lifting for an almost pro-p cyclic extension of infinite degree. The point is that
the local base change lifting for a totally ramified extension coincides with an
operation coming from the close local fields theory of Kazhdan under some
conditions.

We state the result more precisely. For a local field L with a finite residue
field, we denote by A (GLN (L)) the set of isomorphism classes of irreducible
smooth representations of GLN (L) over C. We denote the Weil group of L
by WL. We recall that an L-parameter of GLN (L) is a group homomorphism
ϕ : WL × SL2(C) → GLN (C) such that ϕ|WL is semi-simple and smooth and
ϕ|SL2(C) is algebraic. Let Φ(GLN (L)) denote the set of isomorphism classes
of L-parameters of GLN (L). We note that Φ(GL1(L)) is equal to the set
Hom(L×,C×) of smooth characters of L×. We denote by LLCL the local Lang-
lands correspondence of GLN over L, whose existence was firstly proven by [17]
for L of positive characteristic and by [13] for L of characteristic zero. Let F be
a finite extension of Qp and E an APF extension of infinite degree, in particular
an almost pro-p extension. Let F∞ be the field of norms associated with E/F .
We denote by Res∞/0 the restriction map Φ(GLN (F )) → Φ(GLN (F∞)) with
respect to the natural injection WF∞ ↪→WF .

Theorem 1.1. Suppose that the extension E/F is cyclic. Then we can con-
struct a map BC∞/0 : A (GLN (F )) → A (GLN (F∞)) such that the following
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diagram is commutative:

A (GLN (F∞))
LLCF∞// Φ(GLN (F∞))

A (GLN (F ))

BC∞/0

OO

LLCF // Φ(GLN (F )).

Res∞/0

OO

We shall call BC∞/0 the base change lifting of infinite degree. We construct
BC∞/0 by using Arthur and Clozel’s result [1] and close fields theory of Kazhdan
[15]. Hence our construction is basically on the representation theory of p-adic
groups, that is to say, the automorphic side. However, we use LLC when we
prove Theorem 1.3 by showing the corresponding statement in the terms of L-
parameters, that is, the Galois side. The author expects that in the future we
will be able to avoid such arguments.

To construct the lifting, we shall adapt Kazhdan’s theory to our setting. Let
L be a local field with a finite residue field, O ⊂ L the ring of integers, and
p ⊂ O the maximal ideal. Let Kl(L) denote the principal congruence subgroup
of level l of GLN (L):

Kl(L) = Ker(GLN (O) → GLN (O/pl)).

We denote by Rep(GLN (L)) the category of admissible smooth representations
of GLN (L) and by Repl(GLN (L)) the full subcategory of Rep(GLN (L)) con-
sisting of representations generated by their Kl(L)-fixed vectors.

We fix an algebraic closure F of E. For any real number v ≥ −1, we
denote by Gal(F/F )v the v-th ramification group in upper numbering. Let
b1 < b2 < · · · be the ramification breaks of E/F . We put

Fn = F
Gal(F/E)Gal(F/F )bn

.

For a real number u ≥ 0, we define

ψE/F (u) =

∫ u

0

(Gal(F/F ) : Gal(F/E)Gal(F/F )v)dv.

We take a non-decreasing sequence of non-negative integers {ln}∞n=1 satisfying
the following:

Condition (L) . ln → ∞ (n→ ∞) and ln ≤ p−1(p− 1)ψE/F (bn).

Then we have a theorem that Rep(GLN (F∞)) can be obtained by taking the
limit of certain subcategories of Rep(GLN (Fn)):

Theorem 1.2. For any indices 1 ≤ n < m ≤ ∞, there exists a natural equiva-
lence of categories

Am/n : Repln(GLN (Fn))
∼−→ Repln(GLN (Fm)).
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This {Am/n | 0 ≤ n < m ≤ ∞} makes the diagram

Repln(GLN (Fn))
Am′/n //

Am/n

��

Repln(GLN (Fm′))
� _

��

Repln(GLN (Fm))
� _

��
Replm(GLN (Fm))

Am′/m

// Replm(GLN (Fm′))

(1)

commute for any n ≤ m ≤ m′. We also denote by Am/n the bijection

Aln(GLN (Fn))
∼−→ Aln(GLN (Fm))

induced by the equivalence Am/n. Then we can take the direct limit of {A∞/n}n:

lim−→
n

A∞/n : lim−→
n

Aln(GLN (Fn))
∼−→ A (GLN (F∞)),

which is also bijective.

Next, we shall prove that Am/n coincides with the base change lifting. For
a cyclic extension F ′/F of prime degree, let

BCF ′/F : A (GLN (F )) → A (GLN (F ′))

be the base change lifting in the sense of [1, Chapter 1, Section 6]. For a general
cyclic extension F ′/F of finite degree, we define BCF ′/F as the composite of
the base changes attached to intermediate exetnsions of F ′/F of prime degree.
In particular, we write BCFm/Fn

= BCm/n. We denote by Al(GLN (F )) the
subset of A (GLN (F )) consisting of representations which have a non-trivial
Kl(F )-fixed vector.

In the rest of this section, we suppose that E/F is cyclic. We put Γ =

Gal(E/F ) and denote by Γ̂ the group of smooth characters of Γ with valued in

C×. By local class field theory, we identify an element of Γ̂ with a character
F× → C× which factors through F×/NFn/F (F

×
n ) for some n.

Theorem 1.3. We take a sequence {l′n}∞n=1 satisfying the condition (L) and
such that there exists a positive integer n0 such that l′n < 2−N⌊p−1(p−1)ψE/F (bn)⌋
for any n ≥ n0.

(i) For any indices n0 ≤ n ≤ m <∞, the bijection

Am/n : Al′n
(GLN (Fn))

∼−→ Al′n
(GLN (Fm))

coincides with the base change lifting BCm/n = BCFm/Fn
.
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(ii) For any π ∈ A (GLN (F )), there exists an integer n ≥ 0 such that

BCn/0(π) ∈ Al′n
(GLN (Fn)).

Now we can construct the base change lifting BC∞/0 of infinite degree.

Definition 1.4. We define

BC∞/0 : A (GLN (F )) → A (GLN (F∞))

by mapping π to A∞/n ◦ BCn/0(π), where the n is as in Theorem 1.3 (ii).

Remark 1.5. (a) By Theorem 1.3 (i), the definition of BC∞/0 is independent
of the choice of n.

(b) As noted above, at present, we can not avoid appealing to the local Lang-
lands correspondence for GLN over F to prove Theorem 1.3.

(c) The commutativity of the diagram in Theorem 1.1 follows from [2, Theo-
rem 6.1] and the compatibility of BC with Res via LLC.

Furthermore, we study the structure of the fibers of BC∞/0. Now we recall
the Langlands sum following the exposition of [13, Chapter 1]. We take a
partition (N1, . . . , Nr) of N . Let πi ∈ A (GLNi(F )) be an essentially square-
integrable representation for each 1 ≤ i ≤ r. Let si be the real number such
that | · |si is the absolute value of the central character of πi. We reorder
π1, . . . , πr so that N−1

1 s1 ≥ · · · ≥ N−1
r sr. We denote by P (N1, . . . , Nr) the

standard parabolic subgroup of GLN (F ) whose Levi component is GLN1(F )×
· · · ×GLNr (F ). Then the normalized induction

n-Ind
GLN (F )
P (N1,...,Nr)

(π1 ⊠ · · ·⊠ πr)

has a unique irreducible quotient, which we denote by π1 ⊞ · · ·⊞πr and call
the Langlands sum of π1, . . . , πr. Each π ∈ A (GLN (F )) can be written as a
Langlands sum and the π1, . . . , πr are uniquely determined up to a permutation.

Theorem 1.6. Let the notations and assumptions be as in Theorem 1.3. We
suppose that (p,N) = 1.

(i) Let π ∈ A (GLN (F )) be an essentially square-integrable representation.
We put π∞ = BC∞/0(π). Let ω∞ denote the central character of π∞.

Then BC−1
∞/0(π∞) has a natural Γ̂-torsor structure and the map

ω : BC−1
∞/0(π∞) → BC−1

∞/0(ω∞)

which maps π′ to its central character ωπ′ is bijective.
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(ii) Let π be any element of A (GLN (F )). We suppose that p > N . We can
write

π =π1 ⊞(π1 ⊗ η1,2) · · ·⊞(π1 ⊗ η1,µ1)

⊞ · · ·
⊞πr ⊞(πr ⊗ ηr,2) · · ·⊞(πr ⊗ ηr,µr ),

where µi is an integer, πi ∈ A (GLNi(F )) is an essentially square-integrable

representation for each 1 ≤ i ≤ r, and ηi,j is an element of Γ̂ for each
1 ≤ i ≤ r and 2 ≤ j ≤ µi such that µ1N1 + · · · + µrNr = N and the
lifts BC∞/0(π1), . . . ,BC∞/0(πr) are all distinct. Then the group Γ̂(π) =

Γ̂µ1 × · · ·× Γ̂µr transitively acts on BC−1
∞/0(π∞). As a homogeneous space

of Γ̂(π), this is isomorphic to

Γ̂(1, η1,2, . . . , η1,µ1)× · · · × Γ̂(1, ηr,2, . . . , ηr,µr ).

Here, for (η1, . . . , ηµ) ∈ Γ̂µ, we denote by Γ̂(η1, . . . , ηr) the quotient of

Γ̂µ by the following equivalence relation: Two elements (ξ1, . . . , ξµ) and

(θ1, . . . , θµ) in Γ̂µ are equivalent if there exists a permutation σ of {1, . . . , µ}
such that ηjξj = ησ(j)θσ(j) for each j.

Remark 1.7. We denote the local reciprocity map of F by recF : WF → F×.
For ϕ ∈ Φ(GLN (F )), let χϕ denote the determinant character of ϕ. If p > N ,
then Theorem 1.6 shows that, using LLCF∞ , we can characterize LLCF as a
map which makes the diagram

Hom(F×,C×)

rec∗F
��

A (GLN (F ))
ωoo

BC∞/0//

LLCF

��

A (GLN (F∞))

LLCF∞

��
Hom(WF ,C×) Φ(GLN (F ))

χoo
Res∞/0// Φ(GLN (F∞))

commute and has the following properties:

• a Steinberg representation Stm(σ) maps to the outer tensor product

LLCF (σ)⊠ Symm−1Std,

where Std is the standard representation of SL2(C), and

• a Langlands sum maps to the corresponding direct sum.

2 Key lemmas

In this section, we prove an important lemma, which is a statement in Ga-
lois side corresponding to Theorem 1.3 (i) in the automorphic side. This is a
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compatibility of the restriction functor of Galois groups with respect to a finite
totally ramified extension and Deligne’s theory of close fields ([10]). We recall
Deligne’s theory. Let K be a local field with a finite residue field and l a positive
integer. We denote the ring of integers of K by O and the maximal ideal of O
by p. We denote by Trl(K) the triple (O/pl, p/pl+1, ε) attached to K, where ε
is the composite of the natural maps p/pl+1 → p/pl → O/pl. We fix a separa-
ble closure K of K. Let Ext(K)l denote the category of finite separable field
extensions K ′ of K contained in K such that Gal(K/K ′) ⊃ Gal(K/K)l. Then
we can construct a natural equivalence of categories

T lK : Ext(K)l
∼−→ Ext(Trl(K))l,

where Ext(Trl(K))l is the category whose objects are extensions of Trl(K) which
satisfy the condition Cl in [10, 1.5.4] and morphisms are R(l)-equivalence classes
([10, 2.3]) of morphisms of Ext(Trl(K)). For an object K ′ of Ext(K)l, T lK(K ′)
is defined to be the extension of triples Trl(K) → Trlr(K

′) attached to the field
extension K ′/K, where r is the ramification index of K ′/K.

We take another local field K1 with finite residue field and denote the ring
of integers of K1 by O1 and the maximal ideal of O1 by p1. Recall that K and
K1 are called l-close if there exists an isomorphism of rings O1/p

l
1

∼−→ O/pl.
Then we can construct an isomorphism of triples γ : Trl(K1)

∼−→ Trl(K). By

mapping an extension Trl(K) → X to Trl(K1)
γ−→ Trl(K) → X of Trl(K1), we

obtain an equivalence of categories

γ∗ : Ext(Trl(K))l → Ext(Trl(K1))
l.

Now let L ⊂ K be a finite totally ramified extension of K. We have

Gal(K/L) ∩Gal(K/K)u =WL ∩Gal(K/K)u = Gal(K/L)ψL/K(u) (2)

[20, 1.1.2]. We denote by i(L/K) the largest i satisfying

Gal(K/L)Gal(K/K)i = Gal(K/K).

Then for any integer l ≤ p−1(p−1)i(L/K), the norm map NL/K induces an iso-

morphism of ringsOL/p
l
L

∼−→ OK/p
l
K (see [20, Proposition 2.2.1]). In particular,

K and L are l-close. Hence there is a canonical isomorphism Trl(L)
∼−→ Trl(K)

which sends the image of a uniformizer ϖL of L in pL/p
l+1
L to that of NL/K(ϖL)

in pK/p
l+1
K . We denote the isomorphism of the triples by NL/K .

Now we assume l ≤ p−1(p − 1)i(L/K). Then we have an equivalence of
categories

N∗
L/K : Ext(Trl(K))l

∼−→ Ext(Trl(L))
l.

On the other hand, we have a functor Ext(K) → Ext(L) which maps an exten-
sion K ′ of K to the composite K ′L. If K ′ is an object of Ext(K)l, then by the
equalities (2), we have

Gal(K/K ′L) = Gal(K/K ′) ∩Gal(K/L)

⊃ Gal(K/K)l ∩Gal(K/L)

= Gal(K/L)ψL/K(l) = Gal(K/L)l.
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Thus K ′L is in Ext(L)l.
Now we can prove the following lemma:

Lemma 2.1. Suppose l ≤ (2p)−1(p− 1)i(L/K). Then the group isomorphism

NL/K∗ : Gal(K/L)/Gal(K/L)l → Gal(K/K)Gal(K/K)l

induced by NL/K coincides with the homomorphism which comes from the nat-

ural injection Gal(K/L) ↪→ Gal(K/K).

Proof. We take a Galois object K ′ of Ext(K)l. We put L′ = K ′L. We shall
construct an isomorphism

N′ : T lL(L
′)

∼−→ N∗
L/KT

l
K(K ′)

in Ext(Trl(L))
l such that the following diagram is commutative:

Gal(L′/L)
·|K′ //

T l
L

��

Gal(K ′/K)

T l
K

��
AutTrl(L)(T

l
L(L

′))

ad(N′) ))TTT
TTTT

TTTT
TTTT

T
AutTrl(K)(T

l
K(K ′))

AutTrl(L)(N
∗
L/KT

l
K(K ′)).

(3)

Let r denote the ramification index of K ′/K. We have l ≤ 2−1i(L/K) and

Gal(K/K ′) ⊃ Gal(K/K)l ⊃ Gal(K/K)2
−1i(L/K).

Hence we obtain inequalities

ψ−1
K′/K

(
1

2
i(L/K)r

)
≤ 1

2
i(L/K) +

r − 1

r
· 1
2
i(L/K) ≤ i(L/K).

Taking account of

Gal(K/L)Gal(K/K)i(L/K) = Gal(K/K),

we have

Gal(K/L′)Gal(K/K ′)2
−1i(L/K)r

=Gal(K/L′)(Gal(K/K)
ψ−1

K′/K(2−1i(L/K)r) ∩Gal(K/K ′))

⊃Gal(K/L′)(Gal(K/K)i(L/K) ∩Gal(K/K ′))

=Gal(K/L′) ∩Gal(K/K)i(L/K)

=Gal(K/K ′) ∩ (Gal(K/K)i(L/K) Gal(K/L′))

=Gal(K/K ′).
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Hence we obtain Gal(K/L′)Gal(K/K ′)2
−1i(L/K)r = Gal(K/K ′). Thus we have

2−1i(L/K)r ≤ i(L′/K ′) and the norm map NL′/K′ provides an isomorphism

NL′/K′ : Trlr(L
′)

∼−→ Trlr(K
′), which makes the diagram

Trl(K) //

NL/K

��

Trlr(K
′)

NL′/K′

��
Trl(L) // Trlr(L′)

commute. Thus NL′/K′ is in fact an isomorphism TL(L
′)

∼−→ N∗
L/KTK(K ′) in

Ext(Trl(L))
l. We put N′ = NL′/K′ .

The commutativity of the diagram (3) follows from the equality NL′/K′ ◦σ =
σ ◦NL′/K′ for any σ ∈ Gal(L′/L). Lemma 2.1 follows from the diagram (3).

For any real number l ≥ 0, we define

Φl(GLN (K)) = {ϕ ∈ Φ(GLN (K)) | Gal(K/K)l ⊂ Kerϕ}.

By Lemma 2.1, we obtain the first key lemma:

Lemma 2.2. Let K be a local field with a finite residue field and L a finite
totally ramified extension of K. Then, for any l < (2p)−1(p − 1)i(L/K), the
restriction of L-parameters

Φl(GLn(K)) → Φl(GLn(L))
ϕ 7→ ϕ|WL×SL2(C)

coincides with the map

N∗
L/K : Φl(GLn(K)) → Φl(GLn(L))

ϕ 7→ ϕ ◦ (NL/K∗ × idSL2(C)).

3 Proof of Theorem 1.2

In this section, we prove Theorem 1.2. For this, we recall two ingredients. One
is an equivalence of Repl(GLN (L)) and the category of representations of some
Hecke algebra, where L is a local field with a finite residue field. The other is
Kazhdan’s theory of close local fields [15].

We denote by Hl(GLN (L)) the algebra of compactly supported Kl(L)-bi-
invariant functions on GLN (L) with values in C whose product is the convolution
∗l with respect to the Haar measure µGLN (L),l on GLN (L) normalized by

µGLN (L),l(Kl(L)) = 1.

The characteristic function eKl(L) of Kl(L) is the unity of Hl(GLN (L)). The
category of Hl(GLN (L))-modules is denoted by Mod(Hl(GLN (L))).
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Lemma 3.1 ([4, Corollaire 3.9 (ii)]). The functor V 7→ V Kl(L) gives an equiv-
alence of categories

Repl(GLN (L)) → Mod(Hl(GLN (L))).

By using this, we can prove the following:

Lemma 3.2. For l ≤ m, the functor

Mod(Hl(GLN (L))) → Mod(Hm(GLN (L)))

W 7→ (Hm(GLN (L)) ∗m eKl(L)) ⊗
Hl(GLN (L))

W

makes the diagram

Repl(GLN (L)) �
� //

��

Repm(GLN (L))

��
Mod(Hl(GLN (L))) // Mod(Hm(GLN (L)))

commute, where the two vertical arrows are the equivalences in Lemma 3.1 and
the top horizontal arrow is a natural injection.

Proof. The following proof is similar to that of [4, Corollaire 3.9 (ii)]. Through-
out this proof, we put G = GLN (L), Kl = Kl(L), Hl = Hl(G) and el = eKl

.
Note that the C-vector space Hm ∗m el has an Hm-Hl-bimodule structure via
(hm, h

′
m ∗m el, hl) 7→ hm ∗m h′m ∗m hl for any hm, h

′
m ∈ Hm and hl ∈ Hl. Let

(π, V ) be any object of Repl(G). The map

(Hm ∗m el) ⊗
Hl

V Kl → V Km

defined by

(h ∗m el)⊗ v 7→
∫
G

(h ∗m el)(g)π(g)vdµG,m(g)

is a well-defined left Hm-module homomorphism. It suffices to show that this is
an isomorphism. This is surjective since π is an object of Repl(G). We denote by
N the kernel of the above homomorphism. Now let Modl(Hm) denote the full
subcategory of Mod(Hm) consisting of objectsW which are generated by el∗W .
Then the equivalence of categories of Lemma 3.1 induces that of Repl(G) and
Modl(Hm). This equivalence and Lemma 3.1 imply that the latter is equivalent
to Mod(Hl) and stable by sub-quotient. Since Hm ∗m el and V

Km are object
of Modl(Hm), so is N . In addition, there is no non-trivial vectors on N which
is fixed by the left action of el. Therefore N = 0 and the above homomorphism
is an isomorphism.

Next we recall Kazhdan’s theory. Let F1 and F2 be local fields of residual
characteristic p which are l-close. Let Oi and pi denote the ring of integers and
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the maximal ideal of Fi (i = 1, 2). Let α : O2/p
l
2

∼−→ O1/p
l
1 be an isomorphism

of rings. We fix a uniformizer ϖ2 of F2 and choose a lift ϖ1 ∈ p1 of α(ϖ2

mod p2). By the Cartan decomposition, the datum (α,ϖ2, ϖ1) gives a C-linear
isomorphism

(α,ϖ2, ϖ1)
∗ : Hl(GLN (F1))

∼−→ Hl(GLN (F2))

(see [15]). In Kazhdan’s original paper, he showed that if F1 and F2 are suf-
ficiently close then (α,ϖ2, ϖ1)

∗ is compatible with the convolution products.
Lemaire showed a more precise result for GLN :

Lemma 3.3 ([18, Proposition 3.1.1]). If F1 and F2 are l-close, the isomorphism
(α,ϖ2, ϖ1)

∗ is compatible with the convolution products. Hence it is a C-algebra
isomorphism.

Now we prove Theorem 1.2. Let E/F be an infinite APF extension. For any
indices 1 ≤ n < m ≤ ∞, we have

ln ≤ p− 1

p
ψE/F (bn) =

p− 1

p
i(Fm/Fn).

Here, we use equalities ψE/F (bn) = i(Fn+1/Fn) = i(E/Fn) (see [20, 1.4.1
(b)]) and inequalities i(E/Fn) ≤ i(Fm/Fn) ≤ i(Fn+1/Fn) (see [20, Proposition
1.2.3]). Thus the norm map with respect to Fm/Fn induces an isomorphism of
rings

αm/n : OFm/p
ln
Fm

∼−→ OFn/p
ln
Fn

[20, Proposition 2.2.1]. We fix a uniformizer ϖm of Fm. By Lemma 3.3, we
obtain an isomorphism of C-algebras

β∗
m/n = (αm/n, ϖm, NFm/Fn

(ϖm))∗ : Hln(GLN (Fn))
∼−→ Hln(GLN (Fm)).

By Lemma 3.1, this induces an equivalence of categories

Am/n : Repln(GLN (Fn))
∼−→ Repln(GLN (Fm)).

The transitivity of norm maps implies that the commutativity of the following
diagram

Hln(GLN (Fn))
β∗
m/n //

β∗
m′/n ))RRR

RRRR
RRRR

RRR
Hln(GLN (Fm))

β∗
m′/m

��
Hln(GLN (Fm′)).

This and Corollary 3.2 show the commutativity of the diagram (1). This com-
pletes the proof of Theorem 1.2.
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4 Proof of Theorem 1.3

In this section, we prove Theorem 1.3.
Let F be a mixed characteristic local field. We denote the local Langlands

correspondence for GLN over F by

LLCF : A (GLN (F )) → Φ(GLN (F )).

By [2, Proposition 4.2], we have

LLCF (Al(GLN (F ))) ⊂ Φl(GLN (F )).

Let F1 and F2 be local fields with finite residue fields which are l-close. We
choose a datum β = (α,ϖ2, ϖ1) as in Kazhdan’s theory. Then we obtain Kazh-
dan’s correspondence β∗ : Al(GLN (F1))

∼−→ Al(GLN (F2)). Moreover, from β
we can canonically define an isomorphism of triples γ : Trl(F2) → Trl(F1). The
following compatibility of β∗ with γ∗ via the local Langlands correspondence
was proved by Aubert, Baum, Plymen and Solleveld in their preprint [2].

Theorem 4.1 ([2, Theorem 6.1]). Let l′ be any integer such that 0 ≤ l′ < 2−N l.
Then the following diagram is commutative:

Al′(GLN (F1))
β∗

//

LLC

��

Al′(GLN (F2))

LLC

��
Φl′(GLN (F1))

γ∗
// Φl′(GLN (F2)).

Now let us prove Theorem 1.3 (i). By Theorem 4.1, the map β∗
m/n in Section

3 is compatible with the map N∗
Fm/Fn

in Lemma 2.2 via LLC. Now we have

inequalities l′n ≤ 2−Np−1(p− 1)i(Fm/Fn) ≤ (2p)−1(p− 1)i(Fm/Fn). Hence, by
Lemma 2.2, the map N∗

Fm/Fn
coincides with the map induced by the restriction

WFm ↪→ WFn . Since the latter map is compatible with BCm/n via LLC, we
have completed the proof.

Next we show Theorem 1.3 (ii). By the local Langlands correspondence and
Theorem 4.1, this is also reduced to showing the corresponding assertion on
Galois representations. Thus we shall show that for any ϕ ∈ Φ(GLN (F )) there
exists n such that ϕ|WFn

∈ Φl′n(GLN (Fn)). Take any ϕ ∈ Φ(GLN (F )). Then
we have ϕ ∈ Φl(GLN (F )) for some l. By the equality (2) in Section 2, we have
WFn ∩ Gal(F/F )l = Gal(F/Fn)

ψE/F (l) for any n. Since l′n → ∞ as n → ∞,
there exists an integer n such that ψE/F (l) ≤ l′n. Thus ϕ|WFn

is trivial on

Gal(F/Fn)
l′n i.e. ϕ|WFn

∈ Φl′n(GLN (Fn)), as claimed.

5 Proof of Theorem 1.6

Finally, we prove Theorem 1.6. First, we show (i) for a supercuspidal π. We put

π∞ = BC∞/0(π). The fiber BC−1
∞/0(π∞) has a Γ̂-set structure via π′ 7→ π′ ⊗ η,
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where π′ ∈ BC−1
∞/0(π∞) and η ∈ Γ̂. We shall show that this action is simply

transitive. The assumption (p,N) = 1 shows that the Γ̂-action is simple. Let
us prove the transitivity. We take any π′ ∈ BC−1

∞/0(π∞). By Theorem 1.3 (ii),

we can take an integer n such that both BCn/0(π) and BCn/0(π
′) belong to

Aln(GLN (Fn)). Since BC∞/0 = A∞/n ◦ BCn/0 and A∞/n is injective, we have
BCn/0(π) = BCn/0(π

′). It suffices to show that there exists a smooth character
η : F× → C× which factors through F×/NFn/F (F

×
n ) such that π′ ≃ π⊗ η. We

show this by induction on n. The case n = 1 is [1, Chapter 1, Proposition 6.7].
We assume that the assertion holds for n− 1. By the case n = 1, we can find a
smooth character η1 : F

×
n−1 → C× which factors through F×

n−1/NFn/Fn−1
(F×
n )

and satisfies BCn−1/0(π
′) ≃ BCn−1/0(π)⊗ η1. Let ωπ (resp. ωπ′) denote the

central character of π (resp. π′). Then we have

ωπ′ ◦NFn−1/F = (ωπ ◦NFn−1/F )η
N
1 .

Thus we obtain
ηN1 = (ωπ′ω−1

π ) ◦NFn−1/F .

By the assumption that (p,N) = 1, we find a character η′1 on F× such that

η1 = η′1 ◦NFn−1/F .

Hence we have BCn−1/0(π
′) ≃ BCn−1/0(π⊗ η′1) and by the induction hypothesis

there exists a smooth character ηn−1 on F× which is trivial on NFn−1/F (F
×
n−1)

and satisfies π′ ≃ π⊗(η′1ηn−1). Then η = η′1ηn−1 is the requested character.
Taking central character maps π⊗ η to the character ωπη

N . By the assump-
tion (p,N) = 1, this gives a bijection BC−1

∞/0(π∞) → BC−1
∞/0(ω∞).

Now we show (i) for any essentially square-integrable π. Then there ex-
ist a unique divisor m of N and a unique supercuspidal representation σ ∈
A (GLN/m(F )) such that π is equivalent to the unique irreducible quotient
Stm(σ) of

n-Ind
GLN (F )
P (N/m,...,N/m)(σ ⊗ | det |(1−m)/2 ⊠ · · ·⊠ σ ⊗ | det |(m−1)/2)

([21, Theorem 9.3]). We put σ∞ = BC∞/0(σ). Let us show that the map

BC−1
∞/0(σ∞) → BC−1

∞/0(π∞)

σ′ 7→ Stm(σ′)

is bijective. Its well-definedness follows from [1, Lemma 6.12], [3, Théorème
2.17 (c)] and [14, Proposition A.4.1]. Its injectivity follows from the uniqueness
of the expression Stm(σ′). We show its surjectivity. Take any π′ ∈ BC−1

∞/0(π∞).

Then by [3, Théorème 2.17 (c)] and [14, Proposition A.4.1], we have BCn/0(π
′) =

Stm(BCn/0(σ)) for some n. Since π′ is essentially square-integrable, there exists
a divisor m′ of N and a supercuspidal representation σ′ ∈ A (GLN/m′(F ))
such that π′ = Stm′(σ′). The assumption (p,N) = 1 and [1, Lemma 6.12]
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show that BCn/0(π
′) = Stm′(BCn/0(σ

′)). Hence we have m′ = m and σ′ ∈
BC−1

n/0(BCn/0(σ)) ⊂ BC−1
∞/0(σ∞). Therefore the surjectivity follows, as claimed.

The statement (ii) follows from the uniqueness of the Langlands sum and
the fact that the functor A∞/n preserves the Langlands sum ([14, Proposition
A.4.1]).

6 Prospects for the future

6.1 Fundamental lemma: totally ramified case

We would like to find a proof of Theorem 1.3 (i) within the automorphic side.
Let F be a finite extension of Qp and F ′ a totally ramified cyclic extension of
F . Take an integer l ≤ p−1(p − 1)i(F ′/F ) and π ∈ Al(GLN (F )). Then our
problem is to prove

AF ′/F (π) = BCF ′/F (π) (4)

without using LLC. Here we recall that AF ′/F : Al(GLN (F ))
∼−→ Al(GLN (F ′))

is the bijection coming from the C-algebra isomorphism

N : Hl(GLN (F ))
∼−→ Hl(GLN (F ′))

induced by the norm map NF ′/F : (F ′)× → F×. Put Π = BCF ′/F (π). Then
the equality (4) is equivalent to saying

Trπ(f) = TrΠ(N∗f) (5)

for any f ∈ Hl(GLN (F )).
Now we recall the Shintani character relation with respect to BCF ′/F ([1,

Chapter 1, Definition 6.1]). By Harish-Chandra’s theorem [12], the distribution

C∞
c (GLN (F )) → C : f 7→ Trπ(f)

is given by a locally integrable function Θπ on GLN (F ), which is locally con-
stant on the regular locus GLN (F )reg. By Clozel’s theorem [8], which is an
extension of Harish-Chandra’s theorem to non-connected algebraic groups, the
distribution

C∞
c (GLN (F ′)) → C : f ′ 7→ Tr(Π(f ′) ◦ Iσ)

is also given by a locally integrable function ΘΠ,σ on GLN (F ′), which is locally
constant on the σ-regular locus GLN (F ′)σ-reg. Here Iσ : Π

σ → Π is a GLN (F ′)-
equivariant homomorphism normalized suitably (see for example [1, Chapter 1,
§2]).

The Shintani character relation is an identity of Θπ and ΘΠ,σ. To state it, we
need the norm map N , which maps σ-conjugacy classes in GL(F ′) to conjugacy
classes in GL(F ). For g′ ∈ GLN (F ′), the element

g′σ(g′) · · ·σ[F ′:F ]−1(g′) ∈ GLN (F ′)

13



is conjugate to an element g ∈ GLN (F ), which is unique upto GLN (F )-conjugation.
We denote the GLN (F )-conjugacy class of g by N g′. We call g a norm of g′.
The Shintani character relation is as follows: For any g′ ∈ GLN (F ′) such that
N (g) is regular,

ΘΠ,σ(g) = Θπ(N g′). (6)

Our aim is to deduce the equality (5) from (6). For this, we shall recall
the notion of orbital integrals. Choose Haar measures dg of GLN (F ) and dg′

of GLN (F ′) such that the volumes of GLN (OF ) and GLN (OF ′) are both equal
to 1. Let τ ∈ GLN (F ), τ ′ ∈ GLN (F ′) and suppose that N τ ′ is the GLN (F )-
conjugacy class of τ . Then the σ-centralizer GLN,τ ′,σ of τ ′ is an inner form of the
centralizer GLN,τ of τ . Hence we can choose Haar measures dt of GLN,τ (F ) and
dt′ of GLN,τ ′,σ(F ) such that dt and dt′ are compatible. For f ∈ C∞

c (GLN (F ))
and f ′ ∈ C∞

c (GLN (F ′)), we define the orbital integral

Φf (τ) =

∫
GLN,τ (F )\GLN (F )

f(g−1τg)
dg

dt

and the twisted orbital integral

Φf ′,σ(τ
′) =

∫
GLN,τ′,σ(F )\GLN (F ′)

f ′(g′−1τ ′σ(g′))
dg′

dt′
.

Let T denote the algebraic subgroup of GLN consisting of diagonal matrices.
Applying Weyl’s integral formula to the left-hand side of (5), we obtain

Trπ(f) =

∫
GLN (F )

f(g)Θπ(g)dg

=
1

#W (GLN , T )

∫
T (F )

|DGLN (t)|
∫
T (F )\GLN (F )

f(g−1tg)
dg

dt
dt

=
1

N !

∫
T (F )

|DGLN
(t)|Θπ(t)Φf (t)dt.

On the other hand, calculation similar to [1, p.93] shows

TrΠ(N∗f)

=Tr(Π(N∗f) ◦ Iσ)

=

∫
GLN (F )

(N∗f)(g′)ΦΠ,σ(g
′)dg′

=
1

#W (GLN , T )

∫
T (F ′)1−σ\T (F ′)

|DGLN
(N (t′))|ΘΠ,σ(t

′)ΦN∗f,σ(t
′)dt′.

Here, T (F ′)1−σ = {t′σ(t′−1) | t′ ∈ T (F ′)}. Remark that, if t′ is not σ-regular,
thenDGLN (N (t′)) = 0. Hence by the equality (6), we can rewrite the right-hand
side of (5) as

1

N !

∫
T (F ′)1−σ\T (F ′)

|DGLN (N (t′))|Θπ(N t′)ΦN∗f,σ(t
′)dt′.
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Since T is commutative, the map N is given by the group homomorphism

T (F ′) → T (F ) : t′ 7→ t′σ(t′) · · ·σ[F ′:F ]−1(t′),

whose kernel is T (E)1−σ. Therefore the equality (5) is reduced to the following:

Conjecture 6.1. For any t ∈ T (F ) and f ∈ Hl(GLN (F )),

Φf (t) =

{
ΦN∗f,σ(t

′) if t is a norm of some t′,

0 otherwise.

Such a statement is called a fundamental lemma or a matching problem. If
the field extension is unramified, then such a statement was proved by Arthur-
Clozel for GLN [1, Chapter 1, §4] and by Clozel for any unramified connected
reductive group over F [9]. For the unit elements of the Hecke algebras, a proof
was earlier given by Kottwitz [16]. However in present the extension F ′/F is
totally ramified, and the author does not know whether Conjecture 6.1 have been
proved or not even for the unit elements of Hl(GLN (F )) and Hl(GLN (F ′)).

6.2 Effective LLC

We try to apply BC∞/0 to the problem so-called the effecive local Langlands
correspondence. Its aim is to describe LLC in terms of Bushnell-Kutzko’s theory
[7], which classifies A (GLN (F )) by using data called “types”. We would like
to overview a part of Bushnell-Henniart’s work on the effective LLC [6] and
present some questions, which should be first considered when we analyze the
effective LLC by using BC∞/0.

Here we only deal with supercuspidal representations of GLN (F ). We de-
note the subset of A (GLN (F )) consisting of supercuspidal representations by
A 0(GLN (F )). The image LLCF (A 0(GLN (F ))) consists of ϕ ∈ Φ(GLN (F ))
such that ϕ|WF

is irreducible and ϕ|SL2(C) is trivial. Hence we can identify it
with the set of isomorphism classes of N -dimensional smooth irreducible rep-
resentations of WF , which is denoted by G 0

N (F ). We put G 0(F ) = ∪NG 0
N (F ).

For σ ∈ G (F ), we write Lσ for LLC−1
F (σ).

Let PF be the wild inertia subgroup of WF and P̂F the set of smooth irre-
ducible representations of PF over C. Then WF acts on PF by conjugation. We
recall Bushnell-Henniart’s partition of G 0(F ) by using pairs (m,O), where m is

a positive integer and O is an element of WF \P̂F . We define G 0
m(F,O) as the

subset of G 0(F ) consisting of σ such that

dimC HomPF
(α, σ) = m

for some α ∈ O. Remark that the above definition is independent of the choice of
α and G 0

m(F,O) is a subset of G 0
m[ZF (α):F ] dimα(F ), not of G

0
m(F ) in general. Here

ZF (α) is a finite tamely ramified extension of F defined as follows: Consider

NF (α) = {g ∈WF | αg ≃ α}.
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Then there exists a finite tamely ramified extension of F whose Weil group
equals NF (α). We denote the field by ZF (α) and call the F -centralizer field of
α. We note that the F -isomorphism class of ZF (α) depends only on O and is

independent of the choice of α. We denote by r1F (σ) a unique element ofWF \P̂F
such that σ ∈ G 0

m(F, r1F (σ)).
We put A 0(F ) = ∪NA 0(GLN (F )). In parallel with the Galois side, we

also have a similar partition of A 0(F ) by using Bushnell-Kutzko theory. We
consider a simple stratum of the form [A, l, 0, β]. Thus A is a hereditary OF -
order in MN (F ) and β is an element of P−l, where P is the Jacobson radical of
A. Then we can define a compact open subgroup H1(β,A) of 1 +P and a set
of characters of H1(β,A), which are called simple characters. In [5], Bushnell-
Henniart defined an equivalence relation on the set of the all simple characters
varying A and β, which they called the endo-equivalence. For any π ∈ A 0(F ),
there exists an m-simple character θπ contained in π. Here, a simple character θ
is said to be m-simple if A is maximal among hereditary orders which are stable
under the conjugation of F [β]×. Then the endo-equivalence class of θπ depends
only on π. We denote it by ϑ(π).

Now we shall recall main theorems of Bushnell-Henniart’s work. Let E(F )
denote the set of endo-equivalence classes of simple characters of F .

Theorem 6.2 ([6, Ramification Theorem]). There exists a unique bijection

ΦF : WF \P̂F
∼−→ E(F )

such that ϑ(Lσ) = ΦF (r
1
F (σ)) for all σ ∈ G 0(F ).

As in the Galois side, for any endo-equivalence class Θ, we can define a
finite tamely ramified extension T/F such that the tame lift ΘT [5, §9] is totally
ramified and T/F is minimal among such finite tamely ramified extensions. The
T is called the tame parameter field of Θ.

Theorem 6.3 ([6, Tame Parameter Theorem]). For α ∈ P̂F , we denote the
WF -conjugacy class of α by O(α).

(i) The F -centralizer field ZF (α) is F -isomorphic to the tame parameter field
of ΦF (O(α)).

(ii) For each integer m ≤ 1 and each O ∈WF \P̂F , the local Langlands corre-
spondence for F induces a bijection

G 0
m(F,O)

∼−→ A 0
m(F,ΦF (O)).

Now we fix a positive integer m and α ∈ P̂F . Bushnell-Henniart constructed
a bijection

G 0
m(F,O(α))

∼−→ A 0
m(F,ΦF (O(α))) : σ 7→N σ,

which is constructed by using Bushnell-Kutzko’s classification and have effective
description modulo the totally wildly ramified case. Moreover they studied the
gap of Lσ and Nσ:
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Theorem 6.4 ([6, Comparison Theorem]). We put C = ZF (α) and ΦC(α) =
ΦC(O(α)). There exists an tamely ramified character µ = µFm,O(α) of C× de-

pending only on F , m and O(α) such that, for any σ ∈ G 0
m(F,O(α)),

Lσ = µ⊙ΦC(α)
Nσ.

Moreover the character µ is uniquely determined modulo X0(C)m.

Here X0(C)m is the group of unramified characters of C× such that χm = 1.
For the definition of “the twist µ ⊙ΦC(α) •”, see [6, Chapter 4]. We call µ the
discrepancy character.

Now let E/F be a totally ramified Zp-extension. Then we obtain the norm
field X(E/F ), which we denote by F∞. Then Bushnell-Henniart’s theory can

be also applied to F∞. Fix an integer m ≤ 1 and O ∈WF \P̂F . We take

σ ∈ G 0
m(F,O)

such that σ∞ = σ|WF∞
is also irreducible. Then there exist a positive integer

m∞ and O∞ ∈WF∞\P̂F∞ such that

σ∞ ∈ G 0
m∞

(F∞,O∞).

Question 6.5. (i) Is BC∞/0
Nσ equal to Nσ∞ ?

(ii) We fix an F -centralizer (resp. F∞-centralizer) field C of O (resp. C∞ of
O∞). Then we can construct the norm field X(CE/C) associated to the
APF extension CE/C. Is it F∞-isomorphic to C∞?

(iii) If (ii) is true, then we can construct a homomorphism NC∞/C : C×
∞ → C×.

Is the character NC∞/C ◦ µFm,O congruent to µF∞
m∞,O∞

modulo X0(C∞)m
?

If these questions are solved affirmatively, then we can calculate the restric-
tion of µFm,O to NC∞/C(C

×
∞) by using µF∞

m∞,O∞
. In addition, Bushnell-Henniart

give a behavior of µFm,O on the unit group of C. Hence we can transfer the
study of the discrepancy character for mixed characteristic to that for equal
characteristic.
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