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Abstract

Cryptography relies on Mathematics in all its aspects, beginning from the constructions relying

on various mathematical theories, continuing with security evaluation of cryptographic systems,

and proving their security, and finally ending in implementation.

Recently, new security threats are posed by the emerging quantum computing technology. Specif-

ically, quantum algorithms can break some public-key encryption schemes such as RSA and

Elgamal, which are widely used for protection of computer systems and networks. This issue

demands us to develop a new generation of cryptographic systems, which will serve as secure

alternatives to the currently used ones. Such the new systems are referred to as the post-quantum

cryptography.

One promising direction in post-quantum cryptography is the systems whose security is based

on hardness of mathematical problems arising in the context of coding theory. In particular,

the problem of decoding random linear codes has been studied for over 30 years, and still no

polynomial-time solution has been proposed, even when using quantum algorithms. In this

thesis, we focus on this area, which is called the code-based cryptography.

The first code-based public-key encryption (PKE) scheme was introduced by R.J. McEliece in

1978. Since then, various code-based public-key encryption, digital signature and identifica-

tion schemes were introduced, but currently, one of the main challenges is to introduce more

advanced cryptographic functionalities based on coding.

In this thesis, first, we give a brief introduction about post-quantum cryptography and code-

based cryptography, and then we provide the background information about the cryptographic

primitives, which we will study, as well as the relevant notions and results from coding theory

and cryptography.

Next, we introduce our contributions as follows. Firstly, we study zero-knowledge (ZK) identi-

fication schemes based q-ary linear codes. We show that when q < 5, a straightforward general-

ization of Stern’s ZK identification scheme (1993) is more efficient in terms of both communi-

cation and computation, as compared to the ZK identification scheme by Cayrel, Véron and El

Yousfi Alaoui (2010), which is specifically designed for q-ary codes.

Secondly, we introduce the first proof of plaintext knowledge (PPK) for the McEliece PKE

and the Niederreiter PKE. These protocols allow the encryptor to prove the knowledge of the

plaintext contained in a given ciphertext to any party, who does not hold the secret key for

decryption. We also provide a performance evaluation for the proposed schemes.
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As an application of the above PPK for the McEliece PKE, we present the first verifiable public-

key encryption, which allows the encryptor to prove to any party that a given plaintext is con-

tained in a given ciphertext, again without decrypting it. We also discuss why this idea cannot

be applied to the case of Niederreiter PKE. We also provide a performance evaluation for our

proposal.

Lastly, the first designated confirmer signatures based on coding is constructed following the

framework of El Aimani (2010). This type of signature can only be verified via the interaction

with the signer or the designated party called a “confirmer”. The above proposal for verifiable

PKE is applied to construct the signature verification protocol.

Finally, we provide our concluding remarks and discuss the future work.
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Chapter 1

Introduction

1.1 Cryptography

Originated from the ancient art of transposition and substitution of letters of messages in secret

communication, such as the famous Caesar cipher1, cryptography has now become a highly

developed research subject which aims at protecting any system from being attacked by an

adversary.

The development of cryptography embodies in mainly two aspects.

• The border of cryptography, in particular, has been enriched from merely secret commu-

nication to a variety of topics including confidentiality, integrity, authentication, secure

communication, electronic transaction.

• Different from classical ciphers, which are more of an art form, modern cryptography

uses accurate and precise security definitions and admits rigorous proofs. However, com-

putationally secure cryptographic systems are currently all based on some well-studied

assumptions (i.e., some problems that are believed to be hard to solve).

In this section we review some important areas of modern cryptography on which we focus in

this thesis.

1.1.1 Public-Key Encryption

Secret communication is the most immediate application of cryptography, where two parties

want to communicate securely in the presence of a third party who can eavesdrop over the

1The Caesar cipher substitutes each English letter by some fixed number of positions down the alphabet.

1
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communication channel. Encryption schemes are developed to solve the problem of secret com-

munication (confidentiality issue). In an encryption scheme, the sender encrypts the message

(formally called the ”plaintext”) using some encryption key. The result of the encryption (called

”ciphertext”) is sent over the public channel. Upon receiving the ciphertext, the receiver can

decrypt it using the decryption key and get the plaintext back. At the same time, the adversary

who does not have the secret key cannot decrypt the ciphertext thus the confidentiality of the

communicated message is preserved. Depending on whether the encryption and decryption are

the same function, encryption schemes can be divided into two categories:

private-key encryption schemes and public-key encryption(PKE) schemes. In private-key

encryption schemes, the sender and receiver hold the same key both for encryption and decryp-

tion. The private-key encryption schemes are usually more simple and efficient than public-key

encryption schemes, but a serious challenge of secure key distribution is present. Since the key

must be kept away from the adversary, the sender and the receiver have to figure out a way to

create a secure channel for distributing the encryption / decryption key. This challenge stipu-

lated the introduction of the notion of public-key cryptography proposed by Diffie and Hellman

in 1976[DH76]. The advantage of a public-key encryption scheme is that the encryption and

decryption are detached. The sender can encrypt a plaintext using the public key of the receiver

which is publicly available. The receiver who owns the private key can decrypt the ciphertext

encrypted under her public key and get back the intended plaintext.

Besides the direct application in secret communication and data confidentiality, public-key

encryption can be used in constructing other cryptographic primitives such as commitment

schemes, and identification schemes.

1.1.2 Post-Quantum Cryptography

As mentioned earlier, modern cryptography are based on hardness assumptions such as the

problems of integer factorization and discrete logarithm problems assumed to be hard to solve.

Nowadays, the most widely used encryption scheme, RSA[RSA78], is based on integer fac-

torization. Many popular cryptographic schemes such as ElGamal encryption[ElG85] and the

elliptic curve cryptography[Mil86, CMO98] are based on the discrete logarithm problem. It is

important to review the hard problems since whether they are indeed hard has direct impact on

the cryptographic schemes based on them. Although currently we do not know any algorithm

that can efficiently (i.e., running in polynomial time in the problem size) solve integer factoriza-

tion and discrete logarithm problem on a Turing Machine, the discovery of Shor[Sho94] shows

that there are exist polynomial algorithms running on a quantum machine which can easily solve

integer factorization and discrete logarithm problem.
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Although the quantum computers that can practically run a quantum algorithm are still being

researched, but if a quantum computer can be put into practiced use in the near future, almost

all currently used cryptographic schemes will be broken. Thus it is necessary to investigate

alternative cryptographic schemes which will be secure even against quantum computing. Under

this situation, the new cryptosystems which can resist attacks of quantum computers need to be

studied, which is done by a so-called post-quantum cryptography.

Currently, post-quantum cryptography has the following main topics[BBD09]:

1. Lattice-based cryptography;

2. Multivariate cryptography;

3. Hash-based cryptography;

4. Code-based cryptography;

5. Super singular Elliptic Curve Isogeny cryptography.

In this thesis, we focus on code-based cryptography.

If the attacker wants to break a coding assumption, it will have to solve the problem of decoding

a random code, and although there are some algorithms attempting to solve this problems, all

of them are exponential[Bar98]. Two important candidates for the post-quantum public key

encryption are the code-based PKE schemes by McEliece [McE78] and Niederreiter [Nie86].

1.1.3 Code-Based Public-Key Encryption

There are many kinds of cryptosystems in code-based public-key encryption cryptography. The

security of them is based on the hardness of decoding in a linear code. The famous code-

based hardness is syndrome decoding(SD) Problem and the general syndrome decoding(G-SD)

Problem[Rot06]. From two code-based hard assumption mentioned above, there are two impor-

tant candidates for the code-based public key encryption. One is the code-based PKE schemes

by McEliece [McE78] which based on general decoding problem, the other is Niederreiter

[Nie86] which is based on syndrome decoding problem. Their security is based on hardness of

decoding of Goppa code, which is a well-studied cryptographic assumption [BMVT78, Sen02,

EOS07, Ber10, BLP11, DMR11a, DMR11b, FGUO+13, BJMM12].

The McEliece encryption is the first code-based PKE been proposed. It uses the error-correcting

codes by Goppa [Gop70, Mat80]. While a more advanced PKE pointed out by Bernstein et

al.[BLP11] using a different family of codes has a asymptoticly good performance towards the

origin McEliece PKE. The other code-based PKE system is Niederreiter cryptosystem, it uses

the random irreducible Goppa code, The benefit is that it can use pseudorandom generator to

construct the commitment functions which does not have trapdoor. So the adversary who does

not know the secret key will face the syndrome decoding problem. It means that, until now,

there is no polynomial time algorithm to decode the ciphertext from Niederreiter cryptosystem.
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By comparison, the speed of Niederreiter cryptosystem encryption is close to other public key

cryptosystems which use pseudorandom permutation, for instance, the block ciphers.

Since breaking both of these PKE cryptosystems is believed to be infeasible for properly chosen

parameters [EOS07, BLP11, FGUO+13], even for adversaries equipped with quantum com-

puters [Ber10, DMR11a, DMR11b]. That makes these PKE schemes candidates for the post-

quantum world. Existing results include, for instance, identification schemes and digital sig-

natures – see e.g. the surveys [EOS07, OS09, CM10], and also [Pie12] for related results.

Nevertheless, the current challenge in the code-based cryptography is to enrich the variety of

code-based cryptographic protocols, which gave the direction of our main task in this thesis,

that is, to study and research how to design code-based cryptosystems.

1.1.4 Digital Signatures

In generally, the basic framework of a digital signature scheme consists of two algorithms and a

pair of keys (pk, sk), where pk is the signer’s public key and sk is its secret key. This algorithm

can identify every signer uniquely so that no user can deny his signature. The other algorithm is

the verification algorithm available to everyone by using pk.

1.1.4.1 Undeniable Signatures

Undeniable signature [CVA90] introduced by Chaum and van Antwerpen is a digital signature

which can only be verified with the help from the signer. In other words, verification procedure

includes two interactive protocols: the one for confirmation of the valid signature and the one for

denial of the invalid one. In a generalized version of this primitive called designated confirmer

signature (DCS) [Cha94] proposed by Chaum, confirmation can be delegated to the third party

called designated confirmer.

1.1.4.2 Designated Confirmer Signatures

Designated confirmer signatures (or just confirmer signatures, for short) are beneficial for the

scenarios where the signer would like to control the process of verification. This property is

important in a number of privacy protecting protocols ranging from software licensing [CVA90]

to electronic auctions [SM00].
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1.2 Zero-knowledge proofs

The first zero-knowledge proof was proposed by Goldwasser et al. in 1985[GMR85]. Here by

we denote ZK as the abbreviation of zero-knowledge. This paper proposed the zero-knowledge

protocol which had two parties, prover and verifier. Prover can prove an assertion to the ver-

ifier without providing any useful information. In 1991, Goldreich et al.[GMW91] gave an

introduction on how to apply the zero-knowledge proof to all languages in NP. Their assertions

guaranteed that the execution of the two parties protocol does not leak any information (in com-

putational, or in statistical sense) to the cheating polynomial time verifier P̃, who might decide

on an arbitrary strategy for choosing her challenges. Zero-knowledge proofs are one aspect of

the most useful tools in cryptography. The important result of zero-knowledge proofs is how

to construct constant-round zero-knowledge proof systems[FS90, GK96]. Generally speaking,

zero-knowledge proof is classified as follows:

1. Interactive zero-knowledge proof;

2. Non-interactive zero-knowledge proof[BFM88, RS92];

3. Multi-prover zero-knowledge proof.

1.2.1 Zero-Knowledge Identification

In identification protocol, there are two parties which are prover and verifier. The prover can

identify his unique statement in a set, the verifier can check the correctness which prover want

to prove. The identification protocol is to allow prover which can identify with control center in

this protocol.

A zero-knowledge identification protocol requires to run the zero-knowledge proof to prove the

statement about the secret key but does not give any information on it to other party. Note that

assuming that one-way functions exist, one could achieve the results which presented in this

work using general ZK proofs for NP-statements [GMW91], however such constructions would

be prohibitively inefficient.

In order to build zero-knowledge identification scheme more effectively, we can use xLPN prob-

lem. The xLPN problem is equivalent to that of general decoding for the same parameters. More

specifically, the only difference is that in xLPN, the generator matrix of the code is chosen uni-

formly at random rather than being full-rank. However, it is possible to choose the appropriate

code parameters such that the probability for the uniform matrix to be full-rank is overwhelm-

ing.

Form constructing zero-knowledge identification scheme, we should emphasize we use inter-

active ZK proofs. According to an observation made in [GK05]: “... known constructions

for non-interactive zero-knowledge proofs (NIZK) [DDN03] for NP languages (which are a
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central tool in constructing CCA2 secure non-interactive public-key encryption given seman-

tically secure public key encryption algorithms) require trapdoor permutations.” At the same

time, the hardness assumptions related to coding give rise to only trapdoor function candidates

[McE78, Nie86].

Recently, Jain et al.[JKPT12] constructed efficient ZK proofs for NP-statements assuming hard-

ness of (x)LPN problem. Their proposal is based on a proof of valid opening for their commit-

ment scheme. Their proof of valid opening also implies a ZK identification scheme based on

xLPN. Our zero-Knowledge identification schemes are based on McEliece PKE and Niederre-

iter PKE so that we can use the proof from Jain et al.

1.2.2 Proof of Plaintext Knowledge

Proof of Plaintext Knowledge(PPK) were first introduced by Aumann and Rabin [AR01] in the

generic case of any PKE, and then investigated by Katz [Kat03], who presented efficient PPK

for RSA, Rabin, ElGamal and Paillier PKE’s. The first PPK in the post-quantum setting for

the lattice-based Ajtai-Dwork PKE was presented by Goldwasser and Kharchenko [GK05], and

with a number of works for the lattice-based schemes followed [XKT07, XT09, BD10]. It is

worth that the works by Xagawa et al. [XKT07] and Xagawa and Tanaka [XT09]. [XKT07]

successfully achieved PPK scheme based on [Reg05], and [XT09] use a modification of the

NTRU identification scheme. The Stern scheme was also used by Kobara et al. [KMO08] for

the similar purpose in a code-based oblivious transfer.

Recently, Morozov and Takagi [MT12] presented PPK and verifiable encryption for the McEliece

PKE using the code-based Véron identification scheme [Vér97], which can be seen as a dual ver-

sion of the Stern scheme [Ste96]. However, Jain et al. [JKPT12] pointed out a gap in the proof

of the zero-knowledge property of the Véron scheme. This also created a gap in the proofs of

both primitives in [MT12].

1.2.3 Verifiable Public-Key Encryption

Verifiable encryption was first introduced by Stadler [Sta96] as a tool for publicly verifiable

secret sharing, and later generalized by Asokan et al. [ASW98] and applied to fair exchange

of digital signatures. The works by Camenisch and Damgård [CD00] and by Camenisch and

Shoup [CS03] made further advances on this topic. Verifiable encryption for the Ajtai-Dwork

PKE was presented in [GK05].
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1.3 Commitments

Commitment schemes find their applications, in particular, in zero-knowledge proofs. In the

random oracle model, a random oracle itself can be readily used for commitments. In the stan-

dard model, one can construct commitments based on pseudorandom generators using Naor’s

paradigm [Nao90]. Jain et al. [JKPT12] presented an efficient commitment scheme which is

directly based on xLPN, a variant of the learning parity with noise (LPN) problem, where the

weight of the error vector is fixed [Pie12]. Note that the structure of the Jain et al. commitment

scheme is essentially the same as that of the IND-CPA McEliece PKE [NIKM08], if the public

key in the latter is substituted with a random matrix.

1.4 Our Contribution and Thesis Outline

In this thesis, our contribution are four-fold:

1. We show that the straight forward generalization of Stern’s identification scheme to q-ary

codes;

2. We give the first code-based proof of plaintext knowledge protocol;

3. We construct the first verifiable encryption based on the McEliece PKE;

4. We construct the first confirmer signature based on coding theory.

The first result is a construction has been made of the identification scheme by Cayrel et al.[CVA10]

designed specifically, for q-ary codes. The research results was published in:

Rong Hu, Kirill Morozov, Tsuyoshi Takagi: On Zero-Knowledge Identification Based on Q-ary

Syndrome Decoding. The 8th Asia Joint Conference on Information Security 2013: 12-18.

Next, we observe that Stern’s identification scheme can be used to construct proof of plaintext

knowledge protocol for code-based cryptosystem. Specifically, we design the proof of plaintext

knowledge protocol for both McEliece and Niederreiter PKE. The research results were pub-

lished in:

Rong Hu, Kirill Morozov, Tsuyoshi Takagi: Proof of plaintext knowledge for code-based public-

key encryption revisited. The 8th ACM Symposium on Information, Computer and Communi-

cations Security 2013: 535-540.

We introduce a new approach for designing verifiable code-based encryption scheme, which

combines two proof of plaintext knowledge protocols. This scheme allows the verifier to check

if a ciphertext contains a given plaintext, without decrypting the ciphertext. The research results

were published in:

Rong Hu, Kirill Morozov, Tsuyoshi Takagi: Zero-Knowledge Protocols for Code-Based Public-

Key Encryption. The Institute of Electronics, Information and Communication Engineers.(accept

with condition).
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Finally, we present that the undeniable signatures and designated confirmer signatures. This

thesis gives the first designated confirmer signature based on coding assumption. We should

emphasize the fact that the designated confirmer signature can be easily degraded to undeniable

signatures. The research results were published in:

Rong Hu, Kirill Morozov, Rui Zhang, Tsuyoshi Takagi: Confirmer Signatures from McEliece

Assumptions. The 31st Symposium on Cryptography and Information Security 2014.

The remaining chapters of this thesis are structured as follows:

Chapter 2: Preliminaries. This chapter provides a background on the results and techniques

from cryptography and coding theory used in the thesis.

Chapter 3: Zero-knowledge identification from codes. This chapter studies the identification

schemes which are based on q-ary codes. We investigate their communication and computation

costs. At last, we give the performance showing the advantages of our schemes.

Chapter 4: Proof of plaintext knowledge for McEliece and Niederreiter PKE schemes. Also,

this chapter evaluates the performance of the different security parameters which run on our

schemes.

Chapter 5: Verifiable code-based encryption. This chapter provides an analysis of verifiable

code-based encryption from McEliece cryptosystem.

Chapter 6: Designated confirmer signatures from codes. This chapter focuses on the design of

a designated confirmer signature scheme which is based on coding theory. This scheme argues

non-transferability, unforgeability, security for the verifier, security for the signer, invisibility,

INV-CMA, EUF-CMA and SEUF-CMA security.

Chapter 7: The conclusions, open questions and plans for future research are presented in this

chapter.



Chapter 2

Preliminaries

2.1 Basic Notions

In this thesis, some classic notation will be sustained such as different kinds of numbers, say, the

set of positive integers N, the relative integers Z, the real numbers R (The set of non negative

real numbers is denoted by R+.). For generating an element x uniformly at random with a given

set S , it will be written x ∈$ S or x
$
←− S . We use the set {0, 1}∗ to generate the bit strings of

arbitrary length. The bit strings x ∈ {0, 1}n means that x be generate by the set {0, 1}∗ with a

fixed length n. The notation |x| denotes its bit length.

Definition 2.1. We say one problem P1 reduces to the problem P2 if there exists an oracle

machine which solves the problem P1 using access to an oracle solving the problem P2.

Definition 2.2. We can also say that P2 is at least as hard as P1 and we denote this fact by

P2 ≥ P1.

2.2 Some Definitions of Computer Science

Turing machine. A Turing machine[Min67] is a hypothetical machine consisted of a tape with

an infinite number of positions within a symbol. Every position can write and read symbols

on the tape and shift left and right. Depending on the symbol read by the head and the internal

state[Sha57], a transition function which orders the machine needs to execute the next operation.

There are several work tapes of Turing machine but only one input tape. Probabilistic Turing

machines can apply probabilistic algorithms to possess an additional tape called random tape

containing uniformly random symbols (a symbol represents a bit.).

In this these, we will very often mention the term polynomial which means that the size of the

input of a polynomial time algorithm. The complexity of a Turing machine is assumed that the

9
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expected complexity over the random tape distribution. The complexity can also be measured

by the number of steps executed by the Turing machine until it reaches the final state.

Definition 2.3. A function f : N → R+ is called negligible if for any polynomial p : N → R+

there exists an integer x1 such that

n ≥ x1 ⇒ f (x) <
1

p(x)
.

Oracle machine. An additional term will also be referred which we call it oracle. This ways

of access are able to perform a special functionality in associating the solution of a computa-

tional(hard) problem. Oracle, or oracle machine gets an access via a special tape on which could

function as an input. Different from classic state, it has a special state ”invocation”, that is, the

oracle input is replaced by its output. For instance, a factorization oracle would return the prime

factors of a given integer.

Random oracles. A concept of idealized objects called random oracle was introduced in [FS87],

and [BR93] to facilitate the security analysis of cryptographic schemes. A random oracle im-

plements a uniformly distributed random function from {0, 1}m to {0, 1}n for some given positive

integers m, n. The generator of oracle which is picked uniformly at random among all possible

functions with a m-bit input and an n-bit output. In the model of random oracle, all participants

have access to such idealized functions through this random oracles. Such an oracle can be

achieved as follows. Firstly, a query function make a list which has the input-output pairs, it can

be empty originally. When any new query come to the oracle, one checks whether it is already

stored as input, if this is the right pair, one answers the corresponding output stored in the list.

If it is not in the queue inside , one picks a uniformly random output of n bits and adds this new

pair in the list.

One can makes security proof easier by using the random oracle because a challenge can be

included to a hard problem in the simulation of random oracles. Although it has shown that a

cryptographic scheme secure in the random oracle model may lead to insecure instantiations in

the standard mode. It is commonly believed that a security proof in this model shows the well

design of related schemes.

One-Way Functions. The property of one-way functions[KL14] is that they are easy to com-

pute, but hard to invert. Since the popular computational assumption in cryptography that is al-

most always hard to solve in polynomial-time. So the definition of a polynomial-time adversary

is formalized by saying the hard-to-invert requirement. For one-way function, the polynomial-

time adversary will always fail to invert the function, except with negligible probability.We
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emphasize that a one-way function is hard to invert if and only if the input is uniformly random.

Definition 2.4. (One-way function) The function picks up {0, 1}n to {0, 1}n and satisfies two

conditions as follow:

1. Easy to compute: There exists a polynomial-time algorithm M such that on input any x ∈

{0, 1}n, M f outputs f (x) (i.e., M f (x) = f (x) for every x).

2. Hard to invert: For every probabilistic polynomial-time adversaryA, there exists a negligible

function negl such that Pr[A( f (x)) ∈ f −1( f (x))] ≤ negl(n).

where the probability is taken over the uniform choice of x in {0, 1}n and the random coin tosses

ofA.

Hard-Core Predicates. To prove our identification schemes and proof of knowledge schemes

needs a notion called pseudorandom generators.

Definition 2.5. (Hard-core predicate):

1. The polynomial-time computable hard-core predicate hc function[KL14] picks up {0, 1}n to

{0, 1}.

2. For every probabilistic polynomial-time adversary A, there exists a negligible function negl

such that

Pr[A( f (x)) = hc(x)|x← {0, 1}n] ≤
1
2

+ negl(n)

where the probability is taken over the uniform choice of x← {0, 1}n and the random coin tosses

ofA.

(Hash Functions) Hash functions plays a great role at the design of practical digital signatures

and protocols. There many constructions of hash functions from different assumptions, in our

protocol we will choose the efficient one. Now we describe hash function following the defini-

tion of Katz[Kat10].

Definition 2.6. (Hash functions) A Hash function is consisted of two probabilistic polynomial-

time algorithms (Gen; H) such that:

1. The probabilistic algorithm Gen picks up {0, 1}m and outputs a key s. (We assume that {0, 1}m

is implicit in s.)

2. There exists a polynomial function l such that H with a key s and x ∈ {0, 1}∗, and outputs a

string Hs(x) ∈ {0, 1}l(m)). (Note that the running time of H is allowed to depend on |x|.)

If Hs is defined only for inputs x ∈ {0, 1}l
′(m)), where l(m) < l′(m) for any k, then we say that

(Gen; H) is a fixed-length hash function for inputs of length l′(m).

For every hash function there are two basic security properties which define as follow:
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Definition 2.7. (Collision-resistant) For every probabilistic polynomial-time adversary A, a

hash function (Gen; H) is collision-resistant if the following property is negligible:

Pr[s← Gen(1k); (x, x′)← A(1k, s) := x′ ∧ Hs(x) = Hs(x′)]

Definition 2.8. (Universal one way) For every probabilistic polynomial-time adversary A, a

hash function (Gen; H) is universal one way if the following property is negligible:

Pr[x← A(1k); s← Gen(1k); x′ ← A(1k, s) := x′ ∧ Hs(x) = Hs(x′)]

2.3 Public-Key Encryption

The PKE is one of the main important achievements of modern cryptography. It is suggest

that readers should acknowledge them or refer to the famous textbook written by N. Koblitz

[Kob94]. PKE transmit the public-key to communicate in a confidential way with the help of an

authenticated channel. Any messages encrypted by public-key will only decrypted by the owner

who has the corresponding secret key. Next we introduce the method based on Katz [KL14] to

build a PKE scheme. We denote the message space byM and the ciphertext space by C.

Indistinguishability. With a view to expound public-Key encryption, primarily, we need two

definitions [KW92] to describe two different kinds of indistinguishability. Our description is

based on the definitions of Goldreich [Gol08].

Definition 2.9. (Probability Ensembles) A probability ensemble is a family of stochastic vari-

able χ = {Xi}i∈N where {Xi} is a probability distribution.

Definition 2.10. (Uniform Ensemble) A uniform ensemble U = {Ui}i∈N is a distribution ensem-

ble means that it uniformly distribute over strings of length n.

Definition 2.11. (Statistical Distance) The statistical distance Θ between two discrete random

variables X1 and X2 with range ϕ is

Θ(X1, X2) :=
1
2

∑
x∈ϕ

|Pr[X1 = x] − Pr[X2 = x]|.

Next we need the same range ϕ to use define the notion of statistical and computational indis-

tinguishability between two sequences of random variables.

Definition 2.12. (Statistical indistinguishability) Let (Ψi)i∈I and (Ωi)i∈I be two probability en-

sembles of discrete stochastic variables such that Ψi and Ωi have the same range for any i ∈ I .

The ensembles (Ψi)i∈I and (Ωi)i∈I are statistical indistinguishable if
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Θ(Ψi,Ωi) = negl(|i|).

More specifically, if Θ(Ψi,Ωi) = 0 for any i ∈ I, it means that these ensembles are perfectly

indistinguishable.

Definition 2.13. (Computational Indistinguishability) Let (Ψi)i∈I and (Ωi)i∈I be two ensembles

of discrete random variable such that Xi and Yi have the same range for any i ∈ I. The ensembles

(Ψi)i∈I and (Ωi)i∈I are computationally indistinguishable if for any probabilistic polynomial-time

(with respect to |i|) algorithm CI.

|Pr[D(i,Ψi) = 1] − Pr[D(i,Ωi) = 1]| = negl(|i|).

Note that if the PKE cryptosystem need large index, The above notations can change to the case

I = N. The negligible function negl takes n ∈ N as input which is easily converted into its

length. This representativeness is included in the above general definitions if we represent any

integer n ∈ N with a unary statement[Gol08]. A PKE scheme is composed of three polynomial

time algorithms.

Definition 2.14. A public-key encryption scheme consists of the following three algorithms:

Setup(Key Generation), Encryption, and Decryption.

• Setup The key generator is a probabilistic algorithm which on input of the security pa-

rameter 1k outputs a key pair. We have (pk, sk)← S etup(1k).

• Enc The encryption algorithm is a probabilistic algorithm which takes a message m ∈ M

and the public key pk as its input and outputs a ciphertext c. We have c← Enc(m, pk).

• Dec The decryption algorithm is a deterministic algorithm which takes a ciphertext c ∈ C

and the secret key sk to output a message m ∈ M. We have m← Dec(c, sk).

Correctness. Pke require that any encrypted can be retrieved with the decryption algorithm.

For any message m ∈ M and any pair (pk, sk), PKE can do the following functions: c ←

Enc(m, pk); m← Dec(c, sk).

Next we present a security notion called indistinguishability under a chosen plaintext attack

(IND-CPA as abbreviation) which is based on the word of [GM84]. This notion formalizes the

fact that two ciphertexts of two different messages should be indistinguishable for any adversary

which does not know sk. Here we assume the adversary is only given pk which allows him to

encrypt any message m. In all features of indistinguishability, the weakest for an adversary can

think of is to perform a chosen-plaintext attack.
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IND-CPA Security Notion. For describing indistinguishability under chosen-plaintext attack,

let us first consider an adversary A modeled by a probabilistic polynomial algorithm and the

two following games corresponding to b ∈ {0, 1}.

(Gameind−cpa−b.) First,A is fed by a public key pk generated by (pk, sk)← Setup(1k).

After a given time, the adversaryA submits two messages m0,m1.

The challenger answers c← Enc(mb, pk). ThenA outputs a bit b
′

.

Definition 2.15. We define the advantage of the adversary as follows

Advind−cpa
A

:= |Pr[b
′

= 1 in Gameind−cpa−1] − Pr[b
′

= 1 in Gameind−cpa−1]|,

where the probabilisties are over the random tapes of the involved algorithms. We say that

a public-key encryption scheme satisfied indistinguishability under a chosen plaintext attack

(IND-CPA) if there exists no probabilistic polynomial time adversary A such that Advind−cpa
A

is

non-negligible.

IND-CCA1 Security Notion. For describing indistinguishability under chosen ciphertext at-

tack,Let A be an adversary, which we model as an arbitrary non-uniform PPT machine (poly-

nomial in the implicit security parameter of the encryption scheme). We define the following

game played against A:

(Gameind−cca1−b)A get a key according to the key generation algorithm: (pk, sk)← Setup(1k).

We choose a random bit b ← {0, 1}. A is allowed to query an oracle that computes the func-

tionality EncK . Challenge: A outputs two messages, m0, and m1. Response: We give A the

ciphertext EncK(mb) A outputs b′, (a guess from b). We say that the advantage of A in this

experiment is Pr[b = b′] − 1/2.

Definition 2.16. We define the advantage of the adversary as follows

Advind−cca1
A

:= |Pr[b
′

= 1 in Gameind−cca−1] − Pr[b
′

= 1 in Gameind−cca−1]|,

where the probabilisties are over the random tapes of the involved algorithms. We say that

a public-key encryption scheme satisfied indistinguishability under a chosen ciphertext attack

(IND-CCA1) if there exists no probabilistic polynomial time adversaryA such that Advind−cca−1
A

is non-negligible.

IND-CCA2 Security Notion. In the non-adaptive case (IND-CCA1), the adversaryA does not

make any decryption oracle calls after receiving the challenge ciphertext C. In contrast, in the

adaptive case (IND-CCA2), the adversaryA is allowed to make the decryption oracle calls even

after receiving C under restriction that C is not submitted to the oracle.
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2.4 Elements of Coding Theory

In this section, we explain the coding theory following the description of [MS77, Rot06]. In

communications and information processing, we use code (error-correcting code) to recover

the error happened caused by something like electromagnetic or light interference or simple

channel noises. Error-correcting codes, by the feature of their structures, includes two classes,

linear codes and nonlinear codes. For instance, for any codeword c1 and c2 in a linear code C,

we have c3 = c1 ⊕ c2 also a codeword in C. While it is not true for a nonlinear code. In our

thesis, we focus on linear codes.

2.4.1 Notions

For linear codes, there are two kinds of codes. One is the error-detecting code and the other

is error-correcting code. Roughly speaking, error-correcting codes are usually strengthened

version than the error-detecting codes. Since error-detecting codes only can detect the error

Both of kinds can allow us to not only to detect errors but also to correct from a wrong state.

Generally speaking, whatever kind of error-correcting code it is, the main idea to correct or

detect errors is to add redundancy, which means the coder would put some more information

bits to the origin codes. Error-detection and correction schemes can be either systematic or non-

systematic: In a systematic scheme, the transmitter sends the original data, and attaches a fixed

number of check bits (or parity data), which are derived from the data bits by some deterministic

algorithm.

A binary (n, k)-code C is a k-dimensional subspace of the vector space Fn
2, n and k are called the

length and the dimension of the code, respectively. We call C an (n, k, d)-code, if its so-called

minimum distance is d := min
x,y∈C;x,y

dH(x, y). For a generator matrix G ∈ Fk×n
2 , we will denote the

corresponding code as C(G). For the relevant topics in the coding theory, we refer the reader to

[Rot06, Mat80]. Suppose there is a telegraph wire from Boston to New York down which 0’s

and 1’s can be sent. Usually when a 0 is sent it is received as a 0, but occasionally a 0 will be

received as 1, or a 1 as a 0. Let us say that ont her average 1 out of every 100 symbols will be

in error. i.e., for each symbol there is a probability p = 1/1000 that the channel will make a

mistake. This is called a binary symmetric channel.

There are a lot of important messages to be sent ddown this wire, and they must be sent as

quickly and reliably as possible. The messages are already written as a string of 0’s and 1’s-

perhaps they are being produced by a computer.

We are going to encode these messages to give them some protection against errors on the

channel. A block of k messages symbols u = u1u2 . . . uk (ui = 0 or 1) will be encoded into a

codeword x = x1x2 . . . xn (xi = 0 or 1) where n ≥ k; these codewords form a code.

The method of encoding we are about to describe produces what is called a linear code. The
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first part of the codeword consists of the message itself:

x1 = u1, x2 = u2, . . . xk = uk,

followed by n − k check symbols

xk+1, . . . , xn.

The check symbols are chosen so that the codewords satisfy

H


x1

x2
...

xn


= Hx> = 0, (2.1)

where the (n − k) × k matrix H is the parity check matrix of the code, given by

H = [A|In−k], (2.2)

A is the (n− k)× (n− k) unit matrix. The arithmetic in Equation (2.1) is to be performed modulo

2,, i.e. 0 + 1 = 1, 1 + 1 = 0,−1 = +1. We shall refer to this as binary arithmetic.

Example 2.1. The parity check matrix of a code

H =


0 1 1 1 0 0

1 0 1 0 1 0

1 1 0 0 0 1

 (2.3)

defines a code with k = 3 and n = 6. For this code

A =


0 1 1

1 0 1

1 1 0

 (2.4)

The message u1u2u3 is encoded into the codeword x = x1x2x3x4x5x6, which begins with the

message itself:

x1 = u1, x2 = u2, x3 = u3,

followed by three check symbols x4x5x6 chosen so that Hx> = 0, i.e. so that

x2 + x3 + x4 = 0,

x1 + x3 + x5 = 0,

x1 + x2 + x6 = 0.

(2.5)
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If the message is u = 011, then x=0, x2 = 1, x3 = 1, and the check symbols are

x4 = −1 − 1 = 1 + 1 = 2 = 0,

x5 = −1 = 1, x6 = −1 = 1

so the codeword is x = 011011.

The equations (2.5) are called the parity check equations, or simply parity checks, of the code.

We take (2.1) as our general definition:

Definition 2.17. (Parity Check Matrix) Let H be any binary matrix. The linear code with parity

check matrix H consists of all vector x such that

Hx> = 0

where this equation is to be interpreted modulo 2.

It is convenient, but not essential, if H has the form shown in (2.2) and (2.3), in which case the

first k symbols in each codeword are message or information symbols, and the last n − k are

check symbols.

Linear codes are the most important for practical applications and are the simplest to understand.

In this thesis, the detail of nonlinear codes will not be inferred for the sake of concise.

Proposition 2.18. For every two codewords c1, c2 ∈ C and two scalars a1, a2 ∈ GF(q), we have

a1c1 + a2c2 ∈ C.

Example 2.2. The (3, 4, 2) parity code over GF(2) is a linear [3,2,2] code spanned by (1 0 1)

and (0 1 1).

Example 2.3. The (3, 2, 3) repetition code over GF(2) is a linear [3, 1, 3] code generated by

G = (1 1 1).

In general, the [n, 1, n] repetition code over a field F is defined as the code with a generate

metrix

G = (1 1 . . . 1).

How to check a word is codeword ∈ C? We can use the parity check matrix.

• The definition again:x = x1x2 . . . xn is a codeword if and only if

Hx> = 0. (2.6)
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• Usually the parity check matrix H is an (n − k) × n matrix of the form

H = [A|In−k] (2.7)

and as we have seen there are 2k codewords satisfying (2.6). (This is still true even if H

doesn’t have this form, provided H has n columns and n − k linearly independent rows.)

When H has the form (2.7), the codewords look like as follows:

x = message symbols, check symbols = x1 . . . xk, xk+1 . . . xn.

• If the message is u = u1 . . . uk, what is the corresponding codeword x = x1 . . . xn? First

x1 = u1, . . . , xk = uk, or 
x1
...

xk

 = Ik


u1
...

uk

 , Ik = unit matrix. (2.8)

Then from 2.6 and 2.7, since

[A|In−k]


x1
...

xn

 = 0. (2.9)

We have, 
xk+1
...

xn

 = −A


x1
...

xk

 = −A


u1
...

uk

 , from 2.8. (2.10)

In the binary case −A = A, but later we shall treat case where −A , A. put the 2.8 on top of

2.10: 
x1
...

xn

 = [
Ik

−A
]


u1
...

uk

 (2.11)

We get

x = uG (2.12)

where

G = [Ik| − AT ] (2.13)

We can easily obtained H from G.
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Definition 2.19. (The Generator Matrix) G is called a generator matrix of the code for 2.12

we says that the codewrods are all possible linear combinations of the row of G. 2.6 and 2.12

together imply G and H are related by

GHT = 0, or HGT = 0. (2.14)

2.4.2 Security of Linear Codes

Definition 2.20 (Gilbert-Varshamov Bound [Rot06]). Let C is a q-ary code with length n and

minimum hamming weight d,Cq(n, d) is the maximum possible size of C, we have Cq(n, d) >
qn

d−1∑
i=0

ni
 (q − 1)i

. For simplicity, we can change the formula as follow:

Let Hq(x) = x logq(q − 1) − x logq(x) − (1 − x) logq(1 − x) be the q-ary entropy function. Let

d/n = ζ, and the rate of a q-ary linear code R = k/n. If 0 ≤ ζ ≤ (q − 1)q, then for any n, there

exists an (n, k, d) code such that

R ≤ 1 − Hq(ζ).

Definition 2.21. (Goppa codes [MS77]). A polynomial G(x) called the Goppa polynomial, hav-

ing coefficients from GF(qm), fix m and a subset L = {b1, ..., bn} over GF(qm) (G(bi) , 0 for all

element form L.) We do not consider the case where the element form L is zero.

With any vector a = (a1, ..., an) over GF(q), there is the rational function

Ra(x) =

n∑
i=1

ai

x − bi .

The Goppa code Γ consists of all vectors a such that

Ra(x) ≡ 0 mod G(x),

or equivalently such that Ra(x) = 0 in the polynomial ring GF(qm)[x]/G(x). If G(x) is irreducible

then Γ is called an irreducible Goppa code.

2.4.3 Hardness Assumptions

The hard problem for code-based cryptographic systems are based on the problem as follows.

We will use assumption related to security of Niederreiter public key encryption

Definition 2.22. Syndrome Decoding (SD) Problem.

Input: H
$
← F(n−k)×n

q , y
$
← Fn−k

q and 0 < ω ∈ N.

Decide: If there exists e ∈ Fn
q s.t. HeT = y and wH(e) ≤ ω.
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This problem was shown to be NP-complete by Berlekamp et al [BMVT78]. The best algorithm

for solving it is the Information Set Decoding algorithm by Peters [Pet10].

We will use two assumptions related to security of McEliece public key encryption [McE78,

Sen02].

Definition 2.23. General Syndrome Decoding (G-SD) Problem.

Input: G
$
← Fk×n

2 , y
$
← Fn

2 and 0 < t ∈ N.

Output: x ∈ Fk
2, e ∈ Fn

2 s.t. wH(e) ≤ t, xG ⊕ e = y.

This problem was shown NP-complete by Berlekamp et al. [BMVT78].

Definition 2.24. Goppa Code Distinguishing(GCD) Problem.

Input: H ∈ F(n−k)×n
2 .

Decide: If H is a parity check matrix of an (n, k) irreducible Goppa code in Definition 2.21, or

of a random (n, k)-code?

Currently, there are no polynomial algorithms for either of these problems [Sen09] in the general

case. We remark that the Goppa Code Distinguishing Problem can be solved efficiently for high-

rate Goppa code [FGUO+13]. However, a careful choice of code parameters will allow us to

avoid the attack of [FGUO+13].

We assume both of the above problems to be hard.

2.4.4 Code-based PKE

2.4.4.1 McEliece PKE

The McEliece PKE consists of the following triplet of algorithms (K ,E,D) with system param-

eters n, t ∈ N:

• Key generation algorithm K : On input 1κ, choose the appropriate (n, k, t), and generate the

following matrices:

− G ∈ Fk×n
2 – the generator matrix of an irreducible (n, k) binary Goppa code correcting up to

t errors, where k ≥ n − t · log n. Its decoding algorithm is denoted as DecG.

− S ∈ Fk×k
2 – a random non-singular matrix.

− P ∈ Sn – a random permutation matrix (of size n).

− Gpub = S GP ∈ Fk×n
2 .



Chapter 2. Preliminaries 21

Output the public key pk = (Gpub, t) and the secret key sk = (S ,G, P).

• Encryption algorithm E: On input a plaintext m ∈ Fk
2 and the public key pk, choose a vector

e ∈ Fn
2 of weight t at random, and output the ciphertext c = mGpub + e.

• Decryption algorithmD: On input c and the secret key sk, calculate:

− cP−1 = (mS )G + eP−1.

− mS G = DecG(cP−1).

− Let J ⊆ {1, . . . , n} be such that GJ is invertible.

Output m = (mS G)J(GJ)−1S −1.

It is easy to check that the decryption algorithm correctly recovers the plaintext: Since in the first

step of decryption, the permuted error vector eP−1 is again of weight t, the decoding algorithm

DecG successfully corrects these errors in the next step.

There some attacks can broken the McEliece cryptosystem, but we believe if we construct the

McEliece cryptosystem based on the binary irreducible Goppa code, it is security [BLP08].

2.4.4.2 Niederreiter PKE

For a survey on the material presented in this and the next subsections, we refer the reader to

[EOS07, OS09].

The Niederreiter PKE consists of the following triplet of algorithms (K ,E,D) with the system

parameters n, t ∈ N:

• Key generation algorithm K : On input 1κ, choose the appropriate (n, k, t), and generate the

following matrices:

− H ∈ F(n−k)×n
2 – the parity check matrix of an irreducible (n, k) binary Goppa code which can

correct at most t errors, where k ≥ n − t · log n. The decoding algorithm of this code is denoted

as DecH .

− M ∈ F(n−k)×(n−k)
2 – a random non-singular matrix.

− P ∈ Sn – a random permutation matrix.

− Hpub = MHP ∈ F(n−k)×n
2 .

Output the public key pk = (Hpub, t) and the secret key sk = (M,H, P).

• Encryption algorithm E: On input a plaintext m ∈ Fn
2 such that wH(m) = t, and the public key

pk, output the ciphertext c = HpubmT .



Chapter 2. Preliminaries 22

• Decryption algorithmD: On input a ciphertext c and the secret key sk, calculate:

− M−1c = (HP)mT .

− Since (HP)mT = H(PmT ), use the decoding algorithm DecH to recover PmT .

−Output mT = P−1PmT .

It is easy to check correctness of the decryption algorithm: After the first step of decryption,

we obtain a syndrome of the permuted plaintext PmT . Since the decoding algorithm DecH is

known, it is easy to recover the plaintext.

We note that the plaintext space of the Niederreiter PKE is the set of weight-t binary vectors.

For representation of arbitrary binary vectors (of an appropriate length) as a valid plaintext, see

the work by Cover [Cov73] and its improvements by Sendrier [Sen05].

2.4.4.3 IND-CPA Variants

The hardness of SD problem and G-SD problem implies the one-wayness under chosen-plaintext

attacks (OW-CPA) for the respective PKE’s. This basic security notion states that any PPT ad-

versary has only negligible probability in winning the following game. The challenger generates

a public key pk and a uniformly random plaintext m, encrypts the latter into the ciphertext c,

and submits pk and c to the adversary. The adversary wins, if she outputs m. The probability is

taken over the random coins used to generate the key pair, the choice of m, and the randomness

of the adversary.

Nojima et al. [NIKM08] introduced the efficient IND-CPA variants of the Niederreiter and the

McEliece PKE’s under hardness of the Syndrome Decoding and the LPN problems, respectively,

plus hardness of the GD problem (in both cases). The IND-CPA variant is constructed by a

uniform padding of the plaintext. We refer the reader to [NIKM08] for details.

In the standard model, Nojima et al. [NIKM08] show that the McEliece encryption with a

random padding of the plaintext (which is multi-bit) is IND-CPA secure under hardness of the

learning parities with noise (LPN) problem for a formal definition of LPN problem – it is similar

to G-SD problem except that in the error vector e, each bit has Bernoulli distribution with fixed

p, 0 < p < 0.5. and SD problem. Let n, k be the integers such that n ≥ k, then Binary(n, k)

denotes a set of Fk×n
2 (i.e. the set of (k × n) binary matrices) of rank k.

The IND-CPA Niederreiter encryption is constructed in the same way, as described above, ex-

cept that the ciphertext is computed as follows c = Hpub(r|m)T , where r ∈ Fn0 , wH(r) = t0,

m ∈ Fn1
2 , wH(m) = t1, and n = n0 + n1, t = t0 + t1.
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The IND-CPA McEliece encryption is constructed in the same way as described above, except

that the ciphertext c = (r|m)Gpub + e, where r
$
← Fk0

2 , m ∈ Fk1
2 , k = k0 + k1.

We refer the reader to [NIKM08] for the security arguments and the recommended parameters.

2.5 Zero-Knowledge Proofs

From the practical point of view, it is preferable to construct zero-knowledge proofs which are

secure against malicious verifier.

One can imagine various applications, where the receiver of the ciphertext might want to ensure

in advance that the sender knows the plaintext inside it. For instance, in case of an auction,

when the encrypted bid is sent, an adversary might intercept it and re-send it on his own behalf,

in attempt to bring the auction to a draw. Clearly, deployment of PPK would prevent the above

attack. One might argue that an authentication mechanism such as digital signature might be a

cheaper solution, however it depends on a particular application, since PPK does not bind the

bidder to the bid. Therefore, the interactive nature of PPK would allow the bidder to authenti-

cate the bid, but deny it later for privacy reasons. One practical application of zero-knowledge

PPK is a secure service for cloud storage, where an encrypted message from a sender P is first

held by a cloud storage provider (playing a role of the verifier V) and then, after some time,

transferred to the intended receiver. In this scenario, PPK allows the provider V to verify that

the ciphertext coming from P is indeed valid. Hereby, a dishonest P̃ cannot submit an invalid

ciphertext, causing the receiver to blame V for mishandling the ciphertext. As compared to the

use of digital signature, PPK allows V to verify correctness of the ciphertext, but it does not

allow a dishonest Ṽ to convince anybody else that the ciphertext comes from P, due to the zero-

knowledge property. An immediate application of this result is the interactive chosen-ciphertext

secure encryption. Here, the sender uses an IND-CPA secure PKE to encrypt a message for the

receiver, who must be online. Along with transmitting the ciphertext, the sender also uses the in-

teractive PPK to convince the receiver that he knows the message. According to the observation

by Katz [Kat03], this construction results in an interactive IND-CCA1 PKE [GHY86, Gol01].

Combined with the IND-CPA secure McEliece encryption by Nojima et al. [NIKM08], this

yields the first code-based interactive IND-CCA1 PKE in the standard model.

2.6 Commitments

ZK proof systems require commitments. A commitment scheme consists of two phases: the

first one is commitment, where a sender P provides a receiver V with an evidence about an input

m. The cheating receiver Ṽ cannot learn m at this stage – this property is called hiding. In the
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second phase, called opening, P reveals m to V . The cheating sender P̃ cannot successfully any

other message apart from m – this property is called binding. Let us denote by [P,V]A,st the view

of the party A ∈ {P,V} at the stage st, which is a concatenation of all the messages sent and

received by A, along with its local randomness.

We denote by Com(x1, x2, . . .) a commitment to values (x1, x2, . . .). For simplicity, we henceforth

denote a commitment to a value x, respectively a pair of values (x, y), by Com(x), respectively

Com(x, y), and omit the mentioning of the public commitment key.

Definition 2.25. A triple of algorithms (KGen, com,Ver) is called a commitment scheme, if the

following holds:

• On input 1κ, the key generation algorithm KGen outputs a public commitment key pk.

• The commitment algorithm com takes as inputs a message m from a message space M

and a commitment key pk, and outputs a commitment/opening pair (c, d).

• The verification algorithm Ver takes pk, m, a commitment c and an opening d and outputs

1 or 0.

The commitment scheme is secure, if it satisfies the following three properties. We present them

somewhat informally, and refer the reader to [Dam99, Sch] for details.

• Correctness: Ver evaluates to 1 whenever the inputs were computed by honest parties P

and V , i.e., for any m ∈ M, given pk
$
← KGen(1κ), and (c, d)

$
← com(m, pk), we have that

Ver(pk,m, c, d) = 1.

• Binding: For any P̃, the probability of generating (d, d′) satisfying

(Ver(pk,m, c, d) = 1) ∧ (Ver(pk,m, c, d′) = 1)

must be negligible over the random coins of KGen and P̃.

• Hiding: For any m,m′ ∈ M, and (c, d)
$
← com(m, pk) and (c′, d′)

$
← com(m′, pk), the

distributions of c and c′ are indistinguishable, where the random variables are over the

random coins of com.

If P̃ is restricted to run in PPT, then the binding is called computational and otherwise it is

statistical. The hiding is called computational, respectively statistical, if in its definition, the

indistinguishability is computational, respectively statistical. We adapt the following definition

from [JKPT12].
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Definition 2.26. A protocol is said to securely implement string commitment, if at the end of its

execution by PPT Turing machines P (with input b ∈ Fl
2, l ∈ N) and V , the following properties

hold:

(Correctness) Pr[〈P(b),V〉 = 1] with overwhelming probability.

(Hiding) For any PPT Ṽ , any l ∈ N, any b ∈ Fl
2 and b′ ∈ Fl

2 such that b′ , b, after the committing

stage, but before the opening stage, the distributions

[P(b), Ṽ]Ṽ ,Commit and [P(b′), Ṽ]Ṽ ,Commit

are indistinguishable. Depending of the type of indistinguishability, hiding can be statistical or

computational.

(Binding) For any P̃, any l ∈ N, any commitment can be successfully opened in a unique way,

i.e.,

〈P̃(b),V〉

is non-negligible. If P̃ is restricted to run in PPT, then binding is called computational, if P̃’s

computing power is not restricted, then the binding is statistical.

In the standard model, an efficient computationally hiding and statistically binding commitment

commitment schemes is presented by Jain et al. [JKPT12].

The fact that the commitment is statistically binding, allows the prover in our zero-knowledge

proof system to be computationally unbounded.

Note that committing to binary vectors does not pose a problem, since mathematical objects,

which we are working with, will eventually be represented as binary vectors for the actual im-

plementation.

In the random oracle model (ROM) [BR93], a string commitment which is both computation-

ally hiding and binding can be implemented using (idealized) cryptographic hash function.

h : {0, 1}∗ → {0, 1}lc , for some fixed lc. In order to commit to a binary vector x, one com-

putes Com(x) = h(r||x), where “||” denotes concatenation, and r
$
← {0, 1}lr , for some fixed lr.

Then, the opening simply consists of announcing (r, x). In the standard model, a computation-

ally hiding and statistically binding code-based commitment commitment schemes are known

[DvdGMQN08, JKPT12].

Perfectly Binding and Computational Hiding Commitments from Coding Theory.
It is necessary for us to study the commitments function based on coding theory which have the

properties perfectly binding and perfectly hiding. A theorem for proof perfectly binding and

computational hiding is presented in this section. An outline of the research from the definition
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[JKPT12] that is we can make the perfectly binding and computational hiding commitments

based on SD problem and G-SD problem. We strongly recommend readers get more details

from [JKPT12].

2.7 Code-Based Identification Scheme

The first practical identification scheme based on coding theory is that the Stern’s scheme

[Ste96] schemes. This scheme is valid for any code, for which SD problem is hard, not just

a random one. Clearly, the SD problem implies hardness of decoding of the code represented

by the parity check matrix H.

Note that in the following protocol, the probability for P̃ to past the protocol (i.e. to make V

accept the proof without knowledge of the witness (m, e)) at least 2/3. This scheme can be

reduced to an arbitrary small value (2/3)s by running the protocol for s times.

Witness: s, s ∈ Fk
2, t an integer, where the parameters n, k, t are described in Section 2.4.1.

Common data: (H ∈ F(n−k)×n
2 , t) – the parity check matrix, and i = HsT – the syndrome of

message s.

1. P chooses randomly a word y ∈ Fn
2 of n bits and a permutation σ of {1, 2, ..., n} and sends

three commitments:

– C1 = com(σ|HyT ),

– C2 = com((yσ),

– C3 = com((y ⊕ s)σ).

2. V sends b
$
← {0, 1, 2}.

3. In this step, V checks the validity of the quantities presented by P, and rejects if it does

not hold:

• If b = 0,

– P sends y and σ, and opens C1, C2.

– V checks validity of C1 and C2, since H is public.

• If b = 1,

– P sends (y ⊕ s) and σ, and opens C1, C3.

– V checks that the validity of C2, C3

(using that HyT = (y ⊕ s)T + i).
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• If b = 2,

– P sends yσ, sσ, and opens C2, C3.

– V checks the validity of C1, C3 by using yσ ⊕ sσ = (y ⊕ s)σ,and check that wt(s) = t.

2.8 Proof of Plaintext Knowledge

We borrow some parts of the presentation in this section from [MT12]. All of these ll of these

concepts will be used in section 4. The Hamming distance between x, y ∈ Fn
2 (i.e. the number

of positions where they differ) is denoted as dH(x, y). The distance of x ∈ Fn
2 to the zero-vector

0n denoted by wH(x) := dH(x, 0n) is called the weight of x. Henceforth, we will write 0 for the

zero-vector of an appropriate length which will be clear from the context. For x, y ∈ Fn
2, x + y

will denote the bitwise exclusive-or. Let J be an ordered subset as follows: { ji, . . . , jm} = J ⊆

{1, . . . , n}, then we denote a vector (x j1 , . . . , x jm) ∈ Fm
2 by xJ . Similarly, we denote by MJ ∈ F

k×|J|
2

a restriction of the matrix M ∈ Fk×n
2 to the columns with indices in J. A concatenation of

matrices X ∈ Fk×n0
2 and Y ∈ Fk×n1

2 is written as (X|Y) ∈ Fk×(n0+n1)
2 , and for k = 1 this will denote

concatenation of vectors. We denote by x
$
← X a uniformly random sampling of an element

from its domain X. A set of (n × n) permutation matrices is denoted by Sn. By Binary(k, n),

we denote the set of the matrices in Fk×n
2 of rank k. All the logarithms are to the base 2, unless

otherwise stated. If A is a PPT algorithm which on inputs (x1, . . . , xn) computes the outputs

(y1, . . . , yn), we write it as (y1, . . . , yn)
$
← A(x1, . . . , xn).

We model a party taking part in an interactive two-party protocol as an interactive Turing ma-

chine. We denote by 〈A(a), B(b)〉(c) a random variable representing the output of a party B

following an execution of an interactive two-party protocol between a party A with private input

a and B with private input b on a joint input c, where A and B have uniformly distributed random

tapes. If a party, say A, has no input, then we omit it by writing just A (instead of A(a)) in the

above notation. In our two-party protocols, we will denote an honest prover by P and an honest

verifier by V , while a dishonest party will be denoted by P̃ and Ṽ , respectively.

We call a function ε(κ) negligible in some parameter κ, if ε(κ) = 2−ω(log κ). We call a proba-

bility 1 − ε(κ) overwhelming, when ε(κ) is negligible. Occasionally, we may omit mentioning

the security parameter, when it is clear from the context. In these cases, by saying that a quan-

tity is negligible (overwhelming), we mean that it is negligible (overwhelming) in the security

parameter.

We adapt the following definition from [Kat03]. For a PKE scheme (K ,E,D), denote by c =

Epk(m; R) a ciphertext of a plaintext m under the public key pk using the randomness R. We will

call (m,R) a witness to the decryption of c under pk. Informally, in a PPK protocol, a sender P



Chapter 2. Preliminaries 28

proves to a receiver V the knowledge of a witness to the decryption for some ciphertext c under

the known public key pk.

Definition 2.27. Let Π = (P,V) be a tuple of PPT algorithms. Π is a proof of plaintext knowledge

for an encryption scheme (K ,E,D) if the following conditions hold:

(Completeness) For any pk output by K(1κ) and any c with witness w to the decryption of c

under pk, we have that 〈P(w),V〉(pk, c) = 1 (when V outputs 1 we say it accepts).

(Soundness) For a public key pk output byK(1κ), a ciphertext c produced under such the pk, and

for any expected PPT P̃, we have that Pr[〈P̃,V〉(pk, c) = 1] is negligible, where the probability

is taken over the random coins of K , and the random tapes of both P̃ and V .

(Zero-knowledge) There exists a PPT Turing machine SIM (called a simulator) such that, for

any pk output byK(1κ), any PPT Ṽ , and any w, the following distributions are indistinguishable:

{c = Epk(m; R) : 〈P(w), Ṽ〉(pk, c)},

{c = Epk(m; R) : 〈SIM, Ṽ〉(pk, c)},

where the probability is taken over the random tapes of both P and Ṽ . In the case of statisti-

cal, respectively computational indistinguishability, we call the property statistical, respectively

computational zero-knowledge (ZK).

2.9 Verifiable Public-Key Encryption

Definition 2.28. Let (K ,E,D) be a public key encryption scheme, let R be a binary relation and

let LR = {x|∃w : (x, w) ∈ R}. A secure verifiable encryption scheme for a relation R consists of a

two-party protocol between P and V such that the following conditions hold:

(Completeness) For any pk output by K(1n) and any x ∈ LR, we have 〈P(x),V〉(pk, c) = 1

(when V outputs 1 we say it accepts.)

(Soundness) For any pk output byK(1n), any x′ < LR, and for any expected PPT P̃, Pr[〈P̃(x′),V〉(pk, c) =

1] is negligible, where the probability is taken over the random tapes of both P̃ and V .

(Zero-knowledge) There exists a PPT simulator SIM such that, for any pk output by K(1n),

any PPT Ṽ , and any x ∈ LR, the following distributions are computationally indistinguishable:

{x ∈ LR : 〈P(x), Ṽ〉(pk, c)}, {x ∈ LR : 〈SIM, Ṽ〉(pk, c)},

where the probability is taken over the random tapes of both P and Ṽ .
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Note that this definition captures only the properties related to verifiability. We implicitly assume

that a scheme in question is indeed a public-key encryption scheme. For a formal definition, see

e.g. [Gol04, Ch. 5].

2.10 Digital Signatures

During the past decades, the digital signatures have been implemented using in internet, personal

computer and so on. The digital signatures are the online/offline protocols which contain a signer

and the other a set of potential verifier. For signing the message, the signer will use a secret key

from himself, the message after sign and be published we call it as digital signature. In the

standard model, any potential verifier can check this signature by using public key. To check

the signature, there are some trusted parts we call Public Key Infrastructures (PKI) who can

identify a valid digital certificate, all of them can publish the public key. We have a lot of ways

to construct the digital signatures. For example, due to the contribution of Rivest, Shamir, and

Adleman in [RSA78], one of digital signatures was proposed by using the RSA trapdoor one-

way permutation. From the above description, we can see the digital signatures may create by

PKE schemes like identification scheme.

A digital signature scheme consists of the three following polynomial-time algorithms[Kat10].

• Setup This probabilistic algorithm generates a key pair which is associated with the

signer. We have (pk, sk)← S etup(1k).

• Sign This probabilistic algorithm generates a signature for a given message m ∈ M with

respect to the above generated key pair. We have δ← S ign(m, sk).

• Verify The verification algorithm is usually deterministic and takes a message signature

pair (m, δ) ∈ M× Σ and the public key pk as input and outputs with repect to the key pair

(pk, sk). The output bit 1 means that the signature is valid.

It is supposed that the signer should transmit his public key pk to the verifier through an au-

thenticated channel so that the verifier is ensured that pk really corresponds to the right signer.

Once this step is performed,, the signer can authenticate messages using digital signatures even

through an insecure communication channel.

Here we introduce the notion existential un f orgeability under an adaptive message attack. It

was first put forward by Goldwasser, Micali, and Rivest in [GMR88].
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2.10.1 Existential Unforgeability Digital Signatures

To obtain a code-based EUF-CMA signature[Kat10], we propose to apply Fiat-Shamir transform[FS87,

Kat10] to a code-based identification scheme by Stern[Ste96] or to that by Jain et al.[JKPT12].

We use the definition from Katz’s book[Kat10] as following transform. Fiat-Shamir Trans-
form.

Definition 2.29. LetΞ = (Gen; P; V) be a standard identification scheme where the verifier’s

challenges are chosen uniformly from Ψ. Let H : {0, 1}∗ → Ψ be a hash function.

Key generation: Run Gen(1k) to generate keys (pk, sk). These are the public and secret keys,

respectively.

Signature generation: To sign message m using secret key sk, do: 1. Run the prover algorithm

P(sk) to generate an initial message I. 2. Compute c := H(I; m). 3. By usingP(sk), Compute

the appropriate response r to the challenge c. The signature is (I, r).

Signature verification: To verify the signature (I, r) on message m with respect to public key

pk, proceed as follows: 1. Compute c := H(I; m). 2. Accept the signature iff (pk, I, c, r) is an

accepting transcript.

Any EUF-CMA (code-based) digital signature can be used. A number of code-based signature

algorithms exist [KKS97, CFS01, GG07a, CM10, GS12] but their security remains a matter of

dispute to various extents [SMEYA11, Fin11a, Fin11b].

A safe (but not the most efficient) instantiation is the construction based on Fiat-Shamir trans-

form using a zero-knowledge identification scheme.

Let Π = (KeyGen, P,V) be a canonical identification scheme that is secure againse a passive at-

tack. Since Fiat-Shamir transform can only be proven secure in the random oracle model, we are

forced to take this assumption for our construction as well. There are existentially unforgeable

under an adaptive chosen message attack signature scheme Σ from the Fiat-Shamir transform

based on random oracle model[Kat10].

Existential Unforgeability. First we introduce O a signing oracle. Precisely speaking, O is a

kind of machine which on any message m sent to it answers a valid signature, i.e., it implements

the algorithm sign. We denote by L the list of all messages queried to O. A signature scheme

is secure against an existential forgery under an adaptive chosen-message attack, if for any

probabilistic polynomial time forger(algorithm) F , we have

Pr[1← Veri f y(m, δ, pk) ∧ m < L|
(pk, sk)← S etup(1k);

(m, δ)← F O(pk)
] = negl(k),
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where the probability is taken over the random tapes of the involved algorithms. Each invocation

to the oracle O is counted in the complexity of F so that the number of queries made to the O

must also be polynomially bounded in k.

2.10.2 Undeniable Signatures

Undeniable signature schemes, devised by David Chaum and van Antwerpen [CVA90], are

non-self-authenticating signature schemes. These signatures can only be verified with the com-

munication from signer. However, if a signature is only verifiable with the aid of a signer, a

dishonest signer may deny the signature which he published before. Undeniable signatures can

solve this problem after adding a new component called the disavowal protocol.

After one years, David Chaum, Eugéne van Heijst and Birgit Pfitzmann [CvHP91] show an

important property of undeniable signature, where the security of the Signer must be uncondi-

tional. The scheme is implemented using public-key cryptography based on the discrete loga-

rithm problem. The signature part of the scheme is similar to other discrete logarithm signature

schemes. In this scheme, the probability of a dishonest signer which try to pass the protocol that

is only 1/p where p is the prime number depend on the signer’s private key. If the protocol use

the large size private key for security, so the computation of signer. We can see, if the signer

does not have powerful computation ability, she will ask the other party to help her, it may the

confirmer.

2.10.3 Designated Confirmer Signatures

Undeniable signatures, whose verification requires the cooperation of the signer in an interactive

protocol, where are widely used for constructing the cryptosystems. From the above section, we

can see sometimes the signer need the other party to help him. Designated confirmer signatures

were introduced as an improvement of undeniable signatures where the signer becomes unavail-

able or powerless in undeniable signatures. One of attention of this thesis is how to design and

analysis of designated confirmer signatures. Firstly, we can achieve an efficient designated con-

firmer signature by using Fiat-Shamir transform, and such a construction is secure in the random

oracle model under code-based hard problems. Secondly, we build a generic DCS scheme which

based on El Aimani’s DCS scheme[EA10] by constructing the confirmer’s ability to disavow on

code-based cryptography. The new generic DCS scheme is proved to be secure in the standard

model, and can be implemented to obtain an efficient instantiation.
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Figure 2.1

2.10.3.1 Syntax

Key generation: Generates probabilistically key pairs (KS
pk,K

S
sk) and (KC

pk,K
C
sk) for the signer

and for the confirmer respectively, consisting of the private and the public key.

ConfirmerSign: On input (KS
sk,K

C
pk) and a message m, outputs a confirmer signature µ, then

interacts with the signature recipient to convince him of the validity of the just generated signa-

ture.

Confirm/Denial: These are interactive protocols between the confirmer and a verifier. Their

common input consists of, in addition to KS
pk and KC

pk, the alleged signature µ, and the message

m in question. The confirmer uses his private key KC
sk to convince the verifier of the valid-

ity(invalidity) of the signature µ on m. At the end, the verifier either accepts or rejects the proof.

Selective conversion: This is an algorithm run by the confirmer using KC
sk, in addition to KC

pk and

KS
pk. The result is either ⊥ or a string which allow ied as a valid digital signature. Some models,

e.g. [Wik07], require that the confirmer issues a protocol of the correctness of the conversion

incase of a valid signature.

Selective verification: This is an algorithm for verifying converted signatures. It inputs the

converted signature, the message and KS
pk and outputs either 0 or 1.

2.10.3.2 Security Model

In this section, we follow [GMR05, WBWB07, Kat10] for the formal definition.

Since designated confirmer signature construction, we show three informal properties corre-

sponding three parties as follow.

Security for the verifier. This property means that an adversary who compromises the private

keys of both the signer and the confirmer cannot convince the verifier of the validity of an invalid

confirmer signature. In the other hand, the adversary cannot make the verifier to verify invalidity

of a valid confirmer signature.

Non Transferability. This property requires that the transcript resulting from the interaction of
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the verifier with the signer/confirmer during these protocols is indistinguishable from the tran-

script resulting from the interaction of the verifier with a simulator (which can be rewound)

which does not have the private inputs of the signer/confirmer but is allowed to one oracle call

to learn the validity/invalidity of the alleged signature w.r.t. the message in question. We refer

to [CM00] for the formal definition (after considering the fix proposed by [Wik07], namely, the

possibility of rewinding the simulator).

Unforgeability. It is defined through the following game: the adversary A is given the public

parameters of the DCS scheme, namely pks and pkc, in addition to skc. A is further allowed

to query the signature on polynomially many messages, say qs. At the end, A outputs a pair

consisting of a message m, that has not been queried yet, and a string µ. A wins the game if µ is

a valid confirmer signature on m. We say that a DCS scheme is (t, ε, qs) − EUF-CMA secure if

there is no adversary, operating in time t, that wins the above game with probability greater than

ε.

Strong Unforgeability. It is defined through the following game: the adversary A is given two

tuples of the public parameters of the DCS scheme, one is namely pks and pkc, in addition to

skc. the other one is pk′s and pk′c, and sk′c. In this case, A will use sk′c to sign the signature and

get a new signature. After then, A is allowed to query the new signature on polynomially many

messages, say q′s. At the end, A outputs a pair consisting of a message m, that has not been

queried yet, and a string µ′. A wins the game if µ′ is a valid confirmer signature on m. We say

that a DCS scheme is (t, ε, q′s) − SEUF-CMA secure if there is no adversary, operating in time

t, that wins the above game with probability greater than ε.

Invisibility. Invisibility against a chosen message attack (INV-CMA) is defined through the

following game between an attacker A and his challenger R:

After A gets the public parameters of the scheme from R, he starts Phase 1 where he queries

the signing, confirmation/denial, selective conversion oracles in an adaptive way. Once A de-

cides that Phase 1 is over, he outputs two messages m0,m1 that have not been queried before

to the signing oracle and requests a challenge signature µ
′

. R picks uniformly at random a bit

b ∈ 0, 1. Then, µ
′

is generated using the signing oracle on the message mb. Next, A starts

adaptively querying the previous oracles (Phase 2), with the exception of not querying m0,m1

to the signing oracle and (mi, µ
′

), i = 0, 1 to the confirmation/denial and selective conversion

oracles. At the end, A outputs a bit b
′

. He wins the game if b = b
′

. We define A advantage as

adv(A) =| Pr[b = b
′

] −
1
2
|. We say that a DCS scheme is (t, ε, qs, qv, qsc) −INV-CMA secure if

no adversary operating in time t, issuing qs queries to the signing oracle, qv queries to the con-

firmation/denial oracles and qsc queries to the selective conversion oracle wins the above game

with advantage greater that ε.

Anonymity of signatures. In some applications, it is required that the confirmer signatures are

anonymous,i.e., do not leak the identity (public key) of the signer.We refer to [GM03] for the
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formal definition of anonymity of confirmer signatures under a chosen message attack (ANO-

CMA).



Chapter 3

Zero-Knowledge Identification from
Codes

3.1 Background

Identification protocols serve the goal of entity authentication. Their applications include au-

thentication and access control services such as remote login, credit card purchases and many

others. Usually, these are interactive two-party protocols, where one party (called a prover)

wants to prove a possession of some private identification information to another party (called a

verifier).

In the public-key setting, on which we focus in our work, most of practically used schemes

are challenge-and-response. In this case, zero-knowledge (ZK) identification schemes have an

advantage in the sense that no information on the private key is released to the verifier. If the

eavesdropper observes the communication between the prover and the verifier, then clearly she

does not gain any information on the private key as well. Such the scheme is usually constructed

as a ZK proof of knowledge with private key as a witness. This approach was pioneered by Fiat

and Shamir in [FS87]. We refer the reader to [Sti05, Ch. 9] for more information on identifica-

tion protocols.

We focus on code-based identification protocols because their security is based on hardness of

decoding random codes – the problem which is not known to have an efficient solution even

using quantum computation. Although quantum computers remain at the early prototype stage

of development, it is desirable to have a secure postquantum alternative for the schemes based

on hardness of discrete logarithm or integer factorization [Sti05, Ch. 9]. In Niederreiter cryp-

tosystem we use the random irreducible Goppa code, so we can use pseudorandom generator to

construct the commitment functions which they are not trapdoor. So the adversary who do not

35
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know the secret key he will fact the syndrome decoding problem. It means that, until now, there

is no polynomial time algorithm to decode a Niederreiter cryptosystem. Compare other public

key cryptosystem, the speed of Niederreiter cryptosystem encryption is close to pseudorandom

permutation, for instance, the block ciphers.

To break coding assumption, it also try to solve the problem of decoding a random code, there

are some algorithms attempt doing this matter, but all these algorithms are exponential[Bar98].

Our scheme is based on hardness of Syndrome Decoding – a well studied problem – see e.g.

[LB88, Leo88, Ste89, CCC98, Sen02, BJMM12]. Currently, the most efficient attack against

the parameters relevant to our scheme is Information Set Decoding (ISD) [Pet10].

3.1.1 Related Works

The first code-based zero-knowledge identification protocol was proposed by Harari [Har88] in

1988, however Véron showed it insecure [Vér95], and only recently Malek and Miri [MM12]

fixed the problem. The first secure zero-knowledge identification protocol based on coding was

presented by Stern [Ste96]. It is a 3-pass protocol with soundness error 2/3, based on hardness

of syndrome decoding of binary codes. Girault showed a 3-pass identification scheme [Gir90],

but it was not practical. Véron proposed a protocol [Vér97] based on (binary) General Decoding

problem (a dual of Syndrome Decoding) but this scheme was recently shown insecure by Jain

et al [JKPT12] who also presented a secure alternative. Gaborit and Girault [GG07b] proposed,

in particular, a q-ary code based authentication scheme, but it was based on specific double-

circulant binary codes. Kawachi et al proposed a q-ary identification scheme in the context

of lattices, which is similar to ours [KTX08, Xag10]. Xagawa and Tanaka [XT09] modified

the scheme [KTX08] to get a proof of plaintext knowledge for NTRU public key encryption.

Recently, Cayrel, Véron and Alaoui [CVA10] presented a ZK identification scheme (we will

call it the CVA scheme) based on syndrome decoding of codes over Fq (q > 2) where the

soundness error is reduced to q
2(q−1) , which is essentially 1/2 for large q.

3.1.2 Contribution of this Chapter

The main motivation for our work was to construct the code-based zero-knowledge identification

scheme for small q > 2, this is also a new q-ary code based scheme based on stern’s ID scheme.

Such schemes may be applied for instance for proof of plaintext knowledge [MT12] for public-

key encryption based on codes over Fq [BLP10].

We constructed a generalization of Stern scheme for q-ary case with soundness error 2/3 and

confirmed that its communication cost is superior as compared to that of CVA scheme for q =

{3, 4}.
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In particular, let us consider the 80-bit equivalent security level, and overall soundness error

2−16. Then for q = 3, our proposed scheme has 28 rounds and communication cost of 4.79

kilobytes against that of 39 rounds and 7.50 kilobytes, respectively, with CVA scheme. When

q = 4, both schemes have 28 rounds, and we have 4.33 kilobytes with our scheme against 4.69

kilobytes with CVA scheme.

It is worth noting, however, that already for q ≥ 5, CVA scheme comes on top in terms of

communication cost. In particular, for q = 5, our proposal required 28 rounds and 5.08 kilobytes

of communication against 24 rounds and 4.99 kilobytes with CVA scheme.

Section 6.3 presents necessary definitions and tools. Our proposed scheme is presented in Sec-

tion 3.3, its security argued in Section 3.3.1. Performance evaluation is given in Section 3.3.2

contains concluding remarks and open questions.

We define by wt(x) the Hamming weight of x ∈ Fn
q. The set of all permutations of n elements is

denoted by Sn. For x, y ∈ Fn
q, we denote by x + y an element-wise addition of x and y over Fq.

An (n, k, d) linear code is a k-dimensional subspace of an n-dimensional vector space over a

finite field Fq, and d is the minimal distance of the code [Rot06]. We define by q-ary (n,k) the

elements of Fk×n
q with rank k.

3.2 Definitions and Notions

q-ary Linear Relations. We take the basic idea from [CVA10], and we change it as follow:

Definition 3.1 (q-ary Linear Relations). Let Σ ∈ Sn and γ = (γ1, ..., γn) ∈ Fn
q such that ∀i, γi , 0.

We define the transformation Πγ,Σ as follows:

Πγ,Σ : Fn
q → F

n
q

v 7−→ (γΣ(1)vΣ(1), ..., γΣ(n)vΣ(n)).

It was noted in [CVA10] that ∀v ∈ Fn
q and α ∈ Fq, we have Πγ,Σ(αv) = αΠγ,Σ(v), and that

this transformation preserves the weight, i.e. ∀v ∈ Fn
q, wt(Πγ,Σ(v)) = wt(v). In addition, we

observe that ∀v, w ∈ Fn
q: Πγ,Σ(v + w) = Πγ,Σ(v) + Πγ,Σ(w), which implies that Πγ,Σ is a linear

transformation.

We set V,W ∈ Fn
q,V = (v1, , ..., vn),W = (w1, , ..., wn),V + W = (v1 + w1, , ..., vn + wn)

(V + W)Σ(i) = (VΣ(i) + WΣ(i)), ∀i : 1 6 i 6 n Πγ,Σ(v) + Πγ,Σ(w) = Πγ,Σ(v + w)

RHS=(γΣ(1)(v + w)Σ(1), ..., γΣ(n)(v + w)Σ(n));

LHS=[γΣ(1)vΣ(1), ..., γΣ(n)vΣ(n)] + [γΣ(1)wΣ(1), ..., γΣ(n)wΣ(n)]

= γΣ(1)(vΣ(1) + wΣ(1)), ..., γΣ(n)(vΣ(n) + wΣ(n))
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∵ V,W ∈ Fn
q, ∴ LHS = RHS

After the proof, we can say this transformation is also linear in our scheme, and this permutation

is random and no information can been detected by structure attack.

q-ary Commitment Schemes.

In the case when the q-ary assumption of commitment seems to be too restrictive , the size of q-

ary commitment scheme with large computation, i.e. Given by a q-ary set over the q-ary space,

may be applied Zero-knowledge proofs use q-ary commitment schemes as a building block. For

this section, we borrow the presentation of [MT12]. A q-ary commitment scheme consists of

two phases: the first one is committing, where a sender P provides a receiver V with an evidence

about input b. The cheating receiver Ṽ cannot learn b before the second phase, called opening,

when P reveals b to V . The cheating sender P̃ cannot successfully open b′ , b.

Let us denote by 〈P,V〉A,st the view of the party A ∈ {P,V} at the stage st, which is a concatena-

tion of all the messages sent and received by A, along with its local randomness.We denote by

Com(x1, x2, . . .) a commitment to values (x1, x2, . . .).

Definition 3.2. A protocol is said to securely implement string commitment, if at the end of its

execution by PPT Turing machines P (with input b ∈ Fl
2, l ∈ N) and V , the following properties

hold:

(Correctness) Pr[〈P(b),V〉V,Open = “ACCEPT”] with overwhelming probability.

(Hiding) For any PPT Ṽ , any l ∈ N, any b ∈ Fl
2 and b′ ∈ Fl

2 such that b′ , b, after the committing

stage, but before the opening stage, the distributions

〈P(b), Ṽ〉Ṽ ,Commit and 〈P(b′), Ṽ〉Ṽ ,Commit

are indistinguishable. Depending of the type of indistinguishability, hiding can be statistical or

computational.

(Binding) For any P̃, any l ∈ N, and b′ ∈ Fl
2 there exists b ∈ Fl

2 which can be computed by P

after the committing stage, such that the probability

Pr[〈P̃(b′),V〉V,Open = “ACCEPT”]

is negligible. If P̃ restricted to run in PPT, then binding is called computational, if P̃’s computing

power is not restricted, then the binding is statistical.

Note that committing to binary vectors does not pose a problem, since mathematical objects,

which we are working with, will eventually be represented as binary vectors for the actual im-

plementation.
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In the random oracle model (ROM) [BR93], a string commitment which is both computation-

ally hiding and binding can be implemented using (idealized) cryptographic hash function. In

the standard model, a computationally hiding and statistically binding code-based commitment

commitment schemes are known [DvdGMQN08, JKPT12].

3.3 Variant of Stern’s Scheme Based on q-ary Codes

We present our proposed zero-knowledge identification protocol, which is a generalization of

(binary) Stern identification scheme [Ste96] to q-ary case. In the context of lattice-based cryp-

tography, a similar scheme was presented in [KTX08, Xag10]. The main difference is that an

ordinary permutation cannot be used now, since a permutation of the q-ary witness does indeed

release some information on it, hereby violating the zero-knowledge requirement. We avoid this

problem by employing the generalized permutation Πγ,Σ introduced in [CVA10] exactly for this

purpose. Indeed, it is easy to check that for any input in {x ∈ Fn
q|wt(x) = ω}, this transformation

outputs a vector with uniform distribution in {x ∈ Fn
q|wt(x) = ω} given that (uniformly chosen) γ

and Σ are unknown. Since transformation Πγ,Σ happens to be linear as noted in above, it can be

used directly in the construction of [Ste96].

Key Generation.

Input: Given a security parameter and q, choose n, k, and ω, then compute:

H
$
←− F(n−k)×n

q , e
$
←− Fn

q such that wt(e) = ω, and y← HeT .

Output: the private key sk, and the public key (identification) pk: (sk, pk) = (e, (y,H, ω)).

Technically, our protocol is an interactive zero-knowledge proof of knowledge [Gol01] for the

predcate:

P(sk, pk) = “With respect to pk, e is such that

y = HeT and wt(e) = ω”,

where pk is a common data, and sk is a witness.

Our protocol is presented in Table 3.1. It has soundness error 2/3, which can be reduced to

(2/3)δ by iterating this protocol independently for δ rounds.

3.3.1 Security Proof

Our proof uses the approach presented in [Ste96, Vér97]. We also follow [MT12] by presenting

our proof in the standard model.
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Figure 3.1: q-ary Stern Identification Protocol.

Prover P Verifier V

(sk, pk) = (e, (y,H, ω)) pk = (y,H, ω)

u
$
←− Fn

q

Σ
$
←− Sn, γ

$
←− (F∗q)n

c1 = Com(γ,Σ,HuT )

c2 = Com(Πγ,Σ(u))

c3 = Com(Πγ,Σ(u + e))

c1, c2, c3

−−−−−−−→

b

←−−−−−−−
b

$
←− {0, 1, 2}

If b = 0
u, γ,Σ

−−−−−−−→
P opens c1 and c2, V checks correctness
of c1, c2, using H which is public.

If b = 1
u + e, γ,Σ

−−−−−−−→
P opens c1 and c3, V checks correctness
using HuT = H(u + e)T − y.

If b = 2
Πγ,Σ(u),Πγ,Σ(e)

−−−−−−−→
P opens c2 and c3, and checks correct-
ness using Πγ,Σ(u)+Πγ,Σ(e) = Πγ,Σ(u+e),
and checks that wt(Πγ,Σ(e)) = ω.

Let us denote the cheating prover by P̃ and a cheating verifier by Ṽ .

Proposition 3.3. The protocol in Table 3.1 is an interactive zero-knowldge proof of the predicate

P(sk, pk), in the standard model.

Proof. Completeness: If P knows the witness, it is easy to show that she can answer each

challenge correctly, in particular one will need to use the fact that the transformation Πγ,Σ is

linear and that it preserves the weight.

Soundness:

Lemma 3.4. If V accepts P̃’s proof with probability at least
(

2
3

)r
+ ε, then there exists a PPT

algorithm which with overwhelming probability computes the witness e.

Proof. Let T be an execution tree of the protocol between P̃ and V that corresponds to all pos-

sible challenges by V . Verifier V can send 3 possible challenges in each round. Suppose that the

binding property of the underlying commitment scheme holds. Then, we present a PPT algo-

rithm (called witness extractor) that computes the witness e from a vertex with 3 descendants.
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Suppose there exists a vertex with 3 descendants. This implies that all the three challenges were

correctly answered. Suppose now that the following responses were provied by P̃:

• b = 0 : (u0, γ0,Σ0),

• b = 1 : (w1, γ1,Σ1) (w1 corresponds to u + e),

• b = 2 : (z2, t2) (correspond to Πγ,Σ(u) and Πγ,Σ(e), respectively).

Now, according to the checks perfomed by V , we have : (γ0,Σ0,HuT
0 ) = Open(c1) = (γ1,Σ1,HwT

1−

y). Remember that the binding property is assumed to hold, then we have γ0 = γ1, Σ0 = Σ1,

and HuT
0 = HwT

1 − y. Using correctness of c2 and c3, we also have z2 = Πγ0,Σ0(u0), z2 + t2 =

Πγ1,Σ1(w1), and wt(t2) = ω. This implies t2 = (t2+z2)−z2 = Πγ0,Σ0(w1−u0) where wt(w1−u0) = ω.

Therefore, the expression H(w1 − u0)T = HwT
1 − HuT

0 = y shows that w1 − y0 is a valid witness.

The rest of the proof of this lemma is exactly as in [Vér97]. The omitted part shows that the

probability for T to have a vertex with 3 descendants is at least ε. �

Zero-knowledge: This property states that the cheating polynomial-time verifier Ṽ learns no

information on the witness irrespective of her cheating strategy.

Lemma 3.5. Protocol in Table 3.1 is zero-knowledge if the used commitment scheme is hiding.

Proof. The flavor of zero-knowledge – computational or statistical – depends on the correspond-

ing flavor of the hiding property of the underlying commitment scheme.

Next, we present a PPT algorithm called the simulator which works in expected polynomial

time, and which constructs a protocol transcript whose distribution is indistinguishable from the

transcript of the protocol execution between honest P and V .

Since the zero-knowledge property must hold irrespective of Ṽ’s strategy, we denote this strategy

by S t(c1, c2, c3), and assume that the challenges are chosen according to it. The simulator works

as follows:

1. Pick a challenge b
$
← {0, 1, 2}.

• If b = 0, choose u
$
← Fn

q, γ
$
← (F∗q)n, Σ

$
← Sn, compute c1 = Com(γ,Σ,HuT ),

c2 = Com(Πγ,Σ(u)), c3 = Com(0), and Response = (u, γ,Σ).

It is easy to check that the distributions of c1, c2, c3 and Response are identical to the

corresponding distributions in the actual protocol transcript.

• If b = 1, choose u
$
← Fn

q, γ
$
← (F∗q)n, Σ

$
← Sn, and w = u + z, where z ∈ Fn

q is

such that HzT = y, z , e, wt(z) , ω. Then, compute c1 = Com(γ,Σ,HuT ), c2 =

Com(0), C3 = Com(Πγ,Σ(w)), and Response = (w, γ,Σ). Again, it is easy to check that

the values in Response are consistent with the checks, and also that distributions of the
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commitments and Response are identical to those in the actual protocol transcript. In

particular, a uniform u serves as a one-time pad for z.

• If b = 2, choose u
$
← Fn

q, γ
$
← (F∗q)n, Σ

$
← Sn, and z

$
← {x ∈ Fn

q|wt(x) = ω}. Then,

compute c1 = Com(0), c2 = Com(Πγ,Σ(u)), c3 = Com(Πγ,Σ(u + z)), and Response =

(Πγ,Σ(u),Πγ,Σ(z)). The values in Response are consistent with the checks, and it is easy

to see that distributions of the commitments and Response are identical to those in the

actual transcript.

2. The simulator computes b′ = S t(c1, c2, c3).

3. If b = b′, then the simulator outputs a transcript which includes H, b and Response,

otherwise go to Step 1.

Now, in 3δ iterations on the average, the above algorithm constructs the protocol transcript which

is indistinguishable from the transcript of the protocol execution between the honest parties. �

Now, Lemmas 1 and 2 conclude the proof of Proposition 1. �

3.3.2 Performance Evaluation

For simplicity of our calculations, we assume that commitments are implemented using random

oracles, in the same way as it is done in [Ste96, CVA10]. Then the commitment function will be

computed as some cryptographic hash function h with output size lh = 160 bits. When checking

the prover’s responses, the verifier will simply check that the output of the hash functions on the

values contained in the response are the same as those sent as commitments. For instance, when

b = 0, the verifier will check if h(γ,Σ,HuT ) = c1 and h(Πγ,Σ(u)) = c2.

We will assume that the values u and (γ,Σ) are computed using pseudorandom generators (PRG)

with seed of length ls = 128 bits. Hereby, only the seeds can be sent to save on communication,

in the same way, as it is done in [Ste96, CVA10].

The syndrome decoding problem is hardest to solve when k ≈ n/2 [CCC98] and ω is chosen

slightly below the Gilbert-Varshamov bound (see Section 6.3). We take k = n/2, and hereby we

only need to choose n (as an even integer).

In order to compute the recommended parameters for a given security level, we will use the

currently best algorithm for solving q-ary Syndrome Decoding problem that is the Information

Set Decoding algorithm by Peters [Pet10]. Since the equations for its parameters do not have a

short analytic representation, we use the C program introduced by Peters, which is available at

https://bitbucket.org/cbcrypto/isdfq/src.

https://bitbucket.org/cbcrypto/isdfq/src
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We let N be the number of bits needed to represent an element of Fq, and we set N = dlog2 qe.

We take lΣ = ndlog2 ne to be the size of representation of a permutation Σ, and lγ = nL to be the

size of representation of a vector γ, both values are in bits. Let δ be the number of rounds. We

assume that the common matrix H is in the systematic form.

Our scheme has the following parameters.

Size of the common matrix: k2N.

Size of the public identification: kN.

Size of the secret key: nN.

In fact, the above parameters are the same as in CVA scheme.

Total communication cost, in bits:

δ
(
3lh + 2 + (3ls + 3nN)/3

)
.

Prover’s computation complexity over Fq, per round:

(k2 + n + ω) multiplications and (k2 + 2ω) additions.

Concerning calculation of the communication cost, we note that the above values are the average

assuming that the challenges are made uniformly at random. In addition, we point out that

although opening of the commitment do not requires sending of its contents, because we only

need to get the hash values to check the commitments function.

in most of the cases we can avoid it, since the same value is sent as a part of response and there

is no need to send the value twice. For instance, if b = 0, opening of c1 does not require sending

of its contents because γ and Σ have already been sent as a part of the response, and HuT can be

computed by the verifier, as u is another part of the response, using H which is public. On the

other hand, if b = 1, then HuT cannot be efficiently computed from the response, then hence it

must be sent by the prover. In fact, it is easy to check that the later value is the only overhead

that is incurred by opening the commitments, apart from the need to sent the randomness used

for commitments.

Cayrel et al [CVA10] offer the following estimate for the communication cost of their protocol:

δ(2lh + N + nN + 1 + (lγ + lΣ + nN)/2),

where lγ = lΣ = ls is the length of a seeds of some PRG used to obtain γ and Σ. For a fair

comparison with our scheme, we assume that (γ,Σ) are generated from a single seed in their

scheme.

By applying this estimate to the recommended parameters suggested in [CVA10], we can see

that the actual communication cost of their proposal is about twice as large, as compared to

the claimed estimates. For example, for 87-bit equivalent security level with q = 256, n = 128,
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Table 3.1: Performance Comparison of Our Proposal and CVA Scheme for q = 3, 80bits

q = 3, n = 396, k = 198, ω = 62 CVA [CVA10] Our Proposal

Number of Rounds 39 28

Matrix size (kilobytes) 9.57 9.57

Public key (bits) 396 396

Secret key (bits) 792 792

Communication (kilobytes) 7.50 4.79

Prover’s Computation over F3
220.58 multiplications,

220.54 additions

220.08 multiplications,

220.07 additions

Table 3.2: Performance Comparison of Our Proposal and CVA Scheme for q = 4, 80bits

q = 4, n = 328, k = 164, w = 61 CVA [CVA10] Our Proposal

Number of Rounds 28 28

Matrix size (kilobytes) 6.57 6.57

Public key (bits) 328 328

Secret key (bits) 656 656

Communication (kilobytes) 4.69 4.33

Prover’s Computation over F4
219.56 multiplications,

219.53 additions

219.54 multiplications,

219.53 additions

Table 3.3: Performance Comparison of Our Proposal and CVA Scheme for q = 5, 80bits

q = 5, n = 292, k = 146, w = 60 CVA [CVA10] Our Proposal

Number of Rounds 24 28

Matrix size (kilobytes) 7.81 7.81

Public key (bits) 438 438

Secret key (bits) 876 876

Communication (kilobytes) 4.99 5.08

Prover’s Computation over F5
219.01 multiplications,

218.97 additions

219.21 multiplications,

219.20 additions

k = 64,ω = 49, and soundness error 2−16 (provided by 16 rounds), we obtain the communication

cost of 7.27 kilobytes rather than 3.89 kilobytes as claimed. For 128-bit equivalent security

level with q = 256, n = 208, k = 104, ω = 78, and the same soundness error, we obtain 11.46

kilobytes against 5.77 kilobytes as claimed.

Next, we provide recommended parameters for the equivalent security level of 80 bits and 128
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Table 3.4: Performance Comparison of Our Proposal and CVA Scheme for q = 3, 128bits

q = 3, n = 654, k = 327, ω = 103 CVA [CVA10] Our Proposal

Number of Rounds 39 28

Matrix size (kilobytes) 26.11 26.11

Public key (bits) 654 654

Secret key (bits) 1308 1308

Communication (kilobytes) 11.18 6.56

Prover’s Computation over F3
222.01 multiplications,

221.99 additions

221.52 multiplications,

221.52 additions

Table 3.5: Performance Comparison of Our Proposal and CVA Scheme for q = 4, 128bits

q = 4, n = 540, k = 270, w = 101 CVA [CVA10] Our Proposal

Number of Rounds 28 28

Matrix size (kilobytes) 17.80 17.80

Public key (bits) 540 540

Secret key (bits) 1080 1080

Communication (kilobytes) 6.86 5.78

Prover’s Computation over F4
220.99 multiplications,

220.96 additions

220.97 multiplications,

220.97 additions

Table 3.6: Performance Comparison of Our Proposal and CVA Scheme for q = 5, 128bits

q = 5, n = 480, k = 240, w = 99 CVA [CVA10] Our Proposal

Number of Rounds 24 28

Matrix size (kilobytes) 21.09 21.09

Public key (bits) 720 720

Secret key (bits) 1440 1440

Communication (kilobytes) 7.46 7.01

Prover’s Computation over F5
220.43 multiplications,

220.40 additions

220.64 multiplications,

220.63 additions

bits soundness error 2−16 – to satisfy the later requirement our scheme needs 28 rounds (indepen-

dently of q). Our recommended parameters for q = 3, along with the corresponding parameters

for Cayrel et al scheme for comparison, are presented in Table 3.4. In this case, our scheme

requires 4.79 kilobytes of communication cost that is by 36% smaller than the communication

cost of CVA scheme being 7.50 kilobytes; besides their scheme requires 39 rounds. When q = 4

(see Table 3.5), our scheme requires 4.33 kilobytes of communication that is by 8% smaller
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than 4.69 kilobytes of communication required for CVA scheme; the number of rounds is 28 in

both protocols. For q = 5, the performance evaluation results are given in Table 3.6. Now, our

scheme requires 5.08 kilobytes of communication, as compared to 24 rounds and 4.99 kilobytes

with CVA, which is by 2% smaller than with ours. For q > 5, the CVA scheme is superior to our

scheme in terms of communication cost, since the soundness error of their scheme approaches

1/2, when q is growing. We note that the complexity of Information Set Decoding is growing

when q increases, hence larger q require smaller n for the same security level.

3.4 Conclusion

In this section, we presented a zero-knowledge identification scheme based on q-ary syndrome

decoding with soundness error 2/3, which is a generalization of (binary) Stern scheme to q-ary

case. Our scheme is superior to the CVA scheme [CVA10] in terms of communication cost, but

only for q = {3, 4}.

An open question is to reduce the soundness error to exactly 1/2 in the case of small q, most

importantly for q = 2, since a scheme working over the binary field is expected to have a fast

implementation. Reducing the size of the public matrix is another natural open question.



Chapter 4

Proof of Plaintext Knowledge for
Code-Based Encryption

4.1 Introduction

Proof of Plaintext Knowledge cryptography encompasses schemes which remain secure even

without decryption. In this chapter we will use coded-based assumption to construct PPK

scheme. Two important candidates for the code-based PPK scheme are the code-based PKE

schemes by McEliece [McE78] and Niederreiter [Nie86]. Their security is based on hardness of

decoding, which is a well-studied cryptographic assumption [BMVT78, Sen02, EOS07, Ber10,

FGUO+13, BJMM12].

The McEliece encryption is the first code-based PKE. It uses the error-correcting codes by

Goppa [Gop70, Mat80]. Breaking of both of these PKE’s is believed to be infeasible for properly

chosen parameters [EOS07, BLP11, FGUO+13], even for adversaries equipped with quantum

computers [Ber10, DMR11a, DMR11b]. The later fact makes these PKE a prospective candi-

date for the post-quantum world. One more advantage pointed out by Bernstein et al. [BLP11,

App. A] is a good asymptotic performance of the McEliece PKE.

One of the challenges in the code-based cryptography is to enrich the variety of code-based

cryptographic protocols. Existing results include, for instance, identification schemes and digital

signatures – see e.g. the surveys [EOS07, OS09, CM10], and also [Pie12] for related results.

In this chapter, we focus on the proof of plaintext knowledge (PPK) for the code-based PKE,

and their applications. Suppose that a prover P encrypted the plaintext m into ciphertext c on

the public key pk. Now, a PPK allows P to convince a verifier V , who does not have the se-

cret key, that P knows m. If such the proof is zero-knowledge, it will not reveal any additional

information on m, apart from the above statement itself. We will apply our PPK to construct a

47
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code-based verifiable public-key encryption. For such an encryption with respect to some bi-

nary relation R on the plaintexts, there exists a zero-knowledge proof on the public inputs pk, c,

and δ that allows a prover P to convince a verifier V that c is a ciphertext of m under pk such

that (m, δ) ∈ R. In this paper, we will focus on the case when R is an an equality relation, and

δ = m. In other words, the verifier will be convinced that a given ciphertext c contains a given

plaintext m.

4.1.1 Zero-Knowledge Proofs for PPK Schemes

Note that assuming that one-way functions exist, one could achieve the results presented in this

work using general ZK proofs for NP-statements [GMW91], however such constructions would

be prohibitively inefficient.

Jain et al. [JKPT12] constructed efficient ZK proofs for NP-statements assuming hardness of

(x)LPN problem. Their proposal is based on a proof of valid opening for their commitment

scheme. Their proof of valid opening also implies a ZK identification scheme based on xLPN.

Note that xLPN problem is equivalent to that of general decoding for the parameters in question.

More specifically, the only difference is that in xLPN, the generator matrix of the code is chosen

uniformly at random rather than being full-rank. However, it is possible to choose the appro-

priate code parameters such that the probability for the uniform matrix to be full-rank is over-

whelming. Finally, note that we use interactive ZK proofs. According to an observation made in

[GK05]: “... known constructions for non-interactive zero-knowledge proofs (NIZK) [DDN03]

for NP languages (which are a central tool in constructing CCA2 secure non-interactive public-

key encryption given semantically secure public key encryption algorithms) require trapdoor

permutations.” At the same time, the hardness assumptions related to coding give rise to only

trapdoor function candidates [McE78, Nie86].

4.1.2 Main Results of This Chapter and Discussion

Our contribution is two-fold: We present the first proof of plaintext knowledge for the above

mentioned code-based PKE’s, and then we apply it to obtain the first code-based verifiable

encryption in next section.

Our main observation is that the ZK identification schemes by Stern [Ste96] and by Jain et

al. [JKPT12] can be directly used to construct the PPK for the Niederreiter and the McEliece

PKE’s, respectively. We emphasize that this fact does not immediately follow from the previous

works due to the following observations.
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First of all, we note that the public key of each PKE will have to be used as a common matrix

of the corresponding ZK identification scheme, which is supposed to be uniformly random. Our

security proof shows that, in fact, the requirement on the randomness of the common matrix

is not necessary. The only essential requirement is that the general decoding for the matrix in

question is hard.

Secondly, we emphasize that our proof technique for the McEliece PPK is different from that

of Jain et al., while being along the lines of [Ste96, Vér97]. Hereby, it follows from our result

that the Jain et al. identification scheme (and the proof of valid opening of their commitment) is

secure against a malicious verifier. In detail, Jain et al. observed that the proof of valid opening

of their commitment is in fact a special variant of Σ-protocols where soundness error is larger

than 1/2. They claimed that the major results for Σ-protocols hold for their variant as well. We

however choose to disregard this observation, and to construct the security argument for our

PPK as for the standard ZK proof of knowledge. The reason is that typically for Σ-protocols,

a special honest-verifier ZK property is proved first, and then the security against malicious

verifier is obtained via the transformation by Damgård et al. [DGOW95]. Now, our observation

allows us to circumvent the use of this transformation, hereby making our protocol more efficient

as compared to that of Jain et al.

Third, the setting of PPK is different from that of identification, since the prover does not nec-

essary provide a valid ciphertext. In the setting of identification, it would mean that the key

generation is not necessarily performed correctly. Since the identification schemes by Stern and

by Jain et al. are based on the ZK proof systems, we note that in the latter setting, this prob-

lem corresponds to the case when a valid witness does not exist. Therefore, for our protocols,

we prove the soundness property in the strong sense (it is called a strong validity in the survey

by Bellare and Goldreich [BG93]), meaning that one must make sure that the prover is always

rejected by the honest verifier, if the witness does not exist. In turn, our proofs imply a better

security for the above mentioned identification schemes.

Next, we provide a performance evaluation for the proposed protocols and suggest secure pa-

rameter sets. In particular, for 80-bit equivalent security, the PPK for the Niederreiter PKE

requires about 9.1 kilobytes of communication, while the PPK for the McEliece PKE requires

about 16 kilobytes of communication, both with 28 rounds, which can be considered practical.

Next, we apply the PPK for the McEliece PKE to construct the verifiable IND-CPA McEliece

encryption for an equality relation. Note that the original McEliece encryption cannot be used

here, since given pk and c = Encpk(m), it is trivial to check whether or not c is a ciphertext of m.

Therefore, we use an IND-CPA secure McEliece encryption [NIKM08] instead. It is interesting

to note that in the lattice-based constructions [GK05, XKT07], one first constructs a verifiable

encryption for an equality relation, and then uses it as a building block for the PPK, while in our

case it works the other way around. In our construction, we must impose that the rows of the
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McEliece public key matrix are linearly independent, i.e., that this matrix is full-rank. This is a

natural assumption, as the McEliece public key is typically chosen this way.

In our constructions, we assume that both the prover and the verifier are assured that the public

key pk is valid. This assumption will require a trusted third party who generates public keys –

this can be, for instance, an entity in the public key infrastructure.

Throughout our work, we assume the presence of the public key infrastructure (or any other key

authentication mechanism), which ensures validity of receiver’s public key to be used in PPK.

Currently, the most efficient code-based commitment scheme is the construction of Jain et al.

[JKPT12].

The type of zero-knowledge which we obtain, being statistical or computational, depends solely

on the employed commitment scheme. In the case of the schemes [DvdGMQN08, JKPT12],

which are statistically binding and computationally hiding, the ZK property holds in the compu-

tational sense. In principle, we can achieve efficient statistical ZK proofs, if we assume existence

of collision-resistant hashing, 1 due to statistically hiding (and computationally binding) com-

mitments by Halevi and Micali [HM96].

As a side remark, we mention a purely theoretical implication of our result for interactive code-

based IND-CPA PKE in the standard model [GHY86, Gol01, Kat03], when the IND-CPA secure

McEliece encryption by Nojima et al. [NIKM08] is combined with the presented PPK. One

might also consider the applications of PPK suggested by Katz [Kat03] such as deniable au-

thentication or password-based authenticated key exchange. However, those are more relevant

to PKE’s which do not have efficient IND-CCA2 secure instantiations in the standard model.

Recently, such the instantiation was presented by Mathew et al. [MVVR12], therefore it is more

suitable for the above applications, as compared to the interactive solution.

4.2 PPK for Niederreiter PKE

We construct the proof of plaintext knowledge for the Niederreiter PKE using the Stern ZK

identification scheme [Ste96]. We take the public key of the PKE, i.e. a permuted and scrambled

parity-check matrix of an irreducible binary Goppa code correcting up to t errors as the common

data. The plaintext is used as witness and the ciphertext is used as public identification.

We observe that the security proof of the Stern scheme [Ste96] does not use the fact that the

common code is random. It is only important that the common code has a particular minimum

distance, which is provided by construction, and that the syndrome decoding problem for this

1Since we are not aware of efficient constructions of collision-resistant hashing from the standard code-based
assumptions.
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code is hard. The latter is ensured by the hardness of the Niederreiter PKE (see Section 2.4.4.2).

Since the Niederreiter PKE is deterministic, we consider the string R representing the random-

ness in Definition 2.27 as empty.

In our proofs throughout this chapter, similarly to the works [Ste96, Vér97, Kat03, CVA10,

JKPT12], we assume commitments to be ideal. This is done in order to simplify our arguments,

and to abstract from a specific security of the underlying commitment scheme, whether com-

putational or statistical, because this scheme can be used as a black box in our constructions.

Witness: m ∈ Fn
2, wH(m) = t, where the parameters n and t are described in Section 2.4.4.2.

Common data: (Hpub, t) such that Hpub ∈ F(n−k)×n
2 – the public key of the Niederreiter PKE,

and c = HpubmT – the ciphertext of the Niederreiter PKE.

Protocol 1 (Niederreiter PPK).

1. P computes y
$
← Fn

2, π
$
← Sn, and sends the following three commitments to V:

– C1 = Com(π,HpubyT ),

– C2 = Com(yπ),

– C3 = Com((y + m)π).

2. V sends a challenge b
$
← {0, 1, 2}.

3. P replies as follows, while V performs the following checks and rejects, if any check fails:

– If b = 0,

– P sends y, π and opens C1 and C2.

– V checks validity of the opened values.

– If b = 1,

– P sends y + m, π and opens C1 and C3.

– V checks validity by computing HpubyT = Hpub(y + m)T + c, and then verifying that

the opening of C1 is (π,Hpub(y + m)T + c), and the opening of C3 is (y + m)π.

– If b = 2,

– P sends yπ,mπ and opens C2 and C3.

– V checks validity of the opened values by verifying that C2 opens to yπ, C3 opens to

yπ + mπ, and that wH(mπ) = t.

Denote a protocol consisting of r independent sequential iterations of Protocol 1 by PPKN(Hpub, c; m),

with some appropriately chosen r.

Theorem 4.1. The above protocol, which is denoted as PPKN(Hpub, c; m), is a proof of plain-

text knowledge for the Niederreiter public key encryption in the standard model, according to

Definition 2.27 assuming that the Niederreiter problem is hard, and the underlying commitment

scheme satisfies Definition 9.
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Proof. We generally follow the proof of [Ste96], but for the proof of soundness we use the

argument from [Vér97], since it is shorter. We emphasize that the gap in the proof of [Vér97]

pointed out in [JKPT12] concerned only the proof of the zero-knowledge property.

Completeness. It is easy to check that P who knows the plaintext m can answer all of three

challenges correctly. This implies that 〈P(m),V〉(pk, c) = 1.

Soundness. First, we note that similarly to [Kat03], we will prove the soundness in the strong

sense – for the details, we refer the reader to the survey by Bellare and Goldreich [BG93], where

such the property is called a strong validity. Technically, we will first prove that if there exists

no witness – or in other words, if the prover presents an invalid ciphertext – then she has only a

negligible probability to be accepted. At the same time, if the prover did manage to be accepted

with a non-negligible probability, then we construct a so called witness extractor – an algorithm

running in expected polynomial time which computes the witness.

Lemma 4.2. Protocol 1 is sound according to Definition 2.27, if the underlying commitment

scheme is binding, the Niederreiter problem is hard, and r(κ) = ω(log κ).

This lemma follows from the following two auxiliary lemmas. In their proofs, we will omit

mentioning the fact that the parameters r and ε depend on the security parameter κ, for simplicity.

Lemma 4.3. If the witness does not exist, then the probability for P̃ to be accepted in the above

protocol is at most
(

2
3

)r
, after r rounds.

Proof. We show that if P̃’s replies to all the three challenges are accepted, then a (valid) witness

can be computed from them. This will contradict the assumption, and imply that P̃ is not able to

answer all the three challenges at the same time, hence his probability to be accepted is at most
2
3 in every round.

Consider the following challenge-response pairs:

• b = 0 : (y0, π0),

• b = 1 : (w1, π1) (w1 corresponds to y + m),

• b = 2 : (z2, t2) (correspond to yπ and mπ, respectively).

Since, the information in the opened commitments is consistent by assumption, we have:

(π0,HpubyT
0 ) = Open(C1) = (π1,HpubwT

1 + c). Since binding holds, we conclude that π0 = π1

and HpubyT
0 = HpubwT

1 + c. Similarly, by consistency of the commitments C2 and C3, and by the

binding property, we can show that z2 = y0π0, z2 + t2 = w1π1, and wH(t2) = t. Therefore, we
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have that t2 = z2 + (t2 + z2) = (y0 +w1)π0 such that wH(y0 +w1) = t. Now from Hpub(y0 +w1)T =

HpubyT
0 + HpubwT

1 = c, we conclude that y0 + w1 is a valid witness. �

Lemma 4.4. If V accepts P̃’s proof with probability at least ( 2
3 )r+ε, then there exists an expected

PPT algorithm WE which, with overwhelming probability, computes a witness m.

Proof. Let T (RA) be an execution tree of the protocol (P̃,V), where RA is the random tape of

P̃. This tree is constructed as follows. A vertex will represent the commitments made by P̃,

and the edges will be labeled by the challenges of V . An edge will be present only if P̃ is able

to correctly reply to the challenge. Remember that V can send 3 possible challenges at each

stage. First, we will argue that as long as the binding property of the commitment holds, a

witness m can be computed from a vertex with 3 descendants, that is from the correct answers

to three challenges. Next, we will show that a PPT WE can find such a vertex in T (RA) with

overwhelming probability.

Let v be a vertex with 3 descendants. This corresponds to a situation, where 3 commitments C1,

C2 and C3 have been made and where the three challenges were correctly answered. Then, the

witness can be computed from these correct answers as described in Lemma 4.3.

Next, we can use the argument from [Vér97] (also used in [MT12]) to show that the probability

for T (RA) to have a vertex with 3 descendants is at least ε. We give this argument here for the

sake of completeness.

Let us consider the random tape RA of P̃ as a set of µ elements, from which P̃ randomly picks

its values and let Q = {1, 2, 3}. These two sets are considered as probability spaces, both of them

with uniform distribution.

A pair (a, b) ∈ (RA × Q)r represents the commitments, challenges and responses communicated

between P̃ and V . This is indeed the case, since the random tape of the prover, along with the

challenges, uniquely defines all the messages sent by her during the protocol. A pair (a, b) is

called valid, if the execution of (P̃,V) is accepted.

Let V be the subset of valid pairs in (RA × Q)r. By the hypothesis of the lemma,

|V |
|(RA × Q)r |

≥

(
2
3

)r

+ ε.

Let Ωr ⊂ RAr be such that:

– If a ∈ Ωr, then 2r + 1 ≤ |{b : (a, b) are valid}| ≤ 3r,

– If a ∈ RAr \Ωr, then 0 ≤ |{b : (a, b) are valid}| ≤ 2r.
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Then, we write V = {valid (a, b), a ∈ Ωr} ∪ valid (a, b), a ∈ RAr \ Ωr}, therefore |V | ≤ |Ωr | · 3r +

(µr − |Ωr |) · 2r. Taking into account that |RAr | = µr and |Qr | = 3r, we have

|V |
|(RA × Q)r |

≤

(
|Ωr |

|RAr |
+ 2r

(
3−r −

|Ωr |

|(RA × Q)r |

))
≤

|Ωr |

|RAr |
+

(
2
3

)r

.

Now, it follows that |Ωr |/|RAr | ≥ ε, which shows that the probability that P̃ replies correctly to

at least 2r + 1 challenges, by choosing random values from RA, is at least ε. Moreover, in this

case, T (RA) has at least 2r + 1 leaves. Indeed, by construction of T (RA), a correctly answered

challenge corresponds to an edge, and therefore, the number of leaves is lower bounded by the

number of correctly answered challenges. This implies that T (RA) has at least one vertex with 3

descendants. Now, the machine WE will simply rewind the above P̃ polynomially many times,

hereby finding an execution tree containing a vertex with 3 descendants with overwhelming

probability, as claimed. Specifically, we can directly use the analysis by Stern [Ste96, Lemma 1]

to verify that the number of necessary rewindings is 10
ε3 .

Finally, we note that the machine WE, constructed in the proof, finds a valid witness, hereby

contradicting the hardness of the Niederreiter problem, unless the binding property of the com-

mitment is violated. Therefore, for a cheating prover P̃, we must have Pr[〈P̃,V〉(pk, c) = 1] ≤

(2/3)r + ε, which is negligible in κ. �

We emphasize that the above proof does not require an indistinguishability of the Niederreiter

public key from the random code.

Zero-knowledge. Let us denote by R the communication tape for P and V , that is a concatena-

tion of all bits they exchange during the protocol. We consider the probability distributions on

R.

Lemma 4.5. Protocol 1 is computational (respectively statistical) zero-knowledge according to

Definition 2.27, if the underlying commitment scheme is computationally (respectively statisti-

cally) hiding.

Proof. We construct a simulator SIM, which generates, in expected PPT, a communication

tape Rs whose distribution is indistinguishable from that of R in a computational or statistical

sense (depending on the type of commitments which are used).

Suppose that Ṽ chose a particular strategy depending on the information received from P. De-

note this strategy by S t(C1,C2,C3).

The simulator SIM works as follows:



Chapter 4. Proof of Plaintext Knowledge for Code-Based Encryption 55

1. Pick a challenge b
$
← {0, 1, 2}.

– If b = 0, choose y
$
← Fn

2, π
$
← Sn, compute C1 = Com(π,HpubyT ), C2 = Com(yπ),

C3 = Com(0), and Rep = (y, π), where by Rep, we denote the reply of the prover.

Clearly, the distributions of C1, C2, C3 and Rep are identical to those from the communi-

cation tape of the actual protocol.

– If b = 1, choose y
$
← Fn

2, π
$
← Sn, and w = y + z, where z ∈ Fn

2 is such that HpubzT = c,

z , m, wH(z) , t. Note that such the vector w can be computed in polynomial time as

shown in [OS09, Proposition 1]. Then, compute C1 = Com(π,HpubyT ), C2 = Com(0),

C3 = Com(wπ), and Rep = (w, π). It is easy to check that the openings of the above

commitments and Rep will pass the verification of Step 3 in Protocol 1, and also that

distributions of the commitments and Rep are identical to those in the actual protocol.

In particular, in the simulation, the distribution of w is uniform over Fn
2, and hence the

contents of C3 has the distribution identical to that in the Protocol 1.

– If b = 2, choose y
$
← Fn

2, π
$
← Sn, and z

$
← {x ∈ Fn

2|wH(x) = t}. Then, compute

C1 = Com(0), C2 = Com(yπ), C3 = Com((y + z)π), and Rep = (yπ, zπ). It is again easy

to check that the values in Rep will pass the verification of Step 3 in Protocol 1, and that

distributions of the commitments and Rep are identical to those in the actual protocol.

2. SIM computes b′ = S t(C1,C2,C3).

3. If b = b′, then SIM writes on the tape Rs the values Hpub, b, Rep, otherwise it goes to

Step 1.

Note that in the above simulator, in the case of commitments to zero, we use the hiding property

of the commitment to ensure that the distributions in question are identical.

We can see that in 3r rounds on the average, SIM produces the communication tapeRs which is

indistinguishable from the communications tape R produced by the honest parties who execute

r rounds of Protocol 1.

We conclude that 〈P(m), Ṽ〉(pk, c) and 〈SIM, Ṽ〉(pk, c) are indistinguishable. Note that the

simulation is perfect by itself, and the type of indistinguishability, statistical or computational

– and hence the type of the ZK proof which we obtain – depends solely on the underlying

commitment scheme. �

Using Lemmas 4.2 and 4.5, and the observation on the completeness, we conclude the proof of

Theorem 4.1. �
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4.3 PPK for McEliece PKE

We construct the proof of plaintext knowledge for the McEliece PKE using Jain et al. ZK

identification scheme [JKPT12], using the approach similar to that in the previous subsection.

Again, our main observation is that the randomness of the common matrix is not required in the

security proof.

We remind that C(Gpub) denotes the code defined by Gpub as a generator matrix. It is easy

to check, if a vector v ∈ Fn
2 belongs to C(Gpub) by computing its syndrome syn(v) as follows

[Rot06]. One can compute the parity-check matrix H ∈ Fn−k×n
2 corresponding to Gpub, i.e., such

that H(Gpub)T = 0, and then syn(v) = HvT . If syn(v) = 0, then v belongs to C(Gpub), and does

not belong to it otherwise.

We note that Jain et al. present an alternative proof using the fact that their protocol is a special

variant of Σ-protocols where soundness error is larger than 1/2. They claimed that the major

results for Σ-protocols hold for their variant as well. However, we choose to use the standard

security argument for the ZK proof of knowledge. The reason is that in Σ-protocols, a special

honest-verifier ZK property is proved, while the security against malicious verifier is obtained

via the transformation by Damgård et al. [DGOW95]. However, we observe that the Jain et al.

protocol is readily secure against malicious verifier. Therefore, our proposal does not need the

aforementioned transformation.

Witness: m ∈ Fk
2, e ∈ Fn

2 such that wH(e) = t, where the parameters n and t are described in

Section 2.4.4.2.

Common data: (Gpub, t) such that Gpub ∈ Fk×n
2 – the public key of the McEliece PKE, and

c = mGpub + e – the ciphertext of the McEliece PKE.
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Protocol 2 (McEliece PPK).

1. P computes u
$
← Fk

2, y
$
← Fn

2, π
$
← Sn, and sends three commitments to V:

C1 = Com(π, uGpub + y),

C2 = Com(yπ),

C3 = Com((y + e)π).

2. V sends b
$
← {0, 1, 2}.

3. P replies as follows, while V performs the following checks and rejects, if any check fails:

– If b = 0,

– P sends π, uGpub + y, and yπ and opens C1 and C2.

– V checks validity by computing (uGpub+y)+(yπ)π−1 and verifying that it is in C(Gpub).

– If b = 1,

– P sends π, uGpub + y, and (y + e)π, and opens C1 and C3.

– V checks validity by computing (uGpub + y) + ((y+ e)π)π−1 + c and verifying that it is

in C(Gpub).

– If b = 2,

– P sends yπ and (y + e)π, and opens C2 and C3.

– V checks validity by computing wH(yπ + (y + e)π) and verifying that it is equal to t.

Theorem 4.6. The above protocol, which is denoted as PPKM(Gpub, c; m, e), is a proof of plain-

text knowledge for the McEliece PKE in the standard model, according to Definition 2.27 as-

suming that the McEliece problem is hard, and the underlying commitment scheme satisfies

Definition 9.

Proof. In this proof, we combine the techniques from [JKPT12] and [Vér97].

Completeness. It is easy to check that P who knows the plaintext can answer all of three chal-

lenges correctly. This implies that 〈P(m, e),V〉(pk, c) = 1.

Lemma 4.7. Protocol 2 is sound according to Definition 2.27, if the underlying commitment

scheme is binding, the McEliece problem is hard, and r(κ) = ω(log κ).

This lemma follows from the following two auxiliary lemmas. We will omit mentioning the

dependence of r and ε on κ, for simplicity.

Lemma 4.8. If the witness does not exist, then the probability for P̃ to be accepted in the above

protocol is at most
(

2
3

)r
, after r rounds.
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Proof. We follow the same strategy as in Lemma 4.3.

Consider the following challenge-response pairs:

• b = 0 : (π0, w0, w1) (corresponds to π, mGpub + e, and yπ, respectively),

• b = 1 : (π0, w0, w2) (corresponds to π, mGpub + e, and (y + e)π respectively),

• b = 2 : (w1, w2).

Since the information in the opened commitments is consistent by assumption, and by the

binding property of the underlying commitments, we observe that combining the verification

for the challenges b = 0 and b = 1 yields (w1 + w2)π−1
0 + c ∈ C(Gpub) and hence c =

m0Gpub + (w1 + w2)π−1
0 , where m0 can be computed by the elementary linear algebra. Since

wH(w1 + w2) = t according to the verification for the challenge b = 2, a valid witness is com-

puted as (m0, (w1 + w2)π−1
0 ). �

The following lemma can be proven using the same counting argument as in Lemma 4.4. Since

the proof is very similar to that of Lemma 4.4, it is omitted. We emphasize that, similarly to the

previous section, this proof does not require any additional assumptions on the McEliece public

key, except for those made in the statement of the McEliece problem in Section 2.4.4.1.

Lemma 4.9. If V accepts P̃’s proof with probability at least ( 2
3 )r+ε, then there exists an expected

PPT algorithm WE which, with overwhelming probability, computes a witness (m, e).

Zero-knowledge. Let us denote by R the communication tape for P and V , that is a concatena-

tion of all bits they exchange during the protocol. We consider the probability distributions on

R.

Lemma 4.10. Protocol 2 is computational (respectively statistical) zero-knowledge according

to Definition 2.27, if the underlying commitment scheme is computationally (respectively statis-

tically) hiding.

Proof. We construct a simulator SIM, which generates, in PPT, a communication tape Rs

whose distribution is indistinguishable from that of R in a computational or statistical sense

(depending on the type of commitments which are used).

Suppose that Ṽ chose a particular strategy depending on the information received from P. De-

note this strategy by S t(C1,C2,C3).

The simulator SIM works as follows:
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1. Pick a challenge b
$
← {0, 1, 2}.

– If b = 0, choose u
$
← Fk

2, y
$
← Fn

2, π
$
← Sn, and compute C1 = Com(π, uGpub + y),

C2 = Com(yπ), and C3 = Com(0), and Rep = (π, uGpub +y, yπ), where by Rep, we denote

the reply of the prover.

Clearly, the distributions of C1, C2, C3 and Rep are identical to those from the communi-

cation tape of the actual protocol.

– If b = 1, choose π
$
← Sn, z

$
← Fn

2, and x
$
← Fk

2. Then, compute C1 = Com(π, xGpub +c+

z), C2 = Com(0) and C3 = Com(zπ), and Rep = (π, xGpub + c + z, zπ). It is easy to check

that the openings of the above commitments and Rep will pass the verification of Step 3 in

Protocol 2, and also that distributions of the commitments and Rep are identical to those

in the actual protocol. In particular, in Protocol 2, P sends uGpub + y, where u
$
← Fk

2 and

y
$
← Fn

2, while in the simulation, we have xGpub + c + z = (x + m)Gpub + (e + z), where

x + m and e + z are uniform over Fk
2 and Fn

2, respectively.

– If b = 2, choose z
$
← Fn

2 and x
$
← {a ∈ Fn

2|wH(a) = t}, and compute C1 = Com(0),

C2 = Com(z), C3 = Com(z + x), and Rep = (z, x). It is again easy to check that the open-

ings of the commitments and Rep will pass the verification of Step 3 in Protocol 1, and

that distributions of the commitments and Rep are identical to those in the actual protocol.

2. SIM computes b′ = S t(C1,C2,C3).

3. If b = b′, then SIM writes on the tape Rs the values Gpub, b, Rep, otherwise it goes to

Step 1.

In the above simulator, in the case of commitments to zero, we use the hiding property of the

commitment to ensure that the distributions in question are identical.

We can see that in 3r rounds on the average, SIM produces the communication tape Rs which

is indistinguishable from the communication tape R produced by the honest parties who execute

r rounds of Protocol 2.

We conclude that 〈P(m), Ṽ〉(pk, c) and 〈SIM, Ṽ〉(pk, c) are indistinguishable. Note that, as in

Lemma 4.5, the simulation is perfect by itself, and the type of indistinguishability, statistical

or computational – and hence the type of ZK proof which we obtain – depends solely on the

underlying commitment scheme. �

Using Lemmas 4.7 and 4.10, and the observation on the completeness, we conclude the proof

of Theorem 4.6. �



Chapter 4. Proof of Plaintext Knowledge for Code-Based Encryption 60

4.4 Performance Evaluation

In this section, we estimate the security and performance of the proposed schemes. Since

breaking security of the Niederreiter PKE is polynomially equivalent to breaking security of

the McEliece PKE [LDW94], the parameter sets (n, k, t) provide the same security levels. The

difference will be in the public key sizes, plaintext and ciphertext sizes and the communication

and computational costs.

In fact, both the public key and the ciphertext sizes are smaller for the Niederreiter PKE, as

compared to the McEliece PKE, for the same security level. Therefore, the Niederreiter PKE is

more suitable for the lightweight security applications [SCKI10].

For our security evaluation, we chose the estimation of the currently best attack for the rele-

vant parameters - the information set decoding algorithm proposed and implemented by Pe-

ters [Pet10, Pet]. We first choose the code length n (as a power of 2, for convenience) and

k = n − t log2 n (again for convenience), then we find the smallest value of t which provides

us with 80 or 128 bits of security equivalent to symmetric encryption. Specifically, we choose

the parameters (n, k, t) according to [Pet10, Pet] as shown in Table 4.1. We fix the soundness

failure probability in our PPK to be at most 2−16, since this value is a minimal requirement in

the ISO/IEC-9798-5 standard for the zero-knowledge techniques for entity authentication. Re-

membering that the soundness failure probability is 2/3 in each round, we will need 28 rounds

in total.

4.4.1 PPK for Niederreiter PKE

We consider the original Niederreiter public key encryption, with binary irreducible Goppa

codes used for generation of public keys, without any optimizations. Then, the size of the

public key is (n − k)n bits, the ciphertext size is n − k bits.

In order to keep estimation simple, we assume the random oracle model, and construct commit-

ments using idealized hash functions h : {0, 1}∗ → {0, 1}lc , taking lc = 160. In order to commit

to a value x (we will think of a binary representation of x), P will simply compute h(x). Then,

Table 4.1: Code Parameters for Performance Evaluation of Code-Based PPK.

Equivalent security (bits) 80 128

Code length n 2048 4096

Code dimension k 1806 3676

Weight of error vector t 22 35
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V’s checks in our protocol will be performed as in [Ste96] by computing the corresponding hash

values. For instance, we will compute C1 = h(π,HpubyT ), and when b = 0, V will use the values

π and y received from P to compute h(π,HpubyT ) and check whether it is equal to C1 received in

Step 1. In our estimations, we follow the approach of [CVA10] and implement the commitments

without randomization due to the fact that we commit only to random values. As in [CVA10],

we assume that the representations of y and π, respectively are generated using pseudorandom

generators with seed length ls = 128. Sending seeds instead of actual values will help us to save

on communication.

The expected communication cost of our PPK for the Niederreiter PKE is as follows:

r(3lc + 2 + ls + n) bits,

where r is the number of rounds. We call it “expected”, since the challenges are supposed to be

random and so that we average over the sizes of replies to the three challenges. Specifically, per

round, 3 commitments contribute 3lc bits, the challenge contributes 2 bits, and the third term is

the average over the replies, remembering that the seeds of pseudorandom generators are used

to send y and π yielding (3ls + 3n)/3 which gives us ls + n.

Prover’s computation cost, which is also an upper bound on that cost for the verifier, is calculated

as follows:

r
(
(n − 1)(n − k) + n

)
binary summations.

The dominant term is given by HpubyT contributing at most n − 1 summations of columns of

Hpub, which are (n− k)-bit vectors. In addition, n summations are contributed by the term y+ e.

This is just a rough estimate of the total computation cost, since the costs of computing permu-

tations, commitments, and pseudorandom generation – which are implementation-specific – are

not included. For completeness, we note that our protocol requires 3 invocations of commitment,

2 invocations of pseudorandom generator and 2 permutations of n elements per round.

Our recommended parameters and the resulting costs are summarized in Table 4.2.

Table 4.2: Parameters and Performance of the Niederreiter PPK Protocol.

Equivalent security (bits) 80 128

Public key size (Kbytes) 61 210

Ciphertext size (bits) 242 420

Communication (Kbytes) 9.1 16.1

Prover’s computation (operations over F2) 223.73 225.52
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We can see that the communication cost of the proposed protocol appears to be within the

practical feasibility range. For instance, for the equivalent 80 bit security, it is 9.1 kilobytes.

For comparison, it is by 3% smaller than the (non-optimized) public key size of the Niederreiter

PKE, which is equal to 62.3 kilobytes for the relevant parameters.

4.4.2 PPK for McEliece PKE

Making calculation in the same setting as in the previous section, we estimate the performance of

our PPK for the McEliece PKE. We consider the original McEliece PKE, with binary irreducible

Goppa codes used for generation of public keys, without any optimizations. Then, the size of

the public key is kn bits, the ciphertext size is n bits.

The expected communication cost of our proposal is:

r
(
3lc + 2 + 2ls/3 + 2n

)
bits,

where r is the number of rounds. The last two terms are computed by averaging over the replies

yielding (2ls + 6n)/3 which gives us 2ls/3 + 2n.

Prover’s computation cost, which is also an upper bound on that cost for the verifier, is calculated

as follows:

r(k + 1)n binary summations.

Henceforth, we consider only summations, since we are working over F2, and therefore the

scalar product of two binary vectors x and y can be implemented as the summation of the bits

of, say, x corresponding to that of y which are non-zero. Hence, the binary multiplication can

be avoided.

The computation of uGpub contributes at most (k − 1)n summations of rows of Gpub, which

are n-bit vectors. Moreover, adding y to uGpub, as well as computing of y + e contributes 2n

summations. Altogether, it gives us at most (k + 1)n summations per round. As in the previous

subsection, the costs of computing permutations, commitments, and pseudorandom generation

Table 4.3: Parameters and Performance of the McEliece PPK Protocol.

Equivalent security (bits) 80 128

Public key size (Kbytes) 452 1838

Ciphertext size (bits) 2048 4096

Communication (Kbytes) 16.0 30.0

Prover’s computation (operations over F2) 226.63 228.65
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– which are implementation-specific – are not included. For completeness, we note that our

protocol requires 3 invocations of commitment, 1 invocation of pseudorandom generator and 2

permutations of n elements per round.

Our recommended parameters and the resulting costs are summarized in Table 4.3. As for

the previous protocol, we obtain practically feasible communication cost, for instance, for the

equivalent 80 bit security, it is 16 kilobytes.

4.5 Conclusion

We presented the first proof of plaintext knowledge for the code-based PKE’s by Niederreiter

and by McEliece, and applied it to achieve the first code-based verifiable McEliece PKE. A

natural extension of this work is to construct PPK for q-ary versions of the McEliece and the

Niederreiter PKE’s, for instance, using the identification scheme by Cayrel et al. [CVA10].

The construction of the verifiable Niederreiter PKE remains an open problem. Another im-

portant open question is to reduce the communication cost and the round complexity of our

proposals.



Chapter 5

Verifiable Code-Based Encryption

5.1 Background

Informally, a Verifiable encryption is a two party protocol between a prover P and a verifier V

which allows the former to convince the latter that it knows some secret piece of information

without revealing anything about it. A bit more precisely, in a verifiable proof for a binary rela-

tion R, the parties have common input y and the prover has private input s such that (y; s) ∈ R.

The protocol must then satisfy the following three properties:

(i) For an honest prover, the verifier always accepts (completeness).

(ii) For every potentially malicious verifier V’ there exists a PPT simulator only taking y asan in-

put whose output is indistinguishable from conversations of V’ with an honest prover(Validity).

(iii) From every prover P which can make the verifier accept with a probability larger than a

thresholdω (the knowledge error), a s′ satisfying (y; s′) ∈ R can be extracted efficiently in a

rewindable blackbox way (proof of knowledge).

5.2 Our Protocol

Note that in the case of the original McEliece encryption, the problem of checking the equality

relation for some m′ ∈ Fk
2 is trivial and does not require interactions. Specifically, given the

ciphertext c = mGpub + e (as defined in Section 2.4.4.1), one can compute y = m′Gpub + c, and

check if wH(y) = t. Then, y = (m + m′)Gpub + e, and if m′ = m, we have that y = e. At the same

time, if m′ , m, then taking into account that C(Gpub) by construction has a minimum distance

at least 2t + 1, we have that wH((m + m′)Gpub) ≥ 2t + 1 and hence wH(y) ≥ t + 1.

Based the above idea, we apply the PPK for the McEliece PKE to obtain the verifiable McEliece

encryption for an equality relation in Section 4. Informally, P can use this protocol to convince

64
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V that given a binary vector m′, a ciphertext c and a public key pk, the vector m′ is indeed the

plaintext which is contained in c computed under pk. Verifiable encryption for more general

relations on the encrypted data is briefly discussed in Section 5.2.1. However, the same tech-

nique as above cannot be directly applied to the Niederreiter PKE – we discuss this point in

Section 5.3.

Figure 5.1: Verifiable Encryption

5.2.1 Proof of Equality for McEliece Plaintext

Jain et al. [JKPT12] present the efficient zero-knowledge proofs for relations between com-

mitted values. Specifically, their results allow one to prove that certain committed messages

m0,m1, . . . ,ml satisfy m0 = C(m1, . . . ,ml), where C is a boolean circuit with l inputs.

Observing that their commitments have the same structure as the IND-CPA McEliece encryption

[NIKM08], except that a random matrix is used rather than the McEliece public key, it may be

possible to extend the above protocol to verifiable encryption for general relations. Informally,

their protocol works as follows: First, P runs PPK on the input ciphertext c = (r|m)Gpub + e =

rGpub
0 + mGpub

1 + e, where (Gpub)T = [(Gpub
0 )T , (Gpub

1 )T ], Gpub
0 ∈ Fk0×n

2 and Gpub
1 ∈ Fk1×n

2 are the

sub-matrices of Gpub corresponding to randomness and plaintext, respectively. Secondly, both

players compute c′ = c + mGpub
1 = rGpub

0 + e, hereby canceling out the plaintext, and then run

PPK with c′ as ciphertext and Gpub
0 as public key.

Now, we can see that Protocol 1 can be used as PPK in the above construction. Hereby, we fix

the McEliece verifiable encryption scheme of [MT12].

Remark 5.1. It was noted in [MT12], that although the resulting PPK is zero-knowledge, the

fact that V learns m (together with the fact that c is a valid McEliece ciphertext) implies that Ṽ

can now produce a valid encryption ca = rGpub
0 + e + maGpub

1 for an arbitrary ma ∈ F
k
2. Note that

although the IND-CPA McEliece PKE is clearly malleable, the above attack is not feasible for Ṽ

prior to the protocol execution. This is not a problem of the protocol, but rather the property of

the IND-CPA McEliece encryption. Therefore, some authentication technique must be applied

in order to avoid this attack. We will need to prove the following statement: “A ciphertext c

encrypted on Gpub contains the plaintext m′”, with the mentioned values being public, and the
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witness being ((r|m), e). This can be directly achieved using the proof for affine relation RALPN

defined in [JKPT12, Sec. 4.2].

The proof of inequality will introduce at next chapter. It will use the proof that the weight of the

error vector in the McEliece encryption is upper-bounded by specific value – such the proof is

presented in Jain et al. for proving valid opening of commitments based on LPN problem.

5.2.2 Our Verifiable Encryption

The fact that c is properly formed can be verified using the PPK for the McEliece PKE.

Therefore, we assume that the IND-CPA variant of the McEliece PKE, as described in Sec-

tion 2.4.4.3, is used for encryption. Specifically, the ciphertext is computed as c = (r|m)Gpub +e,

where in particular, r ∈ Fk0
2 , m ∈ Fk1

2 , k = k0 + k1. Moreover, we assume that the ciphertext pre-

sented by the prover is correctly formed. In principle, this assumption can be removed, if we

require the prover to run the McEliece PPK Protocol as PPKM(Gpub, c; (r|m), e), i.e., the part of

the witness m in McEliece PPK Protocol will be replaced with (r|m). We observe that here, a

PPK will play the role of the proof of correctness of the ciphertext.

We make an additional assumption that all the rows of the public key Gpub ∈ Fk
2 are linearly

independent. However, this assumption is natural as the public key is typically constructed this

way.

Witness: r ∈ Fk0
2 , m ∈ Fk1

2 , and e ∈ Fn
2, where the parameters k0, k1 and n are described in

Section 2.4.4.3.

Common data: m′ ∈ Fk
2, (Gpub, t) such that Gpub ∈ Fk×n

2 – the public key the IND-CPA

McEliece PKE, and c = (r|m)Gpub + e – the ciphertext of the IND-CPA McEliece PKE, where

r ∈ Fk0
2 , m ∈ Fk1

2 , k = k0 + k1.

Consider the partition of the public key as follows (Gpub)T = ((Gpub
0 )T |(Gpub

1 )T ), where Gpub
0 ∈

Fk0×n
2 and Gpub

1 ∈ Fk1×n
2 are the sub-matrices of Gpub corresponding to the randomness and the

plaintext, respectively.

(Verifiable McEliece PKE).

1. P and V both compute c′ = c + m′Gpub
1 .

2. P and V run the protocol PPKM(Gpub
0 , c′; r, e).
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Theorem 5.2. The above protocol is the verifiable McEliece PKE for equality relation in the

standard model, according to Definition 2.28 assuming that the variant of the McEliece PKE

described in Section 2.4.4.3 is IND-CPA.

Proof. Completeness. If c = (r|m)Gpub +e, then we can write c′ = rGpub
0 +mGpub

1 +e+m′Gpub
1 .

Therefore, m′ = m implies c′ = rGpub
0 + e and hence the completeness will hold similarly to that

in Theorem 4.6.

Soundness. Suppose that m′ , m, then we have that c′ = rGpub
0 + e + (m + m′)Gpub

1 , where

m + m′ , 0. Since C(Gpub
1 ) is a sub-code of C(Gpub), it has the same minimum weight, and then

wH((m + m′)Gpub
1 ) ≥ 2t + 1 so that wH((m + m′)Gpub

1 + e) ≥ t + 1, and therefore the valid witness

does not exist. The only possibility for this argument to fail is when a codeword from C(Gpub
0 )

is equal to a codeword from C(Gpub
1 ), but this would contradict the assumption that the rows of

Gpub are linearly independent.

Then, the soundness will follow by the same argument as in Theorem 4.6, taking into account

that the IND-CPA property [NIKM08] of the variant of the McEliece PKE described in Sec-

tion 2.4.4.3 implies that it is OW-CPA.

Zero-Knowledge. This property will follow by the same argument as in Theorem 4.6. �

Informally, their protocol works as follows: First, P runs PPK on the input ciphertext c =

(r|m)Gpub+e = rGpub
0 +mGpub

1 +e, where (Gpub)T = [(Gpub
0 )T , (Gpub

1 )T ], Gpub
0 ∈ Fk0×n

2 and Gpub
1 ∈

Fk1×n
2 are the sub-matrices of Gpub corresponding to randomness and plaintext, respectively.

Secondly, both players compute c′ = c + mGpub
1 = rGpub

0 + e, hereby canceling out the plaintext,

and then run PPK with c′ as ciphertext and Gpub
0 as public key.

Now, we can see that Protocol 1 can be used as PPK in the above construction. Hereby, we fix

the McEliece verifiable encryption scheme of [MT12].

Remark 5.3. It was noted in [MT12], that although the resulting PPK is zero-knowledge, the

fact that V learns m (together with the fact that c is a valid McEliece ciphertext) implies that Ṽ

can now produce a valid encryption ca = rGpub
0 + e + maGpub

1 for an arbitrary ma ∈ F
k
2. Note that

although the IND-CPA McEliece PKE is clearly malleable, the above attack is not feasible for Ṽ

prior to the protocol execution. This is not a problem of the protocol, but rather the property of

the IND-CPA McEliece encryption. Therefore, some authentication technique must be applied

in order to avoid this attack.
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5.3 Discussion

We note that the approach from Section 5.2.1 cannot be generalized immediately to the case

of the IND-CPA Niederreiter PKE. Consider the ciphertext c = Hpub(r|m)T as described in

Section 2.4.4.2. We have c = [Hpub
0 |H

pub
1 ](r|m)T = Hpub

0 rT + Hpub
1 mT , where Hpub

0 ∈ Fn−k×n0
2

and Hpub
1 ∈ Fn−k×n1

2 are the sub-matrices of Hpub corresponding to the randomness and the

plaintext, respectively. Firstly, Let us consider the players will first run Protocol PPK for Nie

with c, Hpub and m as inputs, then will compute c′ = c + Hpub
1 mT . Secondly, the players will

run Protocol 1 with c′, Hpub
0 and r as inputs. Thirdly, Suppose that P̃ presents m′ ∈ Fn1

2 such

that m′ , m and wH(m′) = t1 (if the weight is different from t1, Ṽ must reject him). They get

the results are c′ = c + Hpub
1 (m′)T = Hpub

1 (m + m′)T , where m + m′ , 0. In order to use the

same argument, we need to require that the columns of Hpub are linearly independent, which is

clearly impossible.

Observing that the columns of Hpub are non-zero by construction [EOS07, Mat80] (otherwise

the “equivalent” code length would be smaller than n), but the columns are not linearly indepen-

dent, the cheating prover will succeed because c will be consisted with c′, but the honest prover

also use it, the proof can not distinguish.

we conclude that c′ , Hpub
0 rT and therefore, P̃ must not succeed in PPK of Protocol 1 by the

soundness property. Remark 5.3 applies to the above construction as well.



Chapter 6

Designated Confirmer Signatures from
Codes

6.1 Background

In this work, we focus on cryptographic primitives whose security is based on hardness of decod-

ing random codes. Such the primitives are prospective candidates for postquantum cryptography

which must resist attacks using quantum computation.

6.1.1 Related Works

Okamoto [Oka94] showed that DCS and public key encryption are equivalent. His construction

used commitment and digital signature as ingredients. Conformation and denial were preformed

using general zero-knowledge proofs. A number of works followed with efforts directed at

improving efficiency and fixing security model [MS98, CM00, GW04, GMR05, WBWB07].

In a recent work [EA10], El Aimani proposed a “Signature of Encryption” paradigm for con-

structing DCS. It required EUF-CMA signature and IND-CPA PKE.

6.1.2 Contribution of This Chapter

We construct the first code-based designated confirmer signature in the random oracle model.

As IND-PKE, we use the Randomized McEliece PKE by Nojima et al. [NIKM08]. As EUF-

CMA signature [Kat10], we may use the scheme obtained by applying Fiat-Shamir transform

[FS87] to a code-based identification scheme [Ste96, JKPT12]. We emphasize that the random

oracle model is only required for the Fiat-Shamir transform. In other words, given a code-based

69
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EUF-CMA signature in the standard model, our scheme would be also secure in this model.

Unfortunately, we are not aware of such the signature, at the moment. In a further aspect, we

should claim our scheme is the first *efficient* code-based DCS, because straightforwardly in-

stantiating the El Aimani’s generic construction with code-based primitives will require general

zero-knowledge proofs, which are inefficient.

For confirmation, respectively denial, a confirmer needs to prove to a verifier an equality, re-

spectively an inequality, of a given message to that contained in a given McEliece plaintext.

For the proof of equality, we will directly use the zero-knowledge proof of affine relations from

[JKPT12]. Note that Jain et al. devise their proof in particular based on what they call xLPN

problem, where error vector has fixed weight. This is equivalent to the problem of decoding

random linear codes.

We construct the proof of inequality similarly to the construction of Hu et al. [HMT13]. In

fact, the idea by [HMT13] that the proof of equality was independently presented by Hu et al.

[HMT13]. It was less efficient compared to that of [JKPT12] as it consisted of two steps, each

of which used an independent zero-knowledge protocol. We adapt their idea for ZK proof of

inequality. This primitive may be of independent interest.

6.2 Security Model and Definitions

6.2.1 Security Model

Now we introduce the details of the security model and definitions of DCS which the confirmer

do not have communication with signer. Specifically, the syntax of DCS is the same as given

in Gentry et al.′s exposition in [GMR05]. In general, a DCS scheme has three different roles of

parties: a signer S , a verifier V , and a confirmer C.

Definition 6.1. (Syntax). A typical designated confirmer signature (DCS) scheme consists of

a tuple (DCGen, S ign, Verti f y, Extract, Com f irmedS ign(S ,V), Con f irm(C,V), Disavowal(C,V))

which contains probabilistic polynomial-time algorithms and interactive protocols, we will de-

scribe the specific details as follow.

• DCGen: With the security parameter 1λ input and output two pair of keys (skS , pkS ) and

(skC , pkC) where (skS , pkS ) are the signer S ′s signing and verification keys respectively,

while (skC , pkC) are the confirmer C′s private and public keys respectively.

• S ign: Input a message m and a signing key skC , and outputs a basic signature σ ensure

that Veri f y(m, σ, pkS ) is valid. We call this state when the signature is valid the state

ACCEPT .
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• Verti f y: Input a triple tuple (m, σ, pkS ), and outputs ACCEPT if σ is an output of

S ign(m, skS ) or ⊥ otherwise.

• Extract: Input a tuple (m, σ′, skC , pkS ), and outputs is string σ, such Veri f y(m, σ, pkS ) =

ACCEPT that σ is an output of S ign(m, skS ), otherwise ⊥ is the output.

• Con f irmedS ign(S ,V): An interactive protocol has two parties, one is the signer S (with

private input skS ), the other is a verifier V , they have the common input (m, pkS , pkC). The

output of V is a pair (b, σ′) where b ∈ {ACCEPT,⊥} and σ′ is S ′s designated confirmer

signature on message m. For some verifier V , the Con f irmedS ign protocol should be

complete and sound.

Completeness : There is some signer S such that for any (valid) signer and confirmer

keys, any message m, the Con f irmedS ign protocol outputs (ACCEPT, σ′), where

Veri f y(m, Extract(m, σ′, skC , pkS ), pkS ) outputs ACCEPT .

Soundness : For any signer S ′, if Com f irmedS ign(S ′,V)(m, pkS , pkC) outputs (ACCEPT, σ′),

then

Pr[Veri f y(m, Extract(m, σ′, skC , pkS ), pkS ) = ⊥] < negl(λ). (6.1)

This property ensures that even a cheating signer S ′ cannot convince an honest verify

V that an ”un-extractable” DCS σ′ is valid.

There are two different protocols between confirmer and verifier.

• Con f irm(C,V): When the confirmer C check the signature DCS σ′ is valid, he will use

Con f irm(C,V) protocol to confirm it. The common input of this protocol is (m, σ′, pkS , pkC),

the and the input skC for C. The output is b ∈ {ACCEPT,⊥}. We show the confirm pro-

tocol is both complete and sound.

Completeness : Suppose Veri f y(m, Extract(m, σ′, skC , pkS ), pkS ) = ACCEPT , then

Con f irm(C,V)(m, σ′, pkS , pkC) will also output ACCEPT .

Soundness : For any confirmer C′, suppose Veri f y(m, Extract(m, σ′, skC , pkS ), pkS ) =

⊥,then

Pr[Con f irm(C′,V)(m, σ′, pkS , pkC) = ACCEPT ] < negl(λ). (6.2)

This property ensures that even a cheating confirmer C′ cannot convince an honest

verifier V that an ”un-extractable” DCS σ′ is valid.

• Disavowal(C,V): For the confirmer C and a verifier V , Disavowal(C,V) disavow an in-

valid DCS σ′ with the input (m, σ′, pkS , pkC) and skC input into C. The output is b ∈

{ACCEPT,⊥}. We show the Disavowal must be complete and sound.

Completeness : Suppose Veri f y(m, Extract(m, σ′, skC , pkS ), pkS ) = ACCEPT , then

Disavowal(C,V)(m, σ′, pkS , pkC) will also output ACCEPT .
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Soundness : For any confirmer C′, suppose Veri f y(m, Extract(m, σ′, skC , pkS ), pkS ) =

⊥,then

Pr[Disavowal(C′,V)(m, σ′, pkS , pkC) = ACCEPT ] < negl(λ). (6.3)

This property ensures that even a cheating confirmer C′ cannot convince an honest

verifier V that an ”extractable” DCS σ′ is valid.

Above we showed three security requirements of a DCS scheme. To sum up, A DCS scheme

should include three features. First, it should be secure for verifiers, confirmed DCS should be

un-extractable. Second, it should be secure for signer, that is, for anyone but for signer, no one

could forge a DCS on a message unsigned by the signer. Third, the scheme should ensure that

only the confirmer can confirm or disavowal an alleged DCS.

A new two-move protocol OutputDCS (s,v) is introduced though it is only a version of the former

Con f irmS ign(S ,V) for the sake of security [GMR05]. In which V queries m and S outputs a DCS

σ′ on m without confirming its correctness. Now suppose the adversary A is allowed to access

all oracles of O =(Extract,Com f irmedS ign(S ,A),Con f irm(C,A),Disavowal(C,A)) with restraint

condition

• The adversary can receive a confirmed signature by his own choice.

• The adversary can execute the interactive Con f irm(C,A).

• The adversary can run the interactive protocol Disavowal(C,A).

• The adversary can get a signature from a designated confirmer signature through the

Extract oracle.

The security for verifiers requires that even if the adversaryA compromises the private keys of

both the confirmer C and the signer S simultaneously, it is still unable to create a pair (m, σ′).

We define the situation as the unfoolability. By the way, all of the definitions as follow we keep

them as [GMR05], since the [WBWB07, Wik07, EA08, EA10] also kept the same as [GMR05].

Definition 6.2. (Unfoolability: security for Verifiers). We say a DCS scheme is secure for

verifiers if for any PPT algorithms A involved in the experiment Exp1-Unfoolverifier, its ad-

vantage Adv f oolA := Pr[b f ool = 1] < negl(λ), where b f ool is the one bit information returned by

the experiment.

Exp1-UnfoolVerifier:

1. (skS , pkS , skC , pkC)← DCGen(1λ)
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2. (m, σ′, τ1, τ2, τ3)← AO0 (skS , skC , 1λ, pkS , pkC)

3. (b1, σ
′)← Con f irmedS ign(A1(τ1),V)(m, 1λ, pkS , pkC) in Case 1

4. b2 ← Con f irm(A2(τ2),V)(m, σ′, 1λ, pkS , pkC) in Case 1

5. b3 ← Disavowal(A3(τ3),V)(m, σ′, 1λ, pkS , pkC) in Case 2

6. Return b f ool = (b1 = ACCEPT ∨ b2 = ACCEPT ∨ b3 = ACCEPT )

Here Case 1 and Case 2 refer to the restraint conditions on the adversary′s output (m, σ′):

Case 1 : Veri f y(m, Extract(m, σ′, skC , pkS ), pkS ) = ⊥, i.e.,σ′ is un-extractable.

Case 2 : Veri f y(m, Extract(m, σ′, skC , pkS ), pkS ) = ACCEPT , i.e.,σ′ is extractable.

Next we show the definition of the security for the signer, For an adversary, A must not to

forge a valid DCS pair (m, σ′) for a new message m, even he may have the ability to create an

extractable or confirmable (m, σ′′) for a signed message m.

Definition 6.3. (Unforgeability: Security for the Signer). We say a DCS scheme is secure is

secure for the signer if for any PPT adversary A involved in the following experiment Exp2-
Unforge, its advantage Adv f orge(A) := Pr[b f orge = 1] < negl(λ), where b f orge is the one bit

information returned by the experiment.

Exp2-Unforge:

1. (skS , pkS , skC , pkC)← DCGen(1λ)

2. (m, σ′)← AO(1λ, pkS , pkC , skC)

3. b← Veri f y(m, σ, pkS ) for σ = EXtract(m, σ′, skC , pkS )

4. Return b f orge = (b = ACCEPT ∧ (m, σ′) < Lsig)

Where Lsig denotes the list of all message-signature pairs (mi, σ
′
i) output by the Con f irmedS ign

Oracle in Step 2 and all (mi, σ
′′
i ) such that σ′i = σ′′i

In the definition of the secure for the confirmer, we assume thatA1,A2 andA′1 represent verifier

V1, verifier V2 and a simulation algorithm, respectively. If A2 has only negligible advantage

to guess whether its input τ came from ,A1 or ,A′1, which means ,A,
1s potentially authentic

transcript showing that m0 was signed is no more convincing or informative than ,A′,1 s simulated

transcript showing that m1 was signed.
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Definition 6.4. (Transcript Simulatablity: Securtiy for the Confirmer). We say a DCS

scheme is secure for the confirmer if for any PPT adversary A = (A0,A1,A2) involved in the

following experiment Exp3-Transcript Simulatability, there exists a PPT algorithm A′1 such

thatA,s advantage respect toA′1 is negligible int he security parameter. That is, Advtrans(A,A′1) :=

|Pr[btrans = 1] − 1/2| < negl(λ), where btrans is the one bit information returned by the experi-

ment.

Exp3-TranscriptSimulatability:

1. (skS , pkS , skC , pkC)← DCGen(1λ)

2. (m0,m1, s)← AO0 (1λ, pkS , pkC , skC , skS )

3. b←R {0, 1}

4. (ACCEPT, σ′)← Con f irmedS ign(1λ, pkS , pkC ,mb)

5. If b = 0, τ← AO1
1 (1λ, pkS , pkC , b,m0,m1, s, σ′);

else, τ← A′OutputDCS
1 (1λ, pkS , pkC , b,m0,m1, s, σ′)

6. b′ ← AO2
2 (1λ, pkS , pkC , b,m0,m1, τ, σ

′)

7. Return btrans = ((b′ = b) ∧ ((m0, σ
′) < Lext) ∧ ((m1, σ

′) < Lext))

where Lext is a list consisting of each (mi, σ
′
i) that has been queried byA1 to the Extract oracle.

Definition 6.5. (Security of a DCS Scheme). We say a designated confirmer signature scheme

is secure, if it satisfies security for verifier, the signer and the confirmer we mentioned in Defi-

nition 6.2, 6.3 and 6.4.

6.2.2 Proof of Inequality for McEliece Plaintexts

The prover needs to convince the verifier that a plaintext m′ is not contained in a ciphertext

c = (r|m)Gpub + e encrypted using the key Gpub. The idea for the following construction comes

from [HMT13]. Let (Gpub)T =
(
(Gpub

0 )T |(Gpub
1 )T )

, Gpub
0 ∈ Fk0×n

2 and Gpub
1 ∈ Fk1×n

2 are the

sub-matrices of Gpub corresponding to randomness and plaintext, respectively.

1. A prover completes the proof of valid opening with (c,Gpub) as a public data and ((r|m), e) as

witness.

2. Both prover and verifier compute c′ = c + m′Gpub
1 .

3. A prover completes the proof of valid opening for LPN [JKPT12] with (c′,Gpub
0 ) and t + 1 ≤

w ≤ n as a public data and ((r|m), e) as witness.
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In [JKPT12], the proof of valid opening for LPN allows the weight of the error vector to lie

withing a certain range rather than being fixed.

The first ZK proof works as a proof of correctness of the ciphertext c. The second ZK proof

assures that m , m′, since should m = m′, the contribution from the part Gpub
1 will be canceled

yielding c′ = rGpub
0 + e. Hence the weight of error vector will be t, violating the soundness of

valid opening. On the other hand, if indeed m , m′, then (m+m′)Gpub
1 is of weight at least 2t +1

(as it is a codeword of G) resulting in c′ = rGpub
0 + e + (m + m′)Gpub

1 , where the weight of the

“error vector” e + (m + m′)Gpub
1 is at least t + 1 satisfying correctness.

6.3 Our Protocol

This scheme closely follows the “Signature of an Encryption” paradigm by El Aimani [EA10].

Figure 6.1: Designated Confirmer Signatures

Key Generation: Signer’s key pair is (skS , pkS ) - the keys of EUF-CMA signature scheme;

Confirmer’s key is (skC ,Gpub) - the keys of IND-CPA PKE scheme.

ConfirmedSign: On input message m, compute c = Enc(m,Gpub), and its (ordinary) signature

s = S ign(m, skS ).
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Confirmation/Denial: On input a message m, and a signatureσ = (σ0, σ1), the Confirmer checks

validity of σ1 on σ0 using pkS . If invalid, output ⊥. Otherwise, decrypt m′ from σ0 using

skC , check if m is equal to m′ and use the proof of Sec. 5.3 for confirmation or the proof of

Sec. 6.2.2 for denial. Selective conversion: The confirmer with the input skC , pkC and pkS ,

the output is ⊥ or a string which can be universally verified as a valid digital signature. This

is an algorithm whose constructions from the ”encryption of a signatur” paradigm, to a proof

that a given ciphertext decrypts to a given message. Selective verification: This is an algorithm

for verifying converted signatures. It inputs the converted signature, the message and pkS , the

outputs is either ⊥ or Accept.

6.4 Security Proof

In this section, we will follow the proof from [EA08, EA10], but we will make it more formally.

Lemma 6.6. Our proposed scheme is (t, ε, qs)-EUF-CMA secure if the underlying digital sig-

nature is also (t, ε, qs)-EUF-CMA secure.

Proof. The adversary R against the signature underlying the construction will get the parame-

ters of the digital signature he is trying to attack from his challenger. Then, he will choose a

suitable cryptosystem. Simulation of signatures is simple; on a query mi, R will first compute

an encryption ci of mi, then request his challenger for a signature on ci. Let σi be the answer of

such a query. R will then output (ci, σi) and produces a ZK proof that ci decrypts in mi. Such a

proof, in addition to all the proofs involved in the verification/conversion queries is possible for

R to give with the knowledge of the cryptosystem private key.

At some time, the adversary A against the construction will output a forgery (c
′

, σ
′

) on a mes-

sage m
′

, that has never been queried before. (σ
′

is by definition a digital signature on c
′

. The

former has never been queried by R for digital signature, since otherwise m
′

would have been

queried before. We conclude that (c
′

, σ
′

) is also a valid forgery on the signature scheme. �

Lemma 6.7. The above construction is (t, ε, qs, qv, qsc)-INV1-CMA secure if it uses a (t, ε′, qs)-

SEUF-CMA secure digital signature and a (t, ε, qs(qv + qsc), ε(1 − ε′)qv+qsc)-IND-CPA secure

cryptosystem.

Let A be the invisibility adversary against the construction,we construct an IND-CPA adversary

R against the underlying cryptosystem as follows. R gets the parameters of the target cryptosys-

tem from his challenger, and chooses a suitable digital signature scheme. For a confirmed Sign

query on mi, R will proceed as in the real algorithm, with the exception of maintaining a list

L of records that consists of the query, its encryption, the randomness used to produce the en-

cryption, and finally the digital signature on the encryption. R can produce digital signatures
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on any encryption with the knowledge of the signature scheme private key. Moreover, he can

confirm any signature he has just generated with the knowledge of the randomness used in the

encryption.

For a verification query (ci, σi) on mi, R will check R (after checking of course the validity of σ

on mi), if the record Ri appears in the list, then he will issue a proof that ci decrypts in mi using

the third component of the record. Otherwise, he will simulate a proof of the inequality of the

decryption of ci and mi using the rewinding technique. For a conversion query, R will proceed

as in a verification query with the exception of providing the non-interactive variant of the proof

he would issue if the signature is valid, and the symbol ⊥ otherwise.

This simulation differs from the real one when the queried signature (ci, σi) is valid on mi how-

ever ci does not appear in the list (as first field of the output confirmer signatures). We distinguish

two cases, either the message in question mi has not been queried before for signature, in which

case such a query would correspond to a valid existential forgery on the construction, and thus

on the underling signature scheme. The queried signature is on a message that has been queried

before, which corresponds to an existential forgery on the underlying signature scheme. Since

the signature scheme underlying the construction is (t, ε, qs) -EUF-CMA secure, this scenario

does not happen with probability at least (1 − ε′)qv+qsc at some point, A produces two messages

m0,m1. R will forward the same messages to his challenger and obtain a ciphertext C, encryption

of mb for some b
$
← {0, 1} will produce a digital signature on c and give the result in addition to

c to A as a challenge confirmer signature.

It easy to see that A′s answer is sufficient for R to conclude. Note that after the challenge phase,

A is allowed to issue confirmed Sign, verification and conversion queries and R can handle them

as previously. Namely the probability that the adversary does not issue a verification/conver-

sion query of the type (c, ) is at least (1 − ε′)qv+qsc since the signature scheme underlying the

construction is (t, ε, qs)-SEUF-CMA secure.
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Conclusion and Future Works

7.1 Conclusion

In this thesis, we showed our results which based on the coded-based cryptography. We got there

results on this topic: Firstly, we constructed a zero-knowledge identification scheme based on

syndrome decoding problem over finite field Zq. This scheme with soundness error 2/3, which

is a generalization of (binary) Stern scheme to q-ary case. Our scheme is superior to the CVA

scheme [CVA10] in terms of communication cost, but only for q = {3, 4} under 80 bits secu-

rity. Secondly,we presented the first proof of plaintext knowledge for an equality relation for

the Niederreiter and McEliece PKE. Our constructions are proved secure in the standard model,

under hardness of the McEliece assumptions related to coding theory. Thirdly, we present a

new version of the verifiable encryption which apply the PPK for the McEliece PKE to con-

struct the verifiable IND-CPA McEliece encryption for an equality relation. We also discuss

this idea could not apply to construct verifiable encryption. We also try to give the improv-

ing the computational complexity on this scheme. Lastly, we constructed the first designated

confirmer signatures scheme based on McEliece PKE, as our best knowledge, it is also the

first post-quantum confirmer signatures scheme. Another important open question is to extend

our verifiable encryption to more general relations and to verifiable decryption. We construct

the general construction about code-based undeniable signature, in addition, we also give the

general construction about code-based confirm and disavowal signature. To the best of our con-

struction, we design a practical scheme, this schemes is the first code-based undeniable signature

scheme.

78
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7.2 Future Works

The future works is to solve the open questions on our two schemes: The open question of

proof of plaintext knowledge scheme based on code-based theory is that to construct the more

fast verifiable encryption based on McEliece encryption, reduce the communication cost and

computation cost. We also need to try to solve the gap of verifiable encryption based on Nieder-

reiter encryption. The other important open question of proof of plaintext knowledge scheme

is to upgrade our scheme to non-malleable security. According to [Kat03], this will allow us to

construct password-based authentication and key exchange, as well as deniable authentication

based on coding.

The open question of identification scheme based on code-based theory is to reduce the sound-

ness error to exactly 1/2 in the case of small q, most importantly for q = 2, since a scheme

working over the binary field is expected to have a fast implementation. Reducing the size of

the public matrix is another natural open question.
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