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Abstract

A theoretical study is performed to investigate the effect of the solvation structure

on a large-particle diffusion in liquids. The solvation structure stands for the density

distribution of solvent particles around the solute. In this thesis, considering the

solvation effect, a theory of the translational mobility of a large solute is formulated

in one- and two-component solvent systems. The diffusion coefficient is obtained

from the drag coefficient through the Einstein relation. Furthermore, using the

theory, the diffusion coefficients are calculated numerically to clarify the solvation

effect.

First, a theory of the translational mobility in a one-component solvent is for-

mulated by perturbation expansions with respect to the size ratio of the solute and

solvent particles. The expansion allows one to derive hydrodynamic equations and

boundary conditions on the solute surface up to the first order. Solving the hydrody-

namic equations with the boundary conditions, one obtains an analytical expression

of the drag coefficient including higher order terms of the size ratio. The drag coeffi-

cient can be calculated from the density distribution function. Then, the numerical

results of this theory are compared with those calculated by the non-perturbative

theory and computer simulation. The numerical results are in good agreement with

those of other theories when the size ratio of the solute and solvent particles is larger

than 7.

Next, a theory of the drag coefficient in a two-component solvent mixture is formu-

lated by extending the perturbation theory for a one-component solvent system. The

drag coefficient is calculated by solving the hydrodynamic equations and boundary

conditions on the solute surface. The boundary condition depends on the solvation

structure of a binary mixture. Then, to investigate the solvation effects on the dif-

fusion coefficient, the perturbation theory is applied to a binary hard-sphere solvent

system. The calculated results show that the diffusion coefficient approaches the

value of the Stokes-Einstein relation with the stick boundary condition as adding

the larger solvent spheres. The transition to the stick boundary condition is ob-

served when the density of the larger solvent around the solute increases. As the

solvent density increases, the velocity of the solvent around the solute approaches

zero.
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Chapter 1

Introduction

Diffusion in a liquid is a fundamental phenomenon in biology and chemistry as

well as physics.[1]–[14] For instance, proteins move by diffusion in a cell crowded

with biomolecules.[15], [16] Since biological phenomena such as protein transport and

chemical reaction are often diffusion-limited, many researchers have carried out the

study of the diffusion in a liquid to understand biological processes.[1]–[8]

The diffusion of a macroscopic particle, such as a colloidal particle can be described

well by the Stokes-Einstein (SE) relation.[17], [18] It is the combination of the Einstein

relation and Stokes law. Through the Einstein relation, the diffusion coefficient is

related to the translational mobility of the solute particle. The Stokes law gives

the drag coefficient, which depends on the viscosity of the solvent, the radius of

the solute, and the boundary condition on the solute surface. Since the Stokes law

is derived from the hydrodynamic equations, its validity is limited to macroscopic

particles.

Recently, much attention has been paid to the effect of the solvation structure

around the solute. Terazima and co-workers have observed the solvation effect on

the diffusion coefficient in the folding of the protein.[1]–[3] They showed that the

diffusion coefficient nearly doubles when the hydration structure is destroyed during

the protein folding process. Since this solvation effect is not included in the Stokes

law, it causes the breakdown of the Stokes law.

The breakdown of the Stokes law has been observed in other experiments of the

solute smaller than macroscopic size.[5]–[10], [19], [20] In particular, the large deviation

from the SE relation has been found in the experiments of the diffusion in a multi-

component solvent mixture system.[5]–[8] However, there is little understanding of

the relation between the solvation effects and the breakdown of the Stokes law.

It is difficult to study the solvation effect on a large-particle diffusion using mi-

croscopic theories[21]–[27] or computer simulations,[28]–[38] because of the finite-size
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2 Chapter 1 Introduction

effect.[28], [39] In simulation studies, since the diffusion coefficient depends on the size

of the simulation cell, one cannot obtain the diffusion coefficient of a solute in the

infinite system. As is the case of the simulations, the microscopic theories cannot

take account of the solvent particles at an infinite distance because the calculation

region is finite when solving equations numerically. To avoid this difficulty, Inayoshi

et al. have formulated a theory by perturbation expansions with respect to the size

ratio of the solute and solvent particles.[40] Their theory, however, gives the drag

coefficient much larger than those obtained by the non-perturbative theory.[26] Fur-

thermore, the application of their theory is limited to the one-component solvent

system. There are few theoretical studies for the diffusion in mixtures.

The purpose of this thesis is to clarify the solvation effect on the diffusion coeffi-

cient of a large particle. I formulate a theory on the basis of the theory formulated

by Inayoshi et al., considering the higher-terms of the perturbation expansion. I

show that the numerical results of the theory are in good agreement with those

of the simulations and previous theory. In addition, I formulate the theory for

the drag coefficient in a binary mixture, extending the perturbation theory for a

one-component solvent system. Applying the theory to the binary-hard sphere sys-

tem, I show that the diffusion coefficient changes from the SE relation with the slip

boundary condition to the stick boundary condition due to the solvation effect.

This thesis is organized as follows. In chapter 2, I review previous studies of

experiments, MD simulations, and theories for a large-particle diffusion. In chapter

3, I explain the perturbation theory developed by Inayoshi et al. In chapter 4, I

formulate a theory on the basis of the theory developed by Inayoshi et al. The

calculated results of this theory are compared with those obtained by the previous

theory and MD simulation. In chapter 5, I formulate a theory of the diffusion in the

two-component solvent system. I apply the theory to binary hard-sphere systems in

chapter 6. In chapter 7, I present the conclusion of this thesis.



Chapter 2

Review of large-particle diffusion

2.1 Stokes-Einstein relation

In the case of a macroscopic spherical solute, the translational diffusion coefficient is

described by the combination of the Einstein relation and Stokes law. The Einstein

law shows that the diffusion coefficient D is related to the drag coefficient ξ of the

solute particle as[41]

D =
kBT

ξ
(2.1)

where kB is the Boltzmann constant and T is the temperature. Equation (2.1) is a

form of the fluctuation-dissipation theorem in the Brownian motion. This relation

holds regardless of the size of the solute particle.

The Stokes law gives the drag coefficient based on the hydrodynamic approach.

The drag coefficient is calculated by the drag force exerted on the fixed solute particle

by the steady solvent flow. The solvent flow has a small velocity u at an infinite

distance from the solute. According to the incompressible hydrodynamic equations,

the dynamics of solvent flow is described as follows:[17], [18]

∇ · v(r) = 0, (2.2)

−∇P (r) + η∇2v(r) = 0. (2.3)

Here, v(r) is the velocity, P (r) is the pressure, and η is the shear viscosity. Equa-

tion (2.2) is the continuity equation and Eq. (2.3) is the linearized Navier-Stokes

equation.

To solve above equations, the boundary condition is required at the solute surface.

The solvent velocity normal to the solute surface is assumed to be zero, that is,[17], [18]

vr(r) = 0, (2.4)

3



4 Chapter 2 Review of large-particle diffusion

where vr(r) is the r component of v(r) in the spherical coordinates. The origin of

the coordinate system is the center of the solute particle and the z-axis corresponds

to the u direction. Then, the ϕ component of v(r) is zero, that is, vϕ(r) = 0.

The solvent velocity tangent to the solute surface has been typically assumed

to obey the stick boundary condition or slip boundary condition.[17], [18] The stick

boundary condition is given as

vθ(r) = 0, (2.5)

where vθ(r) is the θ component of v(r) in the spherical coordinates. The velocity is

assumed to be zero at the solute surface. The slip boundary condition is given as

dvθ(r)

dr
− vθ(r)

r
= 0. (2.6)

The left hand side corresponds to the tangential component of the force on an

element of the solute surface. In the slip boundary condition, the velocity has a

finite value at the solute surface.

Solving Eqs. (2.2) and (2.3) under the boundary condition at the solute surface,

one can derive the drag force as F = ξu. The drag coefficient ξ is obtained as

ξ = cπηR, (2.7)

where R is the radius of the solute particle. The parameter c depends on the

boundary condition where the stick boundary condition gives c = 6, and the slip

boundary condition gives c = 4.

The combination of Eqs. (2.1) and (2.7) is called the Stokes-Einstein (SE) relation.

The application of the SE relation is limited to the macroscopic solute particles since

the Stokes law is derived using the hydrodynamics. The solute particle has to be

large enough to treat the solvent as a continuum.

2.2 Experimental studies

2.2.1 Breakdown of Stokes law

The validity of the SE relation has been studied in experimental studies.[1]–[14], [19], [20]

It is well known that the SE relation can describe the experimental results of the

macroscopic particle, such as a colloidal sphere.[12] In contrast, the breakdown of

the Stokes law has been observed in some experiments on the diffusion of the solute

smaller than the macroscopic size.[5]–[10], [19], [20]
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Figure 2.1 Comparison of the diffusion coefficient D of the solutes in various

solvents with the prediction of the SE relation.[20] Here, η is the viscosity and r is the

radius of the solute. The dotted lines show the predictions of the SE relation for the

stick boundary condition (1/6π) and slip boundary condition(1/4π), respectively.

Evans et al. have investigated the diffusion coefficient of the solute particles of

various sizes in alcohols, hydrocarbons, and carbon tetrachloride.[19], [20] The diffu-

sion coefficients were determined with the Taylor dispersion technique.[42] In this

method, a dilute solution pulse of the solute is injected in a laminar flowing stream of

the solvent. The solute is dispersed by the laminar flow and diffusion. The diffusion

coefficient is evaluated from the distribution of the solute.

They found that the diffusion coefficient deviates from the SE relation with de-

creasing the solute size. In Fig. 2.1, the diffusion coefficient-viscosity product Dη is

plotted as a function the inverse of the solute radius 1/r. If the SE relation holds,

Dη is proportional to 1/r. For the larger solutes, such as tetrabutyltin and tetrado-

decyltin, the diffusion coefficient is close to the value predicted by the SE relation.

However, the deviation from the SE relation increases as the solute size decreases.

This behavior was observed in all solvents.

Some studies have indicated that the breakdown of the Stokes law depends on the

interaction between solute and solvent particles.[9], [10] Castillo et al. have measured

the diffusion coefficient of C60 in toluene, benzene, and carbon tetrachloride by the
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Table 2.1 The hydrodynamic diameters of C60 in the solvents.[9] The diameters

dstick and dslip are evaluated from the diffusion coefficient using the SE relation for

the stick and slip boundary conditions, respectively. The X-ray studies reported

that the diameter of C60 is 7.1Å.[43]

system dstick(Å) dslip(Å)

C60/toluene 8.72± 0.32 13.08± 0.48

C60/benzene 3.30± 0.04 4.94± 0.06

C60/CCl4 6.56± 1.02 9.86± 1.53

Taylor dispersion technique.[9] In solution, the size and shape of C60 change little

with the solvents in contrast with other solutes.[9] From the obtained diffusion coef-

ficient and the viscosity of the solvent, they calculated the hydrodynamic diameter

d = 2R using the SE relation (Table 2.1). If the Stokes law folds, the hydrodynamic

diameter does not change depending on the solvent. However, the calculated diam-

eters are different depending on the solvent. It can be considered that the diffusion

coefficients reflect the difference of the solute-solvent interactions.

2.2.2 Effects of solvation structure

In recent years, much attention has been paid to the effects of the solvation struc-

ture on the diffusion coefficient.[1]–[3] The solvation structure around the solute is

determined by the solute-solvent and solvent-solvent interactions. Terazima and co-

workers have observed the diffusion coefficient during the protein folding process,

by which the protein forms its functional three-dimensional structure.[1]–[3] They

investigated the relationship between the diffusion coefficient and the protein con-

formations for cytochrome c.

To determine the diffusion coefficient, they used the transient grating technique.[44]

In this measurement, the solute in the sample is photoexcited with interference

pattern by two laser beams to induce the refractive index modulation in the sample.

This modulation is monitored by the diffracted light of the prove beam entering in

the sample (TG signal). Since the signal decays by the diffusion of the solute, one

can obtain the diffusion coefficient from the decay of the TG signal.

Terazima et al. have found that the diffusion coefficient increases 1.9 times at

41ms after the start of the folding process. According the studies using the circular

dichroism experiments,[45] the size of cytochrome c changes little at this time. In

contrast, the hydration structure changes around cytochrome c when the diffusion
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Figure 2.2 Schematic illustrations of the folding dynamics of cytochrome c:[1] (I)

unfolded cytochrome c; (II) a small amount of a-helix is formed; (III) hydrogen

bonding is rearranged from the intermolecular one between the protein and solvent

to the intramolecular one; (IV) formation of the α-helix in the major part; (V)

native cytochrome c. The thick lines indicate the protein backbone and the thin

lines represent the hydrogen bonding.

coefficient increases (Fig. 2.2 III). The hydrogen bonding is rearranged from the

intermolecular one between the protein and solvent to the intramolecular one to

form the α-helix formation.

Their results show that the diffusion coefficient reflects not only the size of the

protein but also the hydration structure. The diffusion coefficient is small when the

density of solvent molecules is high around the protein. Then, the protein molecule

feels more drag force from the water molecules.

2.2.3 Studies of diffusion in mixture

The validity of the Stokes law has also been studied in experiments of a protein

diffusion in a multicomponent solvent mixture.[4]–[8] The proteins diffuse in a cell

crowded with biomolecules including nucleic acids, glucides, and lipids. Thus, to un-

derstand the diffusion of a protein in vivo, many researchers have carried out in vitro

experiments on the diffusion in a solvent mixture.[5]–[8] Some experiments of them

showed the large deviation from the SE relation in a solvent mixture system.[5]–[8]

Zorrilla et al. have obtained the diffusion coefficient of apomyoglobin in a protein

crowded environment by using the fluorescence correlation spectroscopy.[6] They

measured the fluctuations in the fluorescence intensity of the diffusing molecules in

an open sample volume, which is produced by a focused laser and confocal optics.

The fluctuations are caused by the diffusion of the fluorescent molecules into or out

of the open sample volume. The autocorrelation analysis of the fluctuations provides

the diffusion coefficient of the fluorescence.

Figure 2.3 shows the diffusion coefficient and viscosity as a function of the concen-
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Figure 2.3 Translational (circles) and rotational (squares) diffusion coefficients

of apomyoglobin and the viscosity (triangles) relative the values for the infinitely

dilute solution of ribonuclease A.[6] All translational diffusion data correspond to

apomyoglobin monomer. Filled and Open squares correspond to the overall motion

of apomyoglobin dimer, and to a combination of the global motion of apomyoglobin

monomer and the librational motions of apomyoglobin dimer, respectively. I added

the description of the symbols to the original figure.

tration of crowding molecules, ribonuclease A. When the Stokes law folds, one can

derive D0/D = η/η0 where D0 and η0 are the diffusion coefficient and viscosity for

the infinitely dilute solution of ribonuclease A. However, the ratio D0/D deviates

from η/η0 as the concentration of ribonuclease A increases. Since D0/D > η/η0,

D has a value smaller than the value predicted by the SE relation. These results

indicate that the diffusion coefficient cannot be explained only by the viscosity of a

mixture.

These deviations have been observed in experiments of other proteins, such as

a dUTPase in a disaccharide solution[7] and a phototropin in the ficoll solutions.[5]

Furthermore, the breakdown of the Stokes law has also been found in the diffusion

of colloidal spheres in polymer solutions.[13], [14] Some researchers consider that the

deviation is caused by the solvation structure around the solute.[14] The origin of

the breakdown in a solvent mixture system, however, has not been fully understood.
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2.3 Simulation studies

2.3.1 Solute size dependence

The solute size dependence of the diffusion coefficient has been well studied using

molecular dynamics (MD) simulation[28]–[35] since it is easy to change the solute

size in contrast to experimental studies. The researchers have carried out the MD

simulations to determine the critical size above which the SE relation holds, and the

boundary condition on the solute surface.[28]–[34]

Sokolovskii et al. have carried out the MD simulation of hard sphere systems to

study the size dependence of the solute particle diffusion.[28] The system composed

a single solute with the diameter Σ and N-1 solvent particles with the diameter

σ in the cubic cell of length L of the periodic boundary condition. The diffusion

coefficients were determined using the Green-Kubo relation,[46], [47]

D =
1

3

∫ ∞

0

⟨u(t) · u(0)⟩ dt, (2.8)

which is equivalent to the Einstein expression,[46]

D =
1

6
lim
t→∞

d

dt

⟨
|r(t)− r(0)|2

⟩
. (2.9)

Here, r(t) and v(t) are the position and velocity of the solute particle.

They showed that the calculated results suffer from the finite size effect. Figure 2.4

shows the dependence of the diffusion coefficient on the simulation cell length L. The

diffusion coefficient DN becomes smaller with the reciprocal cell length L−1. Here,

DN denotes the diffusion coefficent obtained from a simulation with N particles. At

the constant number density, N ∝ L3.

The finite size effect arises from the long-range effect of the solute particle on

solvent particles due to the momentum conservation.[28], [39] Thus, the calculation of

the diffusion coefficient requires a large system which includes many solvent particles.

However, since the simulation cell is finite, there is the hydrodynamic interactions

between the tracer particle and its images resulting from the periodic boundary

conditions. The finite size effect increases with the size of a large solute particle.

Thus, the diffusion coefficient of a large solute particle in the infinite system cannot

be obtained directly by computer simulations.

Sokolovskii et al. evaluated the diffusion coefficient in the infinite simulation cell

D∞ using a linear extrapolation of results obtained from the finite system DN as

DN

Dslip

=
D∞

Dslip

− k
R

L
. (2.10)
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Figure 2.4 Dependence of the diffusion coefficient DN on the length of the simula-

tion cell L.[28] Labels at the symbols show the number of particles in the simulation

cell. The circles and squares are simulation results without and with volume cor-

rection, respectively. They adjusted the cell volume to keep the solvent density

constant when the solute particle is immersed in the cell. The filled symbols are the

results used in a linear least squares fitting routine to determine the fitted slope kfit.

Here, the slope k in Eq. (2.10) is the value calculated by the Fushiki’s formula. The

diameter of the solute particle is 16σ where σ is the diameter of the solvent particle.

The density of solvent particles is ρσ3 = 0.52.

Here, Dslip is the value calculated from the SE relation with the slip boundary con-

dition, and the effective radius is defined as R = (Σ+σ)/2 where the solvent particle

cannot approach the solute particle for r < R. The diffusion coefficient DN is as-

sumed to be linear in the reciprocal cell length L−1 with the slope k. They obtained

k using the Fushiki’s formula which takes account of the hydrodynamic interac-

tions.[39] It is calculated from the kinematic viscosity and the diffusion coefficient

obtained by the kinetic theory using the method of Enskog.[48]–[51]

Figure 2.5 shows the dependence of the diffusion coefficient on the effective ra-

dius. The results with extrapolation lie close the value of the SE relation with slip

boundary condition for R/σ ≥ 3. Note that the results without extrapolation ap-

proaches the stick boundary condition. The difference of the results obtained with

and without extrapolation increases as the solute becomes large. These results show

the importance of considering the finite size effect.

The solute size dependence has been studied in other interaction systems than

the hard-sphere. As is the case of the hard-sphere system, the SE relation with the
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Figure 2.5 Dependence of the diffusion coefficient D∗ = D(m/kBσ
2)1/2 on the

effective radius R = (Σ+ σ)/2.[28] Open and filled symbols are the results obtained

without and with extrapolation. The solid line represents the Enskog result, and

the long and short dashed lines represents the SE relation with with stick and slip

boundary conditions, respectively. These are calculated using the effective radius

instead of the solute radius. The density of solvent particles is ρσ3 = 0.52.

slip boundary condition was also observed for a large solute when the solute-solvent

interaction is purely repulsive, such as repulsive Weeks-Chandler-Andersen (WCA)

potentials.[29] In addition, when the interaction includes a weak attraction, the

boundary condition approached the SE relation with the slip condition as the solute

size increases.[31], [33], [34] In contrast, when the solute surface is rough, the diffusion

coefficient approached the SE relation with the stick boundary condition.[29], [37] Most

studies have not determined the critical size, above which the SE relation holds. The

large solute was not treated because of the finite size effect.

2.3.2 Effects of solute-solvent interaction

As shown in experimental studies, a large particle diffusion depends on the interpar-

ticle interactions. Thus, many MD simulation studies have carried out to examine

the effect of the solute-solvent interaction.[29], [32], [34], [36] Schimit et al. have studied

the effect of the solute-solvent attractive interaction on the diffusion coefficient by

the MD simulation.[29] The diffusion coefficients were calculated using the Green-

Kubo relation Eq. (2.8).

The interaction between solvent particles was assumed as the Lennard-Jones po-
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Figure 2.6 Dependence of the diffusion coefficient D on the strength of the solute-

solvent attractive interaction ϵ. I plotted the diffusion coefficients obtained by

Schimit et al.[29] Solid and dashed lines represent the value predicted by the SE

relation with the stick and slip boundary conditions, respectively. These are calcu-

lated using the effective hydrodynamic radius a+σ. The density of solvent particles

is ρσ3 = 0.85.

tential, where the energy and length parameters are ϵ0 and σ, respectively. The

solute-solvent interaction was given by

u(r) = 4ϵ

[(
σ

r − a

)12

−
(

σ

r − a

)6
]
S(r − a) (2.11)

where the switching function S(r) is 1 for r < r1,

S(r) = (r22 − r2)2(r22 + 2r2 − 321)/(r
2
2 − r21)

3 (2.12)

for r1 < r < r2, and zero for r > r2. The strength of the attractive interaction is

represented by the well depth ϵ at r = r1 in Eq. (2.11). They employed r1 = 21/6σ

and r2 = 3σ/2. In addition, they assumed that the radii of the solute and solvent

particles are a+ σ/2 and σ/2, respectively. In this simulation, (a+ σ/2)3/(σ/2)3 =

100.

As the attractive force increases, the diffusion coefficient changes from the SE

relation with the slip condition to that with the stick condition (Fig. 2.6). When

the attractive interaction is weak, the result has the value close to the SE relation

with the slip boundary condition. Here, the SE relation was calculated using the

effective radius Ra = a+σ instead of the solute radius. As increasing the attractive



2.4 Theoretical studies 13

interaction, the diffusion coefficient decreases. The results converge to the value

smaller than the SE relation with the stick boundary condition. They showed that

this value is almost the same as the SE relation with the stick boundary condition

calculated using the corrected effective radius Ra = a+ (1 + σ1/6). They evaluated

this radius considering a solvation shell caused by the strong attraction between

solute and solvent particles. The particles in the solvation shell are assumed to

sit directly at the potential minimum of the solute-solvent interaction, which is at

a+ 21/6σ.

The transition of the boundary condition has observed in some studies of the

attractive interaction effect.[29], [32], [34] Researches have pointed out that the stick

condition is related to the accumulation of solvent particles around the solute due

to the attractive force.[29], [32]

2.4 Theoretical studies

The SE relation is not valid for the solute particle smaller than the macroscopic

size because the Stokes law is derived from hydrodynamic equations. Actually,

the breakdown of the Stokes law has been observed in experiments and simulation

studies as shown above. The breakdown arises because the diffusion coefficient

is affected by the interparticle interactions, which in not considered in the Stokes

law. To treat a large particle, such as a protein, one needs the microscopic theory

including the effects of the interparticle interactions.

The calculation of the drag coefficient requires the dynamics of the solvent around

the solute particle. In previous theories, the dynamics was approximated by that of

the neat solvent[52]–[56] although the dynamics near the solute is much affected by the

solute-solvent interaction. To address this problem, Yamaguchi et al. have formu-

lated the inhomogeneous generalized Langevin equations.[26] Using their theory, one

can calculate the drag coefficient, considering the solute-solvent and solvent-solvent

interactions.

2.4.1 Generalized Langevin equations

They considered the system composed of N solvent particles of the mass m. The

position and momentum of particle i are denoted by ri and pi, respectively. The

time development of ri and pi obey the Hamiltonian dynamics where H is the

hamiltonian of the system. The interaction between the solute and solvent particles

is regarded as the external field u(r) applied to the solvent particles.
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Yamaguchi et al. formulated the generalized Langevin equations for the time

development of the conserved quantities, the density field ρ(r) and current density

field J(r) under the external field. These quantities are defined as

ρ(r) ≡
∑
i

δ(r − ri) (2.13)

J(r) ≡
∑
i

viδ(r − ri). (2.14)

Here, vi is the velocity of particle i. The generalized Langevin equations are derived

from the Liouville equations using the projection operator method.[57]

Liouville equation

The time developments of ρ(r) and J(r) are represented by the exact equation using

the Liouville operator L as[46]

dXµ

dt
= iLXµ, iL ≡

∑
i

{
∂H
∂pi

· ∂

∂ri

− ∂H
∂rl

· ∂

∂pl

}
(2.15)

where {Xµ} = {ρ,J}. Equation (2.15) is solved formally as

Xµ(t) = eiLtXµ(0). (2.16)

Then, the time development of Xµ(t) is given as

dXµ

dt
= eiLtiLXµ(0). (2.17)

Projection operator method

Using the projection operator method,[46], [57]–[59] one derives the generalized Langevin

equation, which is also an exact equation. By the projection operator method,

the time development of {Xµ} is separated into slowly-varying and quickly-varying

parts.

To separate the slowly-varying parts, one projects all phase functions {Xµ} into

the subspace defined by a set of slow variables A = {Aµ}. Yamaguchi et al. chose

the conserved variables A = {δρ(r),J(r)} as the subspace. The projection of Xµ

onto A is written by the projection operator P as

PXµ ≡
∑
ν,λ

∫∫
dr′dr′′⟨Xµ(r)Aν(r

′)⟩⟨A(r′),A(r′′)⟩−1
νλAλ(r

′′) (2.18)
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where ⟨A,A⟩−1 represents inverse matrix of the matrix ⟨A,A⟩. The element νµ of

the matrix is ⟨AνAµ⟩. Here, the bracket denotes the equilibrium ensemble average

of the function as

⟨Y (r)Z(r′)⟩ ≡
∫

Y (r)X(r′)feq({rN ,pN})drNdpN , (2.19)

where feq({rN ,pN}) represents the phase-space probability density. At |ri| → ∞
and |pi| → ∞, feq({rN ,pN}) → 0. In addition, one defines the operator Q ≡ 1−P
projecting onto the subspace orthogonal to A.

Using the operator P and Q, Eq. (2.17) is rewritten as

dXµ

dt
= eiLtiLXµ = eiLtPiLXµ + eiLtQiLXµ. (2.20)

Here, one wrote Xµ(0) as Xµ for simplicity.

The first term of the right hand side in Eq. (2.20) is rewritten using Eq. (2.18) as

eiLtPiLXµ = eiLt
∑
ν,λ

∫∫
dr′dr′′⟨(iLXµ)Aν⟩⟨A,A⟩−1

νλAλ

=
∑
ν,λ

∫∫
dr′dr′′⟨(iLXµ)Aν⟩⟨A,A⟩−1

νλAλ(t) ≡
∑
λ

∫∫
dr′dr′′iΩµλAλ(t).

(2.21)

Here, iΩµλ ≡
∑

ν⟨(iLAµ)Aν⟩⟨A,A⟩−1
νλ . To derive Eq. (2.21), one used that iΩµλ

does not include {rN ,pN}.
The second term of the right hand side in Eq. (2.20) is rewritten using the relation

derived by Mori,[57]

eiLt =

∫ t

0

eiLt
′PiLeQiL(t−t′)dt′ + eQiLt. (2.22)

Then, one can obtaine

eiLtQiLXµ =

∫ t

0

eiLt
′PiLeQiL(t−t′)QiLXµdt

′ + eQiLtQiLXµ

=

∫ t

0

eiLt
′PiLRµ(t− t′)dt′ +Rµ(t) (2.23)

where Rµ(t) ≡ eQiLtQiLXµ.

Substituting Eq. (2.18) into the first term of the right hand side in Eq. (2.23), one

derives∫ t

0

eiLt
′PiLRµ(t− t′)dt′ =

∫ t

0

dt′
∑
ν,λ

∫∫
dr′dr′′⟨(iLRµ(t− t′))Aν⟩⟨A,A⟩−1

νλAλ(t
′).

(2.24)
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From the definition of the bracket Eq. (2.19) and using partial integration, one can

derive

⟨(iLRµ(t))Aν⟩ = −⟨Rµ(t)(iLAν)⟩ = −⟨Rµ(t)Ȧν⟩ (2.25)

In addition, since Rµ(t) is normal to the subspace {Aµ}, ⟨Rµ(t)Aν⟩ = 0. Then, one

obtains

−⟨Rµ(t)Ȧν⟩ = −⟨Rµ(t)QȦν⟩ = −⟨Rµ(t)Rν⟩. (2.26)

From Eqs.(2.25) and (2.26), Eq. (2.24) is written by∫ t

0

eiLt
′PiLRµ(t− t′)dt′ = −

∑
λ

∫ t

0

dt′
∫∫

dr′dr′′Mµλ(t− t′)Aλ(t
′) (2.27)

where

Mµλ(t) =
∑
ν

⟨Rµ(t)Rν⟩⟨A,A⟩−1
νλ . (2.28)

Substituting Eqs. (2.21), (2.23), and (2.27) into Eq. (2.20), one derives the gen-

eralized Langevin equation,

dXµ

dt
=
∑
λ

∫∫
dr′dr′′iΩµλAλ(t)−

∑
λ

∫ t

0

dt′
∫∫

dr′dr′′Mµλ(t− t′)Aλ(t
′) +Rµ(t).

(2.29)

The first term is proportional to A at the present time. The second term is called

the Memory term proportional to A in the past. The third term represents the

random force, which is orthogonal to A.

Dynamics of solvent particles

Substituting {Aµ} = {ρ,J} into Eq. (2.29), Yamaguchi et al. derived the time

development of {Xµ} = {ρ,J} as follows:[26]

dρ(r, t)

dt
= −∇ · J(r, t) (2.30)

dJ(r, t)

dt
= −

∫∫
dr′dr′′⟨J(r),J(r′)⟩ · ∇′ [⟨ρ(r′)ρ(r′′)⟩−1 ρ(r′′, t)

]
−
∫ t

0

dt′
∫∫

dr′dr′′M (r, r′, r′′, t− t′) · J(r′′, t′) +R(r, t) (2.31)

whereM (r, r′, r′′, t) = ⟨R(r, t),R(r′, 0)⟩·⟨J(r′),J(r′′)⟩−1 andR(r, t) ≡ eiQLQtQJ̇(r).

Equations (2.30) and (2.31) are the continuity equation and the equation of motion,

respectively. These are exact equations alternative of the Liouville equations.
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2.4.2 Application to attractive system

Using Eqs.(2.30) and (2.31), Yamaguchi et al. calculated the drag coefficient.[27]

They considered that the solute is instantaneously displaced at t = 0 to z-direction

by ∆z. In the limit of small displacement ∆z, the nonequilibrium average of the

force from the solvent particles is represented by ⟨Fz(t)⟩ne = ξ(t)∆z. Here, ξ(t) is

related to the drag coefficient arising from the steady solvent flow as[26]

ξ =

∫ ∞

0

ξ(t)dt. (2.32)

When the solute-solvent interaction is represented by u(r), the nonequilibrium

average of the force is calculated by

⟨Fz(t)⟩ne = −
∫

dr
∂u(r)

∂z
ρ̄(r, t), (2.33)

where

ρ̄(r, t) = ⟨ρ(r, t)⟩ne − ⟨ρ(r, t = ∞)⟩ne. (2.34)

Here, ⟨ρ(r, t)⟩ne denotes the nonequilibrium response of the solvent density around

the solute. According to the linear-response theory, these nonequilibrium response

is approximated by the equilibrium time correlation function as

ρ̄(r, t) =
1

kBT
⟨U(0)ρ(r, t)⟩eq (2.35)

where

U(t) = −
∫

dr
∂u(r)

∂z
ρ(r, t). (2.36)

Since the time evolution of ρ(r, t) is given by Eqs.(2.30) and (2.31), using Eq. (2.35)

the time evolution of ρ̄(r, t) is given as

dρ̄(r, t)

dt
= −∇ · J̄(r, t) (2.37)

dJ̄(r, t)

dt
= −

∫∫
dr′dr′′⟨J(r),J(r′)⟩ · ∇′ [⟨ρ(r′)ρ(r′′)⟩−1 ρ̄(r′′, t)

]
−
∫ t

0

dt′
∫∫

dr′dr′′M (r, r′, r′′, t− t′) · J̄(r′′, t′) (2.38)

where

J̄(r, t) = ⟨J(r, t)⟩ne − ⟨J(r, t = ∞)⟩ne =
1

kBT
⟨U(0)J(r, t)⟩eq. (2.39)
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To solve Eqs. (2.37) and (2.38), they evaluated the correlation functions ⟨J(r),J(r′)⟩,
⟨ρ(r)ρ(r′)⟩, and ⟨R(r, t),R(r′, 0)⟩. The correlation function of the current fields is

given as ⟨J(r),J(r′)⟩ = kBT/mρeq(r)δ(r−r′)1 where 1 is the unit tensor. They ob-

tained the equilibrium density field ρeq(r) and the solute-solvent solvent three-body

correlation function ⟨ρ(r)ρ(r′)⟩ using the Ornstein-Zernike integral equation coupled

with the hypernetted-chain approximation (OZ/HNC theory).[46] In addition, they

assumed that the time correlation function of the random force ⟨R(r, t),R(r′, 0)⟩ is
the same as that in the absence of the solute using the exponential model.[60], [61]

They assumed the interaction between solvent particles as the Lennard-Jones po-

tential, where the energy and length parameters are ϵ0 and σ, respectively. The

density of the solvent waw 0.85σ−3 and the temperature was 0.75ϵ0/kB. They as-

sumed the solute-solvent interaction as

u(r) =



4ϵ0

[(
σ

r − (d− σ)/2

)12

−
(

σ

r − (d− σ)/2

)6
]
− ϵ+ ϵ0

(r < 21/6σ + (d− σ)/2),

4ϵ

[(
σ

r − (d− σ)/2

)12

−
(

σ

r − (d− σ)/2

)6
]

(r > 21/6σ + (d− σ)/2),

(2.40)

where d is the diameter of the solute.

Figure 2.7 shows the calculated results of the drag coefficient as the function of

the strength of solute-solvent attractive interaction. The drag coefficient increases

with increasing the attractive interaction. The similar behavior has been observed

in simulation studies.[29], [32], [34] When the solute is as small as the solvent, the drag

coefficient deviates from the Stokes law with the attractive interaction. In contrast,

when the solute is large, the drag coefficients are close to the value of the Stokes law

with the stick boundary condition.

Their theory allows us to calculate the drag coefficient including the effect of the

interparticle interactions. However, the calculation for the large solute is difficult

because of the finite size effect in the same way as the limitation of simulations. In

the case of d = 8σ, they corrected the calculated values considering the effect of

the cutoff radius. To avoid the finite size effect, Inayoshi et al. have expanded the

generalized Langevin equations with respect to the size ratio of the solute and solvent

particle.[40] Using their theory, one can consider solvent particles at an infinite

distance using an analytical expression of the drag coefficient. The perturbation

theory will be described in Chapter 3.
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Figure 2.7 Dependence of the drag coefficient ξ on the strength of the solute-

solvent attractive interaction ϵ.[27] The diameters of the solute are d = σ(circles),

2σ(squares), 4σ(diamonds), and 8σ(triangles) where σ is the diameter of the solvent

particle. In Fig. 2.7, they employed the units in which the LJ parameters and mass

of the solvents and the Boltzmann constant are unity. The filled symbols represent

the mere values integrating ξ(t), and the open symbols represent the corrected val-

ues corrected for the tail in ξ(t) by the extrapolation. The solid and dashed lines

represent the values predicted by the Stokes law with the slip and stick boundary

conditions, respectively.

2.5 Summary

The breakdown of the Stokes law has been observed in experimental studies of a

large particle diffusion.[5]–[10], [13], [14], [19], [20] As decreasing the size of the solute, the

diffusion coefficient deviated from the value predicted by the SE relation.[19], [20] The

deviation depended on the interparticle interaction between solute-solvent parti-

cles.[9], [10] Furthermore, the experiments for the diffusion in solvent mixtures showed

the large deviations as compared to those in pure solvents.[5]–[8], [14] It was found that

the diffusion coefficient has a correlation with the solvation structure around the so-

lute.[1]–[3]

The MD simulation studies have shown that the boundary condition on the solute

surface depends on the solute-solvent interaction. In the spherical interaction sys-

tems, such as the purely repulsive or weak attraction systems, the diffusion coefficient

approached the SE relation with slip boundary condition when the solute becomes

large.[28], [29], [31], [33], [34] In contrast, when the solute surface is rough, the diffusion
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coefficient approached the SE relation with the stick boundary condition.[29], [37] In

addition, some studies showed that the boundary condition changed from the slip

to the stick boundary conditions with increasing the solute-solvent attractive in-

teraction.[29], [32], [34] Although MD simulation enables us to study the interparticle

interactions, the results suffer the finite-size effects.

The effects of the interparticle interactions have also been studied theoretically.

Yamaguchi et al. formulated the generalized Langevin equations to describe the

dynamics of the solvent particles around the solute.[26] Their theory is distinct

from the previous theories, which do not include the effect of the solute-solvent

interaction on the dynamics of the solvent particles. However, as is the case of

simulation studies, the large solute cannot be treated in the theory of Yamaguchi

et al. due to the finite-size effect. Inayoshi et al. avoided this difficulty, expanding

the generalized Langevin equations with respect to the size ratio of the solute and

solvent particle (Chap. 3).
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Perturbation theory

When studying a large-particle diffusion, the microscopic theories or molecular

simulations suffer from the finite-size effect. To avoid this difficulty, Inayoshi et al.

have developed a theory by perturbation expansions with respect to the size ratio of

the solute and solvent particles.[40] Their theory can deal with the solvation effect

through the radial distribution function, which represents the density distribution

of solvent particles around the solute particle. In this chapter, I introduce the

perturbation theory developed by Inayoshi et al. I formulate a theory on the basis

of their theory in Chap. 4.

3.1 Perturbation theory

3.1.1 Basic equations

Inayoshi et al. assumed that solvent particles have the small velocity u at an infinite

distance from the solute fixed to the origin to obtain the diffusion coefficient through

the Einstein relation.[40] This system is equivalent to that of the solute particle

moving with velocity −u. They calculated the drag coefficient of the solute particle,

by assuming the steady state. The diffusion coefficient is given by the drag coefficient

through the Einstein relation (2.1).

The present system is described by the generalized Langevin equations formulated

by Yamaguchi et al.[26] as

0 = −∇ · J(r), (3.1)

0 = −ρeq(r)∇µ(r) +

∫
dr′M(r, r′)J(r′). (3.2)

21
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Here, ρeq(r) is the equilibrium density calculated from the radial distribution func-

tion g(r) through ρeq(r) = ρg(r) where ρ is the average density. At the steady state,

µ(r) and J(r) can be obtained solving Eqs. (3.1) and (3.2) if ρeq(r) and the memory

tensor M(r, r′) are given.

Since it is difficult to calculate exactly M(r, r′), they employed two approxima-

tions: homogeneous approximation and long-wavelength limit approximation. Un-

der the homogeneous assumption, M(r, r′) is replaced by a homogeneous tensor

which is the same as that in the absence of the solute. The same approximation was

employed by Yamaguchi et al.[26] Additionally, they approximated the homogeneous

tensor using the long-wavelength limit of the spatial Fourier transform. Thus, the

second term of Eq. (3.2) is given as∫
dr′M(r, r′)J(r′) ≈ η∇2v(r) + γ∇ (∇ · v(r)) . (3.3)

Here, η is the shear viscosity, and γ = ζ + η/3, where ζ is the bulk viscosity. In

the absence of the solute, Equation (3.2) with the approximation (3.3) is equivalent

to the average of the nonlinear fluctuation hydrodynamics.[62]–[64] It has been well

studied in connection with the dynamics in supercooled liquids.

In Eq. (3.2), µ(r) is rewritten using the function P(r) ≡ ρeq(r)µ(r). Here, in the

region far away from the solute where ρeq(r) is constant, ∇P(r) corresponds to the

gradient of the pressure in the first order of the velocity u. Owing to the symmetry

of the system, v(r) and P(r) are represented as

v(r) = vr̂(r)(r̂ · u)r̂+ vu,i(r)u, (3.4)

P(r) = P (r)(r̂ · u), (3.5)

where r̂ = r/r.

Substituting Eqs (3.4) and (3.5) and using J(r) = ρeq(r)v(r), Eq. (3.1) is rewritten

as
d

dr
[ρeq(r)vr̂(r)] +

2ρeq(r)vr̂(r)

r
+

d

dr
[ρeq(r)vu(r)] = 0, (3.6)

and Eq. (3.2) with the approximation given by Eq. (3.3) is rewritten as

− P (r)

r
+ η

[
2vr̂(r)

r2
+

2

r

dvu(r)

dr
+

d2vu(r)

dr2

]
+ γ

[
2vr̂(r)

r2
+

1

r

dvr̂(r)

dr
+

1

r

dvu(r)

dr

]
= 0,

(3.7)

− ρeq(r)
d

dr

P (r)

rρeq(r)
+ η

[
6
d

dr

vr̂(r)

r2
+ r

d2

dr2
vr̂(r)

r2

]
+ γ

[
5
d

dr

vr̂(r)

r2
+ r

d2

dr2
vr̂(r)

r2
− 1

r2
dvu(r)

dr
+

1

r

d2vu(r)

dr2

]
= 0.

(3.8)
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Figure 3.1 Illustration of the boundary layer and outer region: (a) The boundary

layer is near the solute and the outer region is far away from the solute. The solute

and solvent particles are represented as the large red and small blue spheres. (b)

The equilibrium density field ρeq(r). The boundary layer is defined by ρeq(r) ̸= ρ

and the outer region is defined by ρeq(r) = ρ.

Equations (3.6), (3.7), and (3.8) are solved to satisfy the slip boundary condition

on the solute surface as
dvu(r)

dr

∣∣∣∣
r=Ra

=
vu(Ra)

Ra

. (3.9)

Here, Ra = R + a where R and a are the radii of the solute and solvent particles,

respectively. The solute surface is assumed to be at r = Ra because ρeq(r) vanishes

for r < Ra.

3.1.2 Perturbation expansions

The solute particle is assumed to be much larger than the solvent particle. When

the solute particle is large, it is difficult to calculate the basic equations (3.6), (3.7),

and (3.8) directly because of the finite-size effect. Thus, they found approximate

solutions expanding the equations in powers of the ratio between the solute and

solvent size

ϵ ≡ a

Ra

. (3.10)

They expanded the basic equations dividing the whole space into two regions

depending on distance from the solute because there are two spatial scales.[65] Near

the solute, the density distribution ρeq(r), which is contained in the basic equations,

varies in the range of solvent particle size. Thus, vr̂(r), vu(r) and P (r) also change

the scale given by the solvent particle size. In contrast, in the region sufficiently far
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away from the solute, the scale is given by the size of the solute because ρeq(r) has

constant value. The density distribution ρeq(r) becomes constant at the distance of

the size of several solvent particles.

Therefore, the space is divided into two regions: the outer region far away from

the solute and the boundary layer near the solute (Fig. 3.1). The outer region is

defined by ρeq(r) = ρ. The boundary layer is defined by ρeq(r) ̸= ρ.

Since the boundary layer is dominated by the scale of the solvent particle size,

they introduce a stretched variable, x ≡ (r−Ra)/a. Here, they assumed that ρeq(r)

can be represented as the function of x, ρe(x). With the new variable x fixed, the

solutions of Eqs. (3.6), (3.7), and (3.8) are expanded as

vr̂(r) =
∞∑
n=0

ϵnv
(n)
r̂,b (x), (3.11)

vu(r) =
∞∑
n=0

ϵnv
(n)
u,b (x), (3.12)

RaP (r) =
∞∑
n=0

ϵnP
(n)
b (x). (3.13)

The left-hand side of Eq. (3.13) includes Ra so that Eqs. (3.7) and (3.8) do not

explicitly have the length scale Ra or a after the substitution of Eq. (3.13) into

Eqs. (3.7) and (3.8). Substituting expansion of vu(r) into Eq. (3.9), the boundary

condition for the expansion coefficient of vu,b(r) is given by

dv
(n+1)
u,b (x)

dx

∣∣∣∣∣
x=0

= v
(n)
u,b (0). (3.14)

In the outer region, since ρeq(r) is constant, Eqs. (3.1) and (3.2) with Eq. (3.3)

reduced to the incompressible hydrodynamic equations as

∇ · v(r) = 0, (3.15)

−∇P(r) + η∇2v(r) = 0. (3.16)

Unlike the boundary layer, they defined a variable as r̄ ≡ r/Ra since the outer region

is dominated by the scale of the solute particle size. Thus, in the outer region, the
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solutions are expanded as

vr̂(r) =
∞∑
n=0

ϵnv
(n)
r̂,o (r̄), (3.17)

vu(r) =
∞∑
n=0

ϵnv(n)u,o(r̄), (3.18)

RaP (r) =
∞∑
n=0

ϵnP (n)
o (r̄). (3.19)

with r̄ ≡ r/Ra fixed. The left-hand side of Eq. (3.19) includes Ra for the same

reason as for Eq. (3.13).

Connecting condition

They assumed that the boundary layer solutions are required to be consistent with

the outer solutions at x → ∞ as

lim
x→∞

{Xb(x)−Xo(r̄)} = 0. (3.20)

Here, Xb(x) and Xo(r̄) are any of vr̂(r), vu(r), and P (r) in the boundary layer and

outer region. Since r̄ = 1 + ϵx, the expansion of Xo(r̄) around r̄ = 1 gives

lim
x→∞

{
Xb(x)−

∞∑
n=0

ϵnxn

n!

dnXo(r̄)

dr̄n

∣∣∣∣∣
r̄=1

}
= 0. (3.21)

Substituting the expansions of Xb(x) and Xo(r̄), such as Eqs. (3.11) and (3.17),

into Eq. (3.21), the connecting condition between the solutions is obtained as

C(n)
m =

1

m!

dmX
(n−m)
o (r̄)

dr̄m

∣∣∣∣∣
r̄=1

. (3.22)

Here, C
(n)
m is constant defined by an asymptotic form of boundary layer solution

X
(n)
bl (x) −−−→

x→∞

∞∑
m=0

C(n)
m xm, (3.23)

where

C(n)
m = 0 for n−m > 0. (3.24)
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3.1.3 Boundary conditions for the outer region

Equation (3.22) shows that the boundary layer solutions give the boundary condi-

tions of the outer solutions at r̄ = 1. Inayoshi et al. derived the boundary condition

of outer solutions by Eq. (3.22) and solved the outer equations (3.15) and (3.16).

From the outer solution of v(r) and P(r), they obtained the drag coefficient.

The boundary conditions of the outer region are derived as follows. First, substi-

tuting r = Ra + ax and the expansions of vr̂(r), vu(r), and P (r) for the boundary

layer, Eqs. (3.6) - (3.8) are expanded in a power series of ϵ. Then, these differential

equations are solved under the slip boundary condition given by Eq. (3.14). Finally,

using the boundary layer solutions and Eq. (3.22), the boundary conditions of the

outer solution are obtained. Details of the derivation are given in Chap. 5.

They derived the boundary conditions proportional to ϵ0 as

v
(0)
r̂,o(1) + v(0)u,o(1) = 0, (3.25)

dv
(0)
u,o(r̄)

dr̄

∣∣∣∣∣
r̄=1

= v(0)u,o(1). (3.26)

Equation (3.26) is in agreement with the slip boundary condition given by Eq. (3.14).

The boundary conditions proportional to ϵ1 are derived as

v
(1)
r̂,o(1) + v(1)u,o(1) = αv(0)u,o(1), (3.27)

dv
(1)
u,o(r̄)

dr̄

∣∣∣∣∣
r̄=1

− v(1)u,o(1) =
α

2η
P (0)
o (1)− βv(0)u,o(1). (3.28)

Here, α and β are given as

ϵα =
2

R + a

∫ ∞

R+a

[
ρeq(r)

ρeq(∞)
− 1

]
dr, (3.29)

ϵβ =
1

R + a

{∫ ∞

R+a

∆v(r)dr −
(
1 +

γ

η

)[∫ ∞

R+a

ρeq(r)

∫ ∞

r

ω(r′)

ρeq(r′)
∆v(r′)dr′dr

}
(3.30)

where

∆v(r) =
2ω(r)

ρeq(r)

∫ r

R+a

ρeq(r
′)dr′, (3.31)

ω(r) =
1

ρeq(r)

dρeq(r)

dr
. (3.32)

The first-order boundary conditions are determined by ρeq(r) through the parame-

ters α and β in contrast to the zeroth-order boundary conditions.
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3.1.4 Drag coefficient

The outer equations (3.15) and (3.16) are solved analytically under the condition of

v(r) = u at r → ∞. The solutions proportional to ϵ0 are represented as

vr̂(r) = −c(0)Ra

8r
+

3d(0)R3
a

r3
, (3.33)

vu(r) = 1− c(0)Ra

8r
− d(0)R3

a

r3
, (3.34)

Ps(r) = −c(0)Ra

4r2
η. (3.35)

Since these solutions satisfy the boundary conditions Eqs. (3.25) and (3.26), the

constants c(0) and d(0) are derived as

c(0) = 4, (3.36)

d(0) = 0. (3.37)

The solutions proportional to ϵ1 are represented as

vr̂(r) = −c(1)Ra

8r
+

3d(1)R3
a

r3
, (3.38)

vu(r) = −c(1)Ra

8r
− d(1)R3

a

r3
, (3.39)

Ps(r) = −c(1)Ra

4r2
η. (3.40)

In the same way as for zeroth-order solutions, using the boundary conditions Eqs. (3.27)

and (3.28), the constants c(1) and d(1) are obtained as

c(1) = −2α− 2β

3
, (3.41)

d(1) = − β

12
. (3.42)

where α and β are given by Eqs. (3.29) and (3.30).

From these solutions, the drag coefficient ξ is derived as

ξ = cπηRa, (3.43)

c = c(0) + ϵc(1) = 4− 2ϵα− 2ϵβ

3
. (3.44)

The terms higher than the second order of ϵ are omitted. The diffusion coefficient

is obtained from the drag coefficient through the Einstein relation.
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perturbation theory 

non-perturbative theory 

Figure 3.2 The ratio of the drag coefficients ξ/ξ1 as a function of the strength of

the attraction between solute and solvent particles ϵ in Eq. (3.45).[40] Here, ξ1 is

the value when ϵ = ϵ0 where ϵ0 is the energy parameters of the interaction between

solvent particles given by the Lennard-Jones potential. Open symbols represent the

results of the perturbation theory and filled symbols represent the results of the

non-perturbative theory derived by Yamaguchi et al.[27] The diameter of the solute

sphere is d = 8σ where σ is the diameter of the solvent spheres. Note that I added

the description of symbols to the original figure.

Equation (3.43) depends on the solvation structure because α and β include ρeq(r)

as shown by Eqs (3.29) and (3.30). When the solvation structure is inhomogeneous,

that is, ρeq(r) ̸= ρ, α and β are not zero. In this case, the drag coefficient deviates

from the Stokes law with the slip condition.

3.2 Application to Kihara potential system

Inayoshi et al. have applied their theory to the attractive interaction system. The

solute-solvent interaction is given by Kihara potential as

u(r) = 4ϵ

[(
σ

r − (d− σ)/2

)12

−
(

σ

r − (d− σ)/2

)6
]
, (3.45)

where d and σ are the diameters of the solute and solvent particles, respectively.

The parameter ϵ represents the strength of the attractive force. The interaction

between solvent particles is given by the Lennard-Jones potential, where the energy

and length parameters are ϵ0 and σ, respectively. They assumed d = 8σ, the solvent
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density of 0.85σ−3, and the temperature of 0.75ϵ0/kB. Additionally, they assumed

γ = 0 in Eq. (3.30).

The calculated results were compared with those calculated by Yamaguchi et al.

using the non-perturbative theory. Yamaguchi et al. calculated the drag coefficient

for the similar potential system given by Eq. (2.40). Equation (2.40) reduces to

Eq. (3.45) when ϵ = ϵ0. By comparing results calculated by two theories, Inayoshi

et al. discussed the the validity of the approximation of Memory tensor and the

perturbation expansion.

Inayoshi et al. showed that ϵ-dependence of the drag coefficient is qualitatively

in agreement with that given by the non-perturbative theory. Figure 3.2 shows the

ratio ξ/ξ1, where ξ1 is the value when ϵ = ϵ0. The difference between the two theories

is less than 17% in the range ϵ < 4ϵ0. However, the absolute values of ξ is about 1.5

times larger than those of the non-perturbative theory. They considered that this

deviation decreases with increasing the solute diameter.

3.3 Summary

Inayoshi et al. have formulated a perturbation theory to study the solvation effects

on a large-particle diffusion.[40] They expanded the generalized Langevin equations

in powers of the size ratio of the solute and solvent particles. The expansion allows

one to derive hydrodynamic equations with boundary conditions which depend on

the density distribution of solvent particles. Solving these equations, they obtained

an analytical expression of the drag coefficient of a large solute.

The perturbation theory has two merits comparing with the previous theories.

The first is that one can consider the solvation effects on the diffusion through the

radial distribution function, which can be derived by MD simulations or the integral

equations for liquids. The solvation effects are not considered in the Stokes-Einstein

relation. The second is that the theory does not suffer the finite-size effect. One

can consider solvent particles at an infinite distance using an analytical solutions of

hydrodynamic equations. Thus, one can treat larger solute particle than the solvent

particle.

Inayoshi et al. showed that the drag coefficient calculated by the perturbation

theory is 1.5 times larger than that obtained by the non-perturbative theory in

the attractive interaction system.[27] In order to quantitatively evaluate the drag

coefficient, the improvement is required in the perturbation theory.



Chapter 4

Study for one-component solvent

system

Inayoshi et al. have formulated the perturbation theory to study the solvation

effects on the diffusion.[40] However, their theory gives the drag coefficient much

larger than that calculated by the non-perturbative theory. In the present chapter, I

formulate a new perturbation theory on the basis of the theory developed by Inayoshi

et al. Furthermore, I show that the results calculated by the present theory are in

good agreement with those of the non-perturbative theory and MD simulations.

4.1 New expression of drag coefficient

Inayoshi et al. derived the hydrodynamic equations and the boundary conditions on

the solute surface up to the first order of ϵ by perturbation expansions. Under the

derived boundary conditions, they solved the hydrodynamic equations by omitting

terms higher than the first order of ϵ. In the present study, in contrast to the

theory of Inayoshi et al., I consider higher terms of the hydrodynamic equations

when solving these equations with the derived boundary conditions.

From Eqs. (3.25)-(3.28), by omitting terms higher than the first order of ϵ, the

boundary conditions are rewritten as follows:

vr̂(Ra) + vu(Ra) = ϵαvu(Ra), (4.1)

dvu(r)

dr

∣∣∣∣
r=Ra

=
1− ϵβ

Ra

vu(Ra) +
ϵα

2η
Ps(Ra). (4.2)

The parameters α and β are given by Eqs (3.29) and (3.30), respectively.

30
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The solutions of the hydrodynamic equations (3.15) and (3.16) are obtained as

vr̂(r) = −cRa

8r
+

3dR3
a

r3
, (4.3)

vu(r) = 1− cRa

8r
− dR3

a

r3
, (4.4)

Ps(r) = −cRa

4r2
η. (4.5)

under the condition of v(r) = u at r → ∞. To satisfy Eqs. (4.1) and (4.2), the

constants c and d are determined as

c =
48− 24ϵα− 24ϵβ

12− 4ϵβ + (ϵα)2
, (4.6)

d =
−ϵβ + (ϵα)2

12− 4ϵβ + (ϵα)2
. (4.7)

From Eqs. (4.3) - (4.5), the drag coefficient ξ is derived as

ξ = cπηRa, (4.8)

where c is given by Eq. (4.6).

Equation (4.6) is different from Eq. (3.44) derived by Inayoshi et al. Equation (4.6)

includes nonlinear terms of ϵ. It is reduced to Eq. (3.44) when Eq. (4.6) is linearized

for ϵ.

4.2 Validity of the theory

I have obtained the new expression of c including nonlinear terms of ϵ. To confirm the

validity of the present theory, I compare the calculated results with those obtained

using the non-perturbative theory and MD simulations.

4.2.1 Comparison with previous perturbation theory

In this subsection, I calculate c using the new expression of c given by Eq. (4.6). The

calculated results are compared with those obtained using the previous expression

of c derived by Inayoshi et al., that is, Eq. (3.44). In both expressions, c depends

on the parameter α and β, which are given by Eqs (3.29) and (3.30), respectively.

Equations (3.29) and (3.30) are calculated from the radial distribution function

between the solute and solvent particles, g(r). Although g(r) should be determined
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Figure 4.1 Model radial distribution function given by Eq. (4.9).

by the interparticle interactions, I assume a simple model of g(r) in this study as

g(r) =

 −g0 − 1

L−R
(r − L) + 1 R ≤ r < L,

1 L ≥ r
(4.9)

where g0 and L = R + a represent the peak and width of g(r), respectively. Figure

4.1 shows g(r) given by Eq. (4.9).

Substituting Eq. (4.9) into Eqs (3.29) and (3.30), α and β are calculated analyti-

cally as[40]

α = g0 − 1, (4.10)

β = −(1 + γ/η)

6
(g0 − 1)2(g0 + 3) + (1− g0). (4.11)

I assume for simplicity that the bulk viscotiy is zero, that is, γ = η/3. In addition,

the radius of the solute particle is R = 10a where a is the radius of the solvent

particle.

Figure 4.2 shows the dependence of c on the peak value of g(r), g0. When g0 < 5,

the results calculated using the present theory are in good agreement with those

of Inayoshi et al. However, the results of the present theory deviate from those

of Inayoshi et al. when g0 > 5. While the results of the present theory approach

c = 6 (the stick boundary condition), the results of Inayoshi increase rapidly with

increasing g0.
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Figure 4.2 Dependence of the boundary condition coefficient c on the peak value

of g(r), g0, where g(r) is given by Eq. (4.9). Solid and dashed curves represent

the results calculated using the present theory given by Eq. (4.6) and the previous

theory of Inayoshi et al. given by Eq. (3.44), respectively. Solid lines at c = 4 and 6

denote slip and stick boundary conditions, respectively. In Eq. (4.9), R = 10a and

L = 11a where a is the radius of the solvent particle.

Large value of c gives the large drag coefficient through Eq. (4.8). Thus, according

to the results of Inasyoshi et al., the drag coefficient diverges when g0 has an infinite

value. The large value of g0 represents that solvent particles accumulate around

the solute particle. It is not expected that a layer of solvent particles on the solute

surface causes the infinite value of the drag coefficient. I consider that the results

of Inayoshi et al. overestimate the solvation effects.

The results of the new theory avoid divergence of the drag coefficient. This results

can also be explained by the new expression of c given by Eq. (4.6). One finds that

from Eqs. (4.10) and (4.11), α and β are proportional to g0 and g30 in the large g0
limit, respectively. Thus, β diverges faster than α at g0 → ∞. It causes c → 6.

In contrast, when c is given by Eq. (3.44), c → ∞ at g0 → ∞. While c given by

Eq. (3.44) is the linearized expression for ϵ, the new expression c given by Eq. (4.6)

includes nonlinear terms of ϵ. I can consider that the present theory gives reasonable

value even when g0 has a large value.
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4.2.2 Comparison with non-perturbative theory

In this subsection, I compare the calculated results with those obtained using the

non-perturbative theory formulated by Yamaguchi et al.[26], [27] As shown in Chap. 2.4,

they obtained the drag coefficient by solving the generalized Langevin equations (2.37)

and (2.38) numerically without perturbation expansions. Their equations are em-

ployed as the basic equations in the present theory.

The system is the same as that in Chap. 2.4.2. The interaction between solvent

particles is given the Lennard-Jones potential. The solute-solvent interaction is

given by Eq. (2.40). The density of the solvent is 0.85σ−3 and the temperature is

0.75ϵ0/kB. The radial distribution functions g(r) of the above system are obtained

using the Ornstein-Zernike integral equation coupled with the hypernetted-chain

closure (OZ/HNC theory).[46]

To calculate the drag coefficient, one needs to evaluate the values of γ/η included

in Eq. (3.30) and η included in Eq. (4.8). I obtain the value of the shear viscosity

η from the MD simulation by Yamaguchi et al.[36] In addition, I assume that the

bulk viscosity is zero, that is, γ = η/3 in Eq. (3.30). The drag coefficient does not

change greatly by the bulk viscosity. I have found that the difference between the

drag coefficients at γ = η/3 and γ = 0 is less than 2%.

The results of the present perturbation theory are in good agreement with those

of the non-perturbative theory when the solute particle is large. Figure 4.3 shows

the ϵ-dependence of the dimensionless drag coefficient ξ∗ ≡ ξ(σ2/ϵ0m)1/2, where m

is the mass of the solvent particle. When the solute sphere is small, the results

of the present theory are significantly different from those of the non-perturbative

theory Although the drag coefficient of the non-perturbative theory increases with ϵ,

those of the present theory change hardly. However, when the solute sphere becomes

larger, ϵ-dependence of the present theory approaches to that of the non-perturbative

theory.

In Fig. 4.4, I plot the difference between the drag coefficients obtained by the

present perturbation theory and non-perturbative theory, ∆ξ ≡ (ξp − ξn)/ξn as

a function of the diameter of the solute sphere. When d = σ, the results ob-

tained by the present theory deviate significantly from those obtained from the

non-perturbative theory. For instance, the deviation is 46% at ϵ = 8ϵ0 when d = σ.

However, the deviation from the results of the non-perturbative theory decreases

with increasing solute particle size. When d = 8σ, the deviation is less than 14% at

ϵ = 8ϵ0.

Since the present theory is an approximation of the non-perturbative theory, the

results of the non-perturbative theory are more accurate than those of the present
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Figure 4.3 The drag coefficient ξ as a function of the strength of the attraction

between solute and solvent particles ϵ in Eq. (2.40). The interaction between sol-

vent particles is given by the Lennard-Jones potential, where the energy and length

parameters are ϵ0 and σ, respectively. Filled symbols represent the results obtained

by the present perturbation theory and open symbols represent the results of the

non-perturbative theory calculated by Yamaguchi et al.[27] The diameters of the

solute spheres d are σ (circles), 2σ (squares), 4σ (diamonds), and 8σ (triangles).

The solid lines are drawn to guide the eye.

theory. As shown above, the results of the present theory deviate from those of

the non-perturbative theory for the small solutes while the deviation decreases with

increasing the solute size. I can consider that the large deviation for the small solutes

is caused by the perturbation expansion with respect to the size ratio between the

solute and solvent particles. Our approximation becomes more reasonable as the

solute size increases. Thus, it is expected that the difference in the results for the

two theories will become smaller as the solute size increases.

4.2.3 Comparison with molecular dynamics simulation

In this subsection, I compare the calculated results for hard-sphere systems with

those obtained by MD simulations. I employ the data of the MD simulations calcu-

lated by Sokolovskii et al.[28] as shown in Chap. 2.3.1. The systems are composed of
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Figure 4.4 The difference between the drag coefficients obtained by the present

perturbation theory ξp and non-perturbative theory ξn. Here, ∆ξ ≡ (ξp − ξn)/ξn.

The strength of the attraction between solute and solvent particles ϵ are ϵ0 (circles),

2ϵ0(squares), 4a (diamonds), and 8a (upward triangles) The solid lines are drawn to

guide the eye.

a hard-sphere solute and a one-component hard-sphere solvent. The packing frac-

tion of the solvent is 0.27. The radius of the solute sphere R increases from a to

17a, where a is the radius of a solvent sphere.

I obtain the radial distribution function g(r) of the hard-sphere system using

OZ/HNC theory. For the numerical calculation, a hybrid convergence algorithm is

employed.[66]–[71] In addition, I assume γ = η/3. The shear viscosity η is evaluated

from the diffusion coefficient obtained from the SE relation, which is calculated by

Sokolovskii et al.

Figure 4.5 shows the reduced diffusion coefficient D∗ ≡ D(mR2
a/σ

4kBT )
1/2, where

Ra = R+ a, σ = 2a, and m is the mass of the solvent sphere. The reduced diffusion

coefficient calculated by the SE relation is constant regardless of the size ratio Ra/σ.

The results of the present perturbation theory are in agreement with those of the

MD simulations when the solute radius is larger than 7a (Ra/σ = 4). The results of

the present theory are close to the values obtained from the SE relation with the slip
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Figure 4.5 Diffusion coefficient D of a hard-sphere system as a function of the

solute sphere radius R. Here, Ra = R+a and σ = 2a where R and a are the radii of

the solute and solvent spheres, respectively. Filled circles represent results obtained

by the present perturbation theory and filled squares represent the results of MD

simulations calculated by Sokolovskii et al.[28] The solid and dashed lines show the

Stokes-Einstein relation with slip and stick boundary conditions, respectively. The

packing fraction of the solvent is 0.27.

boundary condition regardless of the solute size. In contrast, the results of the MD

simulations have larger values than those of the slip boundary condition for small

solutes, However, they approach the value of the slip condition with increasing the

solute radius. The result obtained by the new theory is 5% smaller than that of the

MD simulations when R = 10a (Ra/σ = 5.5).

The large deviations from the slip boundary condition for the small solutes have

also been observed in other MD simulations.[29], [31], [33] This behavior indicates the

breakdown of hydrodynamics for the small solutes.[31] In contrast, the large deviation

is not observed in the results of the present perturbation theory. This is because the

present perturbation theory is formulated assuming that the solute particle is much

larger than the solvent particle. The present theory is not appropriate to study of

the small solutes for which the diffusion coefficient deviates from the SE relation

significantly.
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4.3 Summary

I have extended the perturbation theory developed by Inayoshi et al. While Inayoshi

et al. solved the hydrodynamic equations by omitting terms higher than the first

order of ϵ, I solve them by taking into account the higher terms of ϵ. I derived a

new expression of c which includes nonlinear terms of ϵ. Using the present theory,

I calculated c of the simple model of the radial distribution function. The results

showed that the present theory can avoid the divergence of c when the solvent density

is high around the solute particle in contrast to the theory of Inayoshi et al.

I also compared the calculated results with those obtained by the non-perturbative

theory[26], [27] and MD simulation.[28] The comparison showed that the present theory

becomes more accurate as the size ratio increases. The calculation results were in

good agreement with those of other theories when the size ratio between the solute

and solvent particles is larger than 7. This is because the present theory is formulated

on the basis of the perturbation expansion with respect to the size ratio of the solute

and solvent particles.



Chapter 5

Perturbation theory for

two-component solvent mixture

When a solvent consists of more than one components, the solvation structure can

greatly affect the diffusion coefficient. For instance, the density of a binary solvent

around a solute particle is much higher than the bulk density due to the excluded vol-

ume effect.[72] In fact, some experiments on mixtures have shown the breakdown of

the Stokes law.[5]–[8], [13], [14] The solvation effect on the diffusion in multi-component

solvent systems, however, has not been well understood theoretically.

In this chapter, in order to study the solvation effect, I formulate a theory of the

drag coefficient of a large spherical particle in a binary solvent.[73]–[75] The drag co-

efficient in a multi-component solvent system cannot be studied by the perturbation

theory in Chap. IV. Thus, to treat a binary solvent system, I employ the generalized

Langevin equations for a two-component inhomogeneous fluid as the basic equation.

These equations are expanded using singular perturbation techniques similar to the

one-component case.[40]

5.1 Basic equations

I consider the system where a large solute particle is immersed in a binary mixture

consisting of particles of solvents 1 and 2. The solvent particles have the small

velocity u at an infinite distance from the solute fixed to the origin. The particle

radii of solute, solvent 1, and solvent 2 are denoted by R, a, and b, respectively. The

solvents 1 and 2 are assumed to be much smaller than the size of the solute particle

(a, b ≪ R). Additionally, the particles of solvent 2 are greater than or equal to the

particles of solvent 1 (a ≤ b). All particles are electrically neutral and interact with

39



40 Chapter 5 Perturbation theory for two-component solvent mixture

spherically symmetric potentials.

5.1.1 Generalized Langevin equations for two-component

solvent system

As is the case of a one-component solvent system,[26], [40] the dynamics of solvent

particles around the solute is given by the generalized Langevin equations using the

projection operator method.[26] I project all phase functions, time developments of

the mass-density and the current-density fields of each solvent species, into the sub-

space of these fields. The nonequilibrium ensemble averages of the mass-density and

the current-density fields of solvent i around the solute are denoted by ⟨wi(r, t)⟩ne
and ⟨Ji(r, t)⟩ne, respectively.
The time developments of wi(r, t) ≡ ⟨wi(r, t)⟩ne − ⟨wi(r, t = ∞)⟩ne and Ji(r, t) ≡

⟨Ji(r, t)⟩ne − ⟨Ji(r, t = ∞)⟩ne are given as

∂wi(r, t)

∂t
= −∇ · J i(r, t), (5.1)

∂J i(r, t)

∂t
= −wi,eq(r)∇µi(r, t) +

∫ t

0

dt′
∫

dr′
2∑

j=2

Mij(r, r
′, t− t′)J i(r

′, t), (5.2)

where the function µi(r, t) of the first term on the right hand side of Eq. (5.2) is

defined in terms of the density correlation function of the solvent.[26] The function

Mij(t− t′, r, r′) of the second term denotes the memory tensor. Here, wi,eq(r) is the

equilibrium mass-density field of solvent i in a binary solvent mixture when u = 0.

The equilibrium mass-density field of solvent i depends only on the distance from the

solute r. When r is sufficiently large, wi,eq(r) = ρi where ρi is the bulk mass density

of solvent i. In the region where w1,eq(r) = ρ1 and w2,eq(r) = ρ2, Σiwi,eq(r)∇µi(r, t)

corresponds to the gradient of the pressure in the first order of the velocity u.

5.1.2 Approximation of memory terms

I approximate the memory tensor Mij(t− t′, r, r′) in the long-wave limit given using

the compressible hydrodynamics for a two-component inhomogeneous fluid. Ac-

cording to the hydrodynamics for a two-component fluid,[76], [77] the equations of

motion are described in terms of the barycentric flow (total momentum) J(r, t) and
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diffusional flow Jd(r, t) defined as

J(r, t) ≡ wT (r, t)v(r, t), (5.3)

Jd(r, t) ≡ w1(r, t) [v1(r, t)− v(r, t)]

= −w2(r, t) [v2(r, t)− v(r, t)] . (5.4)

Here, wT (r, t) = w1(r, t) + w2(r, t) and v(r, t) =
∑

iwi(r, t)vi(r, t)/wT (r, t), which

is called the barycentric velocity.

According to the hydrodynamics for a two-component fluid, the time development

of J(r, t) and Jd(r, t) are given as follows:[76], [77]

∂J(r, t)

∂t
=−∇P (r, t) + η∇2v(r, t) + γ∇ [∇ · v(r, t)]−

2∑
i

wi(r, t)∇ϕi(r)/mi,

(5.5)

∂Jd(r, t)

∂t
=w1(r, t)

[
∇µ1(r, t)−

2∑
i

wi(r, t)∇µi(r, t)/wT (r, t)

]
− L [v1(r, t)− v2(r, t)] . (5.6)

In Eq. (5.5), P (r, t) is the pressure, η is the shear viscosity of a binary solvent, and

γ = ζ + η/3, where ζ is the bulk viscosity. In the forth term on the right hand

side of Eq. (5.5), mi is the mass of particles of solvent i and ϕi(r) is the external

field imposed on the fluid i. The external field represents the interaction potential

between the solute and solvent particle i, where r is the distance from the solute. In

Eq. (5.6), µi(r, t) is the chemical potential of solvent i, and L represents the strength

of the friction between solvents 1 and 2.

Using the definitions in Eqs. (5.3) and (5.4), from Eqs. (5.5) and (5.6), the time

development for wi(r, t)vi(r, t) is derived as

∂wi(r, t)vi(r, t)

∂t
=
wi,eq(r)

wT,eq(r)

∂J(r, t)

∂t
± ∂Jd(r, t)

∂t

=− wi,eq(r)∇µi(r, t) +
wi,eq(r)

wT,eq(r)

{
η∇2v(r, t) + γ∇ [∇ · v(r, t)]

}
∓ L [v1(r, t)− v2(r, t)] , (5.7)

where the upper and lower signs in Eq. (5.7) are used for i = 1 and 2, respec-

tively. I derived Eq. (5.7) using the relation ∇P (r, t) =
∑2

i {wi(r, t)∇µi(r, t) −
wi(r, t)∇ϕi(r)/mi}. Equation (5.7) was linearlized by substituting the equilibrium

mass-density field of solvent i, wi,eq(r) for wi(r, t). Since the velocity is small, I

omitted the nonlinear terms.
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The hydrodynamic equation (5.7) gives the long-wavelength limit of the micro-

scopic equation (5.2). The first term of the right-hand side in Eq. (5.7) is in agree-

ment with the first term in Eq. (5.2). The second and third terms in Eq. (5.7) cor-

respond to the term including Mij(t − t′, r, r′) in Eq. (5.2) in the long-wavelength

limit. Then, applying the long-wavelength limit approximation to Mij(t− t′, r, r′),

the basic equations for a binary solvent in the steady state are obtained as follows:

∇ · wi,eq(r)vi(r) = 0, (5.8)

−wi,eq(r)∇µi(r) +
wi,eq(r)

wT,eq(r)

{
η∇2v(r) + γ∇ [∇ · v(r)]

}
∓ L [v1(r)− v2(r)] = 0,

(5.9)

for i = 1 and 2. Equation (5.8) includes wi,eq(r) instead of wi(r, t) for the same

reason as for Eq. (5.7). The argument t in all functions was omitted because of the

steady state. Assuming the slip boundary condition on the solute surface (r = Ra),

I solve the basic equations Eqs. (5.8) and (5.9).

5.2 Symmetries of solutions

I rewrite the chemical potential µi(r) in Eq. (5.9) using the function Pi(r) ≡
wi,eq(r)µi(r). Since the basic equations Eqs. (5.8) and (5.9) are linearized, the so-

lutions Pi(r) and vi(r) are proportional to u. Owing to the spherical symmetry of

the solute-solvent i potential, Pi(r) and vi(r) included in the basic equations are

described as follows:

Pi(r) = Pi(r)(r̂ · u), (5.10)

vi(r) = vr̂,i(r)(r̂ · u)r̂+ vu,i(r)u. (5.11)

Here, r̂ is the unit vector in the r direction.

Substituting these expressions (5.10), (5.11) into eqs. (5.8) and (5.9), the basic
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equations are rewritten as

d

dr
{wi,eq(r)vr̂,i(r)}+

2wi,eq(r)vr̂,i(r)

r
+

d

dr
{wi,eq(r)vu,i(r)} = 0, (5.12)

− Pi(r)

r
+

wi,eq(r)

wT,eq(r)

[
η

{
2vr̂(r)

r2
+

2

r

dvu(r)

dr
+

d2vu(r)

dr2

}
+γ

{
2vr̂(r)

r2
+

1

r

dvr̂(r)

dr
+

1

r

dvu(r)

dr

}]
∓ L(vu,1(r)− vu,2(r)) = 0,

(5.13)

− wi,eq(r)
d

dr

Pi(r)

rwi,eq(r)
+

wi,eq(r)

wT,eq(r)

[
η

{
6
d

dr

vr̂(r)

r2
+ r

d2

dr2
vr̂(r)

r2

}
+γ

{
5
d

dr

vr̂(r)

r2
+ r

d2

dr2
vr̂(r)

r2
− 1

r2
dvu(r)

dr
+

1

r

d2vu(r)

dr2

}]
∓ L(

vr̂,1(r)

r
− vr̂,2(r)

r
) = 0.

(5.14)

Here, vu(r) =
∑

iwi,eq(r)vu,i(r)/wT,eq(r) and vr̂(r) =
∑

i wi,eq(r)vr̂,i(r)/wT,eq(r).

5.3 Perturbation expansions

I expand the basic equations (5.12), (5.13) and (5.14) in powers of the ratio between

the solute and solvent size

ϵ ≡ b

Ra

. (5.15)

If particles of the two-component solvent have different sizes, b is the radius of a

larger solvent particle. As is the case for the one-component solvent system, I divide

the whole space into two regions: the outer region far away from the solute and the

boundary region near the solute. The outer region is defined by the region where

w1,eq(r) = ρ1 and w2,eq(r) = ρ2. The boundary layer is defined by the region where

w1,eq(r) ̸= ρ1 or w2,eq(r) ̸= ρ2. In each of the two regions, I expand the basic

equations.

Since the boundary layer is dominated by the scale of the solvent particle size,

I introduce a stretched variable x ≡ (r − Ra)/b. Here, wi,eq(r) is assumed to be

represented by the function of x, wi,e(x). With the new variable x being fixed,

the solutions of Eqs. (5.12) - (5.14) are expanded as vr̂,i(r) =
∑∞

n=0 ϵ
nv

(n)
r̂,i,b(x),

vu,i(r) =
∑∞

n=0 ϵ
nv

(n)
u,i,b(x), and RaPi(r) =

∑∞
n=0 ϵ

nP
(n)
i,b (x). In addition, excluding

the length scale Ra or b explicitly, I assume that the coefficient L scales L̄ = R2
aL.

When solving the basic equations (5.12), (5.13) and (5.14), the slip boundary con-

dition is assumed on the solute surface. The boundary condition for the expansion
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of vu,b(r) is given as

dv
(n+1)
u,b (x)

dx

∣∣∣∣∣
x=0

= v
(n)
u,b (0). (5.16)

In the outer region, Eqs. (5.8) and (5.9) reduce to the same expressions as the

incompressible hydrodynamic equations,

∇ · v(r) = 0, (5.17)

−∇P (r) + η∇2v(r) = 0. (5.18)

Equation (5.17) is obtained by the summation of Eq. (5.8) for i = 1 and 2. Equa-

tion (5.18) is also obtained by the same summation using the relation ∇P (r, t) =∑2
i {wi(r, t)∇µi(r, t)}. Since the outer region is dominated by the scale of the so-

lute particle size, the solutions of Eqs. (5.17) and (5.18) are expanded as vr̂,i(r) =∑∞
n=0 ϵ

nv
(n)
r̂,i,o(r̄), vu,i(r) =

∑∞
n=0 ϵ

nv
(n)
u,i,o(r̄), and RaPi(r) =

∑∞
n=0 ϵ

nP
(n)
i,o (r̄), with the

variable r̄ ≡ r/Ra fixed.

Since the perturbation expansions are applied independently in two regions, I

impose the same connecting condition as that given by Eqs. (3.22) - (3.24) for

the solutions vr̂,i(r), vu,i(r), and Pi(r). Using the connecting condition, as is the

case of the one-component solvent system, the boundary layer solutions provide the

boundary conditions of the outer solutions at r̄ = 1. The procedure of derivation of

the boundary conditions has some similarities to the one-component case.[40]

5.3.1 Equations of terms proportional to ϵ0

Substituting the expansions of vr̂,i(r), vu,i(r), and Pi(r), into the equation of motion

given by Eq. (5.13) with ϵ = 0, I obtain

η
wi,e(x)

wT,e(x)

d2v
(0)
u,b(x)

dx2
= 0. (5.19)

Since wi,e(x) ̸= 0, I derive

d2v
(0)
u,b(x)

dx2
= 0. (5.20)

Using Eq. (3.24), the solution of Eq. (5.20) is

v
(0)
u,b(x) = A, (5.21)

where A is the integral constant. Under the connecting condition given by Eq. (3.22)

with n = m = 0, I obtain

v
(0)
u,b(x) = v(0)u,o(1). (5.22)
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Terms proportional to ϵ0 of the equation of motion given by Eq. (5.14) are

wi,e(x)

wT,e(x)

[
η
d2v

(0)
r̂,b (x)

dx2
+ γ

{
d2v

(0)
r̂,b (x)

dx2
+

d2v
(0)
u,b(x)

dx2

}]
= 0. (5.23)

Substituting Eq. (5.21) into Eq. (5.23), I obtain

(η + γ)
d2v

(0)
r̂,b (x)

dx2
= 0. (5.24)

In the same way as for Eq. (5.22), the solution of Eq. (5.24) is derived as

v
(0)
r̂,b (x) = v

(0)
r̂,o(1). (5.25)

Terms proportional to ϵ0 of the continuity equation given by Eq. (5.12) are

d

dx
{wi,e(x)v

(0)
r̂,i,b(x)}+

d

dx
{wi,e(x)v

(0)
u,i,b(x)} = 0. (5.26)

The summation of Eq. (5.26) at i = 1 and 2 is

d

dx
{wT,e(x)(v

(0)
r̂,b (x) + v

(0)
u,b(x))} = 0. (5.27)

Substituting Eqs. (5.22) and (5.25) into Eq. (5.27), one can derive the boundary

condition proportional to ϵ0 as

v
(0)
r̂,b (x) + v

(0)
u,b(x) = v

(0)
r̂,o(1) + v(0)u,o(1) = 0. (5.28)

5.3.2 Equations of terms proportional to ϵ1

Terms proportional to ϵ of Eq. (5.13) are

wi,e(x)

wT,e(x)

[
η

{
d2v

(1)
u,b(x)

dx2
+ 2

dv
(0)
u,b(x)

dx
+

}
+ γ

{
dv

(0)
r̂,b (x)

dx
+

dv
(0)
u,b(x)

dx

}]
= 0. (5.29)

The substitution of Eqs. (5.22) and (5.25) into Eq. (5.29) gives

η
d2v

(1)
u,b(x)

dx2
= 0. (5.30)

Using the connecting condition given by Eq. (3.22), I derive the solution of Eq. (5.30)

as

v
(1)
u,b(x) =

dv
(0)
u,o(r̄)

dr̄

∣∣∣∣∣
r̄=1

x+ v(1)u,o(1). (5.31)
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Since Eq. (5.16) at n = 0 gives

dv
(1)
u,b(x)

dx

∣∣∣∣∣
x=0

= v
(0)
u,b(0), (5.32)

using Eqs. (5.22) and (5.31), I derive the boundary condition proportional to ϵ0 as

dv
(0)
u,o(r̄)

dr̄

∣∣∣∣∣
r̄=1

= v(0)u,o(1). (5.33)

Since terms proportional to ϵ in Eq. (5.12) are

d

dx

[
wi,e(x)

{
v
(1)
r̂,i,b(x) + v

(1)
u,i,b(x)

}]
+ 2wi,e(x)v

(0)
r̂,i,b(x) = 0, (5.34)

the summation of Eq. (5.34) at i = 1 and 2 is

d

dx

[
wT,e(x)

{
v
(1)
r̂,b (x) + v

(1)
u,b(x)

}]
+ 2wT,e(x)v

(0)
r̂,b (x) = 0. (5.35)

Using Eqs. (5.25) and (5.33), I derive the solution of Eq. (5.35) as

v
(1)
r̂,b (x) + v

(1)
u,b(x) =

2v
(0)
u,o(1)

wT,e(x)

∫ x

0

wT,e(x
′)dx′ +

B

wT,e(x)
, (5.36)

where B is the integral constant. Since wT,e(0) = 0, I find B = 0 under the condition

that the velocity fields do not diverge at x → 0.

The asymptotic form of Eq. (5.36) is represented as

v
(1)
r̂,b (x)+ v

(1)
u,b(x) =

d

dr̄

{
v
(0)
r̂,o(r̄) + v(0)u,o(r̄)

}∣∣∣∣
r̄=1

x+ v
(1)
r̂,o(1)+ v(1)u,o(1) forx → ∞. (5.37)

Thus, the boundary condition for v
(1)
r̂,o(r̄) + v

(1)
u,o(r̄) is given by the constant term of

Eq. (5.36) at x → ∞, that is,

v
(1)
r̂,o(1) + v(1)u,o(1) = αv(0)u,o(1) (5.38)

where

α =
2

wT,e(∞)

∫ ∞

0

{wT,e(x
′)− wT,e(∞)}dx′. (5.39)

Here, wT,e(∞) = w1 + w2(≡ wT ).
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Terms proportional to ϵ in Eq. (5.14) are

− wi,e(x)
d

dx

P
(0)
i,b (x)

wi,e(x)
+

wi,e(x)

wT,e(x)

[
η

{
d2v

(1)
r̂,b (x)

dx2
− x

d2v
(0)
r̂,b (x)

dx2
+ 2

dv
(0)
r̂,b (x)

dx

}

+γ

{
−x

d2v
(0)
r̂,b (x)

dx2
+

d2v
(1)
r̂,b (x)

dx2
+

dv
(0)
r̂,b (x)

dx
− x

d2v
(0)
u,b(x)

dx2
+

d2v
(1)
u,b(x)

dx2
−

dv
(0)
u,b(x)

dx

}]
= 0.

(5.40)

The substitution of Eqs. (5.22), (5.25) and (5.30) gives

−wi,e(x)
d

dx

P
(0)
i,b (x)

wi,e(x)
+ (η + γ)

wi,e(x)

wT,e(x)

d2v
(1)
r̂,b (x)

dx2
= 0. (5.41)

Since v
(1)
r̂,b (x) is derived from Eqs. (5.31) and (5.36), I can derive P

(0)
i,b (x) by solving

Eq. (5.41). The derivation of P
(0)
i,b (x), however, requires consideration when binary

solvent particles have different sizes. Details are given in Chap. 5.3.4.

5.3.3 Equations of terms proportional to ϵ2

I derive the boundary condition for v
(1)
u,o(r̄) using terms proportional to ϵ2 in Eq. (5.13).

According to Eq. (3.22), the boundary condition is obtained from the differential of

v
(2)
u,b(x). I obtain the differential of v

(2)
u,b(x) by integrating the second-order differential

of v
(2)
u,b(x), which is included in terms proportional to ϵ2 in Eq. (5.13).

The boundary condition for v
(1)
u,o(r̄) is obtained from f defined by

f ≡ lim
x→∞

[
dv

(2)
u,b(x)

dx
− Cx

]
−

dv
(2)
u,b(x)

dx

∣∣∣∣∣
x=0

, (5.42)

where C = limx→∞ d2v
(2)
u,b(x)/dx

2. Since dv
(2)
u,b(x)/dx

∣∣∣
x=0

= v
(1)
u,b(0) is obtained from

Eq. (5.16), using Eq. (5.31) at x = 0, I derive

dv
(2)
u,b(x)

dx

∣∣∣∣∣
x=0

= v(1)u,o(1). (5.43)

Using Eq. (3.22), the asymptotic form of dv
(2)
u,b(x̄)/dx is

lim
x→∞

dv
(2)
u,b(x̄)

dx
=

d2v
(0)
u,o(r̄)

dr̄2

∣∣∣∣∣
r̄=1

x+
dv

(1)
u,o(r̄)

dr̄

∣∣∣∣∣
r̄=1

. (5.44)



48 Chapter 5 Perturbation theory for two-component solvent mixture

Thus, from Eqs. (5.43) and (5.44), I derive

dv
(1)
u,o(r̄)

dr̄

∣∣∣∣∣
r̄=1

− v(1)u,o(1) = f. (5.45)

Equation (5.42) is rewritten as

f =

∫ ∞

0

(
d2v

(2)
u,b(x)

dx2
− C

)
dx. (5.46)

I obtain the second-order differential of v
(2)
u,o(x) from terms proportional to ϵ2 of

Eq. (5.13) as

−P
(0)
i,b (x) +

wi,e(x)

wT,e(x)

[
η

{
2v

(0)
r̂,b (x) +

d2v
(2)
u,b(x)

dx2
− 2x

dv
(0)
u,b(x)

dx
+ 2

dv
(1)
u,b(x)

dx

}

+ γ

{
−x

dv
(0)
r̂,b (x)

dx
+

dv
(1)
r̂,b (x)

dx
+ 2v

(0)
r̂,b (x)− x

dv
(0)
u,b(x)

dx
+

dv
(1)
u,b(x)

dx

}]
= 0.

(5.47)

Summing up of Eq. (5.47) at i = 1 and 2 and using Eqs. (5.22), (5.25) and (5.31),

f is

f =
1

η

∫ ∞

0

{
(P

(0)
1,b (x) + P

(0)
2,b (x))− (P

(0)
1,b (∞) + P

(0)
2,b (∞))

−γ
dv

(1)
r̂,b (x)

dx
+ γ

dv
(1)
r̂,b (x)

dx

∣∣∣∣∣
x=∞

}
dx. (5.48)

Substituting v
(1)
r̂,b (x) obtained from Eqs. (5.30) and (5.36) and P

(0)
i,b (x) derived from

Eq. (5.41), I obtain the boundary condition for v
(1)
u,o(r̄) as

dv
(1)
u,o(r̄)

dr̄

∣∣∣∣∣
r̄=1

− v(1)u,o(1) =
α

2η
P (0)
o (1)− βv(0)u,o(1). (5.49)
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Here,

β =

∫ x0

0

∆v1(x)dx+

∫ ∞

x0

∆vT (x)dx

−
(
1 +

γ

η

){∫ x0

0

w1(x)

∫ x0

x

w′
1(x

′)

w2
1(x

′)
∆v1(x

′)dx′dx

+

∫ ∞

x0

wT (x)

∫ ∞

x

w′
T (x

′)

w2
T (x

′)
∆vT (x

′)dx′dx

}
−
(
1 +

γ

η

)∫ x0

0

w1(x)dx

{∫ ∞

x0

w′
T (x)

w2
T (x)

∆vT (x)dx

+∆v1(x0)

(
1

w1(x0)
− 1

wT (x0)

)}
, (5.50)

where

∆vj(x) =
2w′

j(x)

w2
j (x)

∫ x

0

wj(x
′)dx′, (5.51)

w′
j(x) =

dwj(x)

dx
, (5.52)

for j = 1 or T . Here, x0 = (b − a)/a. The subscript e in the equilibrium mass

density field was omitted for simplicity.

5.3.4 Derivation of P
(0)
i,b (x)

When binary solvent particles have different sizes (a < b), one needs special consid-

eration to derive Eq. (5.50). In Eq. (5.41), v
(1)
r̂,b (x) changes abruptly at r = R+ b or

x = (b− a)/b (≡ x0) because w2,e(x) vanishes abruptly for r < R+ b or x < x0. The

differential of v
(1)
r̂,b (x) at x = x0 causes an extremely large P

(0)
i,b (x). Thus, solving

Eq. (5.41) except for x = x0, I derive P
(0)
i,b (x).

When x0 < x, solving Eq. (5.41), I obtain

P
(0)
i,b (x) =wi,e(x)

P
(0)
i,o (1)

wi,e(∞)

− (η + γ)wi,e(x)

∫ ∞

x

1

wT,e(x′)

d2

dx′2

{
2v

(0)
u,o(1)

wT,e(x′)

∫ x′

0

wT,e(x
′′)dx′′

}
dx′,

(5.53)
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where I use P
(0)
i,b (∞) = P

(0)
i,o (1). In the region x < x0,

P
(0)
1,b (x) =w1,e(x) lim

x→x−
o

P
(0)
1,b (x)

w1,e(x)

− (η + γ)w1,e(x)

∫ x0

x

1

w1,e(x′)

d2

dx′2

{
2v

(0)
u,o(1)

w1,e(x′)

∫ x′

0

w1,e(x
′′)dx′′

}
dx′.

(5.54)

Here, x → x−
0 indicates that x approaches x0 from values less than x0.

To obtain the value of limx→x−
o
{P (0)

1,b (x)/w1,e(x)} in Eq. (5.54), I examine the

boundary condition of P
(0)
1,b (x)/w1,e(x) at x = x0. Integrating Eq. (5.41) at i = 1

from x0 − δx to x0 + δx, where δx > 0, I obtain

−
∫ x0+δx

x0−δx

d

dx

P
(0)
1,b (x)

w1,e(x)
dx+ (η + γ)

∫ x0+δx

x0−δx

{
1

wT,e(x)

d2

dx2

[
v
(1)
r̂,b (x) + v

(1)
u,b(x)

]}
dx = 0.

(5.55)

To derive Eq. (5.55), I have used Eq. (5.30). Equation (5.55) is rewritten as

−
∫ x0+δx

x0−δx

d

dx

P
(0)
1,b (x)

w1,e(x)
dx+ (η + γ)

∫ x0+δx

x0−δx

d

dx

{
1

wT,e(x)

d

dx

[
v
(1)
r̂,b (x) + v

(1)
u,b(x)

]}
− (η + γ)

∫ x0+δx

x0−δx

d

dx

[
1

wT,e(x)

]
d

dx

[
v
(1)
r̂,b (x) + v

(1)
u,b(x)

]
dx = 0. (5.56)

When δx → 0,

−

[
P

(0)
1,b (x)

w1,e(x)

]x+
0

x−
0

+ (η + γ)

[
1

wT,e(x)

d

dx

[
v
(1)
r̂,b (x) + v

(1)
u,b(x)

]]x+
0

x−
0

− (η + γ)

[
1

wT,e(x)

]x+
0

x−
0

d

dx

[
v
(1)
r̂,b (x) + v

(1)
u,b(x)

]∣∣∣∣
x=x0

= 0, (5.57)

where [Z(x)]
x+
0

x−
0

≡ limx→x+
0
Z(x)− limx→x−

0
Z(x). To derive Eq. (5.57), I have used

d

dx

1

wT,e(x)
=

[
1

wT,e(x)

]x+
0

x−
0

δ(x− x0). (5.58)

I obtain the value of limx→x−
o
{P (0)

1,b (x)/w1,e(x)} in Eq. (5.54), substituting the

differential of v
(1)
r̂,1,b(x) + v

(1)
u,1,b(x) instead of the differential of v

(1)
r̂,b (x) + v

(1)
u,b(x) in

Eq. (5.57). This is because the differential of v
(1)
r̂,b (x) + v

(1)
u,b(x) at x = x0 cannot be
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defined owing to the discontinuity of v
(1)
r̂,b (x) + v

(1)
u,b(x) at x = x0. Thus, Eq. (5.57) is

rewritten as

−

[
P

(0)
1,b (x)

w1,e(x)

]x+
0

x−
0

+ (η + γ)

[
1

wT,e(x)

d

dx

[
v
(1)
r̂,b (x) + v

(1)
u,b(x)

]]x+
0

x−
0

− (η + γ)

[
1

wT,e(x)

]x+
0

x−
0

d

dx

[
v
(1)
r̂,1,b(x) + v

(1)
u,1,b(x)

]∣∣∣∣
x=x0

= 0. (5.59)

Note that v
(1)
r̂,b (x) + v

(1)
u,b(x) is in agreement with v

(1)
r̂,1,b(x) + v

(1)
u,1,b(x) for x < x0,

since w2,e(x) = 0. Using Eq. (5.59), I obtain P
(0)
1,b (x) for x < x0 from Eq. (5.54).

Substituting P
(0)
1,b (x) derived from Eqs. (5.53) and (5.54) in Eq. (5.48), I obtain

Eqs. (5.49) - (5.52).

5.4 Boundary conditions of outer region

From Eqs. (5.33) and (5.38), by omitting terms higher than the second order of ϵ,

the boundary condition for vr̂,o(r̄) + vu,o(r̄) is rewritten as

vr̂(Ra) + vu(Ra) = ϵαvu(Ra). (5.60)

Substituting x = (r −Ra)/b into Eq. (5.39),

ϵα =
2

R + a

∫ ∞

R+a

[
wT (r)

wT (∞)
− 1

]
dr. (5.61)

From Eqs (5.36) and (5.49), the boundary condition for vu,o(r̄) is rewritten as

dvu(r)

dr

∣∣∣∣
r=Ra

=
1− ϵβ

Ra

vu(Ra) +
ϵα

2η
Ps(Ra). (5.62)

The parameter β is given by

ϵβ =
1

R + a

{∫ R+b

R+a

∆v1(r)dr +

∫ ∞

R+b

∆vT (r)dr

−
(
1 +

γ

η

)[∫ R+b

R+a

w1(r)

∫ R+b

r

ω1(r
′)

w1(r′)
∆v1(r

′)dr′dr

+

∫ ∞

R+b

wT (r)

∫ ∞

r

ωT (r
′)

wT (r′)
∆vT (r

′)dr′dr

]
−
(
1 +

γ

η

)∫ R+b

R+a

w1(r)dr

[∫ ∞

R+b

ωT (r)

wT (r)
∆vT (r)dr

+∆v1(R + b)

(
1

w1(R + b)
− 1

wT (R + b)

)]}
, (5.63)
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where

∆vj(r) =
2ωj(r)

wj(r)

∫ r

R+a

wj(r
′)dr′, (5.64)

ωj(r) =
1

wj(r)

dwj(r)

dr
, (5.65)

for j = 1 or T . I obtain Eqs. (5.63) - (5.65) substituting x = (r − Ra)/b into

Eqs. (5.50) - (5.52). I omitted the subscript eq in the equilibrium mass density

fields for simplicity. Although the slip boundary condition holds at ϵ = 0, Eq. (5.62)

deviates from the slip condition when ϵ ̸= 0. Note that the third term including

L in Eq. (5.9) does not affect the boundary conditions because the coefficient L is

assumed to be proportional to ϵ2.

Although Eqs. (5.60) and (5.62) are the same expressions as those obtained in

the one-component solvent system Eqs. (5.17) and (5.18), the parameters α and

β given by Eqs. (5.61) and (5.63) are different from those of the one-component

system. These parameters α and β depend on the equilibrium mass density fields

of a binary solvent mixture, w1(r) and w2(r). In addition, α and β depend on the

size of the particles, when the sizes of binary solvent particles are different. Note

that the expressions of α and β reduces those of the one-component system when

the the density of the second component w2(r) is zero (wT (r) = w1(r)).

5.5 Drag coefficient

Solving Eqs. (5.17) and (5.18) with the derived boundary conditions Eqs. (5.60) and

(5.62), I obtain the drag coefficient. Since these equations are the same as those

derived in a one-component system, the expression of the drag coefficient is the same

as Eqs. (4.6) and (4.8):

ξ = cπηRa, (5.66)

c =
48− 24ϵα− 24ϵβ

12− 4ϵβ + (ϵα)2
. (5.67)

The parameters α and β are given by Eqs. (5.61) and (5.63), respectively. From the

drag coefficient ξ, the diffusion coefficient is obtained through the Einstein relation

D = kBT/ξ.
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5.6 Summary and Discussion

I have formulated a theory of the drag coefficient in a binary solvent mixture, ex-

tending the perturbation theory for a one-component solvent system. I expanded

the generalized Langevin equations for a two-component fluid with respect to the

size ratio between the solute and solvent particles. The expansion allowed one to

derive hydrodynamic equations with the boundary conditions depending on the den-

sity distribution of a binary solvent mixture. The derived boundary condition shows

that the slip boundary condition breaks down owing to the solvation structure of a

binary mixture. Solving hydrodynamic equations with the boundary conditions, I

obtained an analytical expression of the drag coefficient of a large solute.

The present theory is distinct from that of the one-component solvent system in

the boundary conditions. The parameters α and β included in the boundary condi-

tions are given by the expressions different from those of a one-component system.

In contrast, I derived the same hydrodynamic equations as those of a one-component

solvent system. Thus, the analytical expressions of the drag coefficient (5.66) and

(5.67) are identical with that of a one-component system, although the expressions

of α and β in Eq. (5.67) are different.



Chapter 6

Application of the theory to

binary hard-sphere system

In the previous chapter, I formulated the perturbation theory for the drag coeffi-

cient in a binary mixture. The drag coefficient is calculated by solving the hydrody-

namic equations and boundary conditions on the solute surface. I showed that the

boundary condition is determined by the solvation structure of a binary mixture.

The perturbation theory can be applied to the system in which the particles interact

with spherically symmetric potentials. In this chapter, applying the perturbation

theory to a binary hard-sphere system,[75] I investigate the solvation effect on the

boundary conditions.

6.1 Calculation details

The system is composed of a large hard-sphere solute and a binary mixture of small

(solvent) and medium-size (cosolvent) hard spheres. The radius of the solute sphere

R is 50a, where a is the radius of the solvent sphere. The radius of the cosolvent

sphere b is varied from 2a to 6a. The mass of the sphere is assumed to be proportional

to the volume. Thus, the mass ratio of the solvent and cosolvent spheres is set to

1 : (b/a)3. The packing fraction of the cosolvent ϕ2 is increased from 0.00 to 0.10

with the total packing fraction of the solvent and cosolvent being kept constant at

0.38.

I calculate the boundary condition coefficient c using Eq. (5.61), (5.63), and (5.67).

The calculation requires the value of γ/η included in Eq. (5.63). Here, γ = η/3+ζ, η

is the shear viscosity, and ζ is the bulk viscosity. In this study, I assume for simplicity

that the bulk viscosity is zero, that is, γ = η/3. In this case, since γ/η = 1/3, the

54
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Figure 6.1 The boundary condition coefficient c as a function of the packing frac-

tion of cosolvent spheres ϕ2. The radius of the solute sphere is 50a, where a is the

radius of the solvent sphere. The radii of the cosolvent spheres b are 2a (diamonds),

3a (squares), 4a (circles), 5a (upward triangles), and 6a (downward triangles). Solid

and dashed lines represent the slip (c = 4) and stick (c = 6) boundary conditions,

respectively. The total packing fraction of the solvent and cosolvent is 0.38.

value of the shear viscosity is not required.

To calculate Eqs. (5.61) and (5.63), I also need the equilibrium mass density

distributions, which are calculated from the radial distribution function wi(r) =

ρigi(r). In this study, the radial distribution functions gi(r) are obtained using the

OZ/HNC theory. For the numerical calculation, a hybrid convergence algorithm is

employed.[66]–[71]

6.2 Results

6.2.1 Boundary conditions

The calculated results show that c have various values between 4 (the slip boundary

condition) and 6 (the stick boundary condition) depending on the cosolvent radius
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and cosolvent packing fraction (Fig. 6.1). As the cosolvent radius becomes larger,

the value of c approaches the value of the stick boundary condition. For instance,

c changes from 4.6 to 5.8 when the cosolvent radius increases from 2a to 6a at the

same cosolvent packing fraction of 0.05. Note that c has a close value to the slip

boundary condition in the case of the pure solvent (ϕ2 = 0), that is, c = 4.5.

When the cosolvent radius is larger than 3a, the values of c increases as increasing

the cosolvent packing fraction. In particular, when the cosolvent radius is larger than

4a, c increases rapidly for a small amount of the cosolvent packing fraction. The

increase is more rapidly as the cosolvent radius becomes larger. For instance, when

b = 6a, c = 5.4 is obtained even at ϕ2 = 0.005. After the rapid increase, c gradually

increases for larger cosolvent packing fractions.

In contrast to the case of b ≥ 3a, when b = 2a, c has a value close to the slip

boundary condition regardless of the cosolvent packing fraction. For ϕ2 < 0.02, c

increases slightly with increasing cosolvent packing fraction. However, c decreases

slowly for ϕ2 > 0.02. At ϕ2 = 0.10, the value of c is smaller than the value for the

pure solvent. This decrease is not observed in the case of b ≥ 3a.

6.2.2 Normalized equilibrium mass density fields

To clarify the dependence of c on the cosolvent packing fraction I consider the mass

density field around the solute. Figure 6.2 shows the reduced mass density fields

of the solvent w1(r)/ρT and cosolvent w2(r)/ρT when b = 5a. The high value of

w1(r)/ρT and w2(r)/ρT represents the high mass density compared with the total

bulk mass density ρT ≡ ρ1 + ρ2. In the present system, ρT is kept constant as the

cosolvent packing fraction increases and the cosolvent radius changes.

The reduced mass density fields w1(r)/ρT and w2(r)/ρT have peaks at the so-

lute surface where r/a = 51 and 55, respectively, when b = 5a (Fig. 6.2). The

peak of w2(r)/ρT grows considerably with increasing the cosolvent packing fraction.

The value increases from 7.3 to 60.4 when the cosolvent packing fraction changes

from 0.005 to 0.10. In contrast, the peak value of w1(r)/ρT slightly decreases with

increasing the cosolvent packing fraction.

Since a high peak of the reduced mass density gives large values of β given by

Eq. (5.63), c also has a large value through Eq. (5.67). Actually, at b = 5a, the

value of c increases with the cosolvent packing fraction as with w2(r)/ρT (Fig. 6.1).

Thus, the increase in c can be related to the increases in the peak of w2(r)/ρT when

b = 5a.

I plot the dependence of the peak value of w2(R+ b)/ρT and w1(R+a)/ρT on the

cosolvent packing fraction in Fig. 6.3. The peak of w2(r)/ρT increases with increasing
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cosolvent packing fraction and cosolvent sphere radius (Fig. 6.3 (a)). This behavior

is the same as that observed in c when b ≥ 3a. Then, the increase in c is correlated

with the increase in the peak of w2(r)/ρT when b ≥ 3a. The high peak gives large

values of β included in c.

Using Eq. (5.67), I focus on the gradual increase in c for larger packing fractions

observed when b ≥ 4a. The parameter β included in Eq. (5.67) increases with

the peak value of the mass density. From Eq. (5.67), one finds that c approaches

asymptotically 6 with increasing β. Thus, even when the peak value of w2(r)/ρT
greatly increases c increases gradually to 6.

The decrease in c at b = 2a is correlated with the decrease in the peak value

of w1(r)/ρT . The peak value of w1(r)/ρT decreases slightly with increasing the

cosolvent packing fraction (Fig. 6.3 (b)). It is considered that the decrease in c is

caused by the decrease in β given by Eq. (5.63). Since the rate of increase in the

peak of w2(r)/ρT is small at b = 2a, the value of β may decrease with decreasing in

the peak of w1(r)/ρT . In contrast, at b ≥ 3a, since the peak of w2(r)/ρT increases

greatly, the decrease in the peak of w1(r)/ρT can be ignored.

6.2.3 Velocity fields

As shown in the previous subsections, when the cosolvent density increases around

the solute, c approaches the value of the stick boundary condition. The stick bound-

ary condition means that the velocity is zero at the solute surface. Thus, the present

results indicate that the high density makes the velocity small at the solute surface.

In this subsection, I show that the velocity fields change depending on the cosolvent

density around the solute. Furthermore, I discuss why the high density around the

solute causes the stick boundary condition.

Figure 6.4 shows the barycentric velocity fields for ϕ2 = 0.05 at (a) b = 2a and

(b) b = 6a. The velocity are calculated using Eqs. (4.3) and (4.4), where c and d

in Eqs. (4.3) and (4.4) are calculated from α and β given by Eqs. (5.61) and (5.63).

Here, the velocity is assumed to be uẑ at r → ∞, where ẑ is the unit vector in the

z direction. The velocity around the solute at b = 6a is much smaller than that at

b = 2a (Fig 6.4). When b = 6a, the velocity almost vanishes near the solute surface.

Note that the cosolvent density around the solute at b = 6a is much higher than

that of b = 2a.

Figure 6.5 shows the r dependence of the θ component of the velocity fields. When

b = 2a, θ component of the velocity field is close to that assumed the slip boundary

condition. In contrast, when b = 6a, the velocity field is in good agreement with

that assumed the stick boundary condition. This result is consistent with the value
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of c, which has a close value of the stick boundary condition at b = 6a.

From these results, the high density around the solute has a strong correlation

with the stick boundary condition. This relation can be interpreted in terms of the

slow motion of cosolvent spheres around the solute. The high density may result

the slow motion of the cosolvent spheres because the cosolvent spheres cannot move

easily in the crowded space, If the velocity is zero at the solute surface, the stick

boundary condition holds. Thus, I consider that the increase in the density changes

the boundary condition from the slip to the stick boundary conditions.

6.3 Summary and Discussion

Applying the perturbation theory, I have evaluated the boundary condition coeffi-

cient c of a large hard-sphere solute in binary hard-sphere mixtures. When the size

ratio of binary mixtures is 2, c has close values of the slip boundary condition. In

contrast, when the ratio is larger than 3, c approaches the stick boundary condition

with adding the cosolvent spheres. I found the transition to the stick boundary

condition when the peak of the cosolvent mass density increases around the solute.

As the density of cosolvent spheres increases, the barycentric velocity around the

solute approaches zero.

The present results for binary hard spheres are consistent with the previous studies

of a one-component solvent with attractive interaction between solvent and solute

particles.[21], [22], [29], [34] In a one-component solvent system, when the attractive force

increases, the boundary condition changes from the slip boundary condition to the

stick boundary condition. The attractive force causes the high density of the solvent

around the solute. In the present binary hard-sphere system, the boundary condition

also changes to the stick boundary condition with increasing the density around the

solute. The present high density is caused not by the attractive force but by the

entropic effect.

In this study, the radial distribution functions gi(r) are calculated using the HNC

approximation, which is known to overestimate the peak value at the solute sur-

face. I discuss the influence of the overestimate by the HNC approximation on c in

Appendix A. I conclude that the transition to the stick boundary condition is not

qualitatively affected by the approximation of the radial distribution functions.
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Figure 6.2 Reduced mass density fields of the solvent w1(r)/ρT and cosolvent

w2(r)/ρT at the cosolvent size of 5a. Here, ρT is the total bulk mass density and a is

the radius of the solvent sphere. The dashed and solid curves represent the reduced

mass density fields of the solvent and cosolvent spheres, respectively. The packing

fractions of the cosolvent ϕ2 are (a) 0.01 and (b) 0.10. The total packing fraction of

the solvent and cosolvent is 0.38.
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Figure 6.3 Mass densities of (a) cosolvent and (b) solvent at the solute surface,

w2(R+ b) and w1(R+ a), respectively, for a binary hard-sphere system. Here, ρT is

the total bulk mass density. The radius of the solute sphere is 50a, where a is the

radius of the solvent sphere. The radii of the cosolvent spheres b are 2a (diamonds),

3a (squares), 4a (circles), 5a (upward triangles), and 6a (downward triangles). The

total packing fraction of the solvent and cosolvent is 0.38.
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(a)

(b)

Figure 6.4 Barycentric velocity fields v(r) for x ≥ 0 on the xz plane. The radii of

the cosolvent sphere b are (a) 2a and (b) 6a, respectively, where a is the radius of

the solvent sphere. The radius of the solute sphere R is 50a. The arrow direction

represents the velocity direction and the length is proportional to the magnitude of

the velocity. The solid curves represent the solute surface. The packing fraction of

the cosolvent ϕ2 is 0.05. The total packing fraction of the solvent and cosolvent is

0.38.
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Figure 6.5 The r dependence of the θ component of the barycentric velocity

fields −vθ(r)/u sin θ = vu(r). Here, −vθ(r)/u sin θ = vu(r) where vu(r) is given

by Eqs. (4.3), which does not depends on θ. The dotted and dashed dotted curves

represent the velocity calculated by the perturbation theory when the radii of the

cosolvent sphere b are 2a and 6a, respectively. The radius of the solute sphere R

is 50a. The dashed and solid cureves represent the velocity calculated assuming

the slip and stick boundary condition, respectively. The packing fraction of the

cosolvent ϕ2 is 0.05. The total packing fraction of the solvent and cosolvent is 0.38.
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Conclusion

To clarify the solvation effect on the diffusion coefficient, a theory of a mobility

in a one-component solvent system was formulated on the basis of the perturbation

theory formulated by Inayoshi et al. They derived the drag coefficient up to the first

order of the size ratio of solute and solvent particles. In contrast to the theory of

Inayoshi et al., I obtained the analytical expression of the drag coefficient including

the terms higher than the second order. The comparisons with both the previous

theory and MD simulations showed that the numerical results of the present theory

agree well with those of previous studies at the large solute. Using this theory, one

can calculate the diffusion coefficient of the large particle considering the solvation

effect through the radial distribution functions. The present theory does not suffer

from the finite-size effect.

The theory for the large particle mobility in a binary solvent mixture was also

formulated by extending the perturbation theory of the one-component solvent sys-

tem. From the perturbation expansion with respect to the size ratio of solute and

solvent particles, it was shown that the boundary conditions on the solute surface

are determined by the solvation structure of a binary mixture around the solute.

Solving the hydrodynamic equations under the derived boundary conditions, the

analytical expression of the drag coefficient was obtained. The drag coefficient can

be calculated from the radial distribution function of a binary mixture without the

finite-size effect.

Applying the present theory to a binary hard-sphere system, the boundary con-

dition coefficient was evaluated for a large hard sphere solute. When a size ratio of

binary solvent spheres is three or above, the boundary condition changes from the

slip to stick boundary conditions as adding larger solvent spheres. The boundary

condition changes when the solvent density around the solute increases. When the

boundary condition changes from the slip to stick, the diffusion coefficient is reduced
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to two-third.

The present study shows that the solvation structure can affect the diffusion of

a large particle, especially in a multi-component system. Thus, the solvation struc-

ture is expected to affect the diffusion in a biological system. In the cytoplasm,

biomolecules are immersed in a multi-component mixture including nucleic acids,

glu- cides, and lipids. Actually, in vitro experiments on the protein diffusion have

shown the deviation from the SE relation when adding cosolvent molecules.[5]–[8]

One can consider that this deviation is caused by the solvation structure because

the solvation effect is not included in the SE relation.

The study of various interaction systems will be a subject for future work. For

instance, there are systems in which the cosolvent particles cannot approach the

solute particle in contrast to the hard sphere system. This behavior is observed

in some cosolvents, such as sucrose and polyethylene glycol, around the protein.

The present perturbation theory can be applied not only to the hard sphere system

but also to any spherical interaction system through the radial distribution func-

tions. I consider that the application of the present theory to systems leads to the

understanding of the diffusion behavior in biological systems.
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Appendix A

Influence of HNC approximation

In Chap. 6, to calculate the diffusion coefficient c, I used the radial distribution

functions gi(r) calculated by the HNC approximation. It is known that the HNC

approximation overestimates the peak value at the solute surface.[46] Thus, I discuss

the influence of the overestimate by the HNC approximation on c, using the different

radial distribution functions which have more accurate peak values.

The peak values are obtained by the Boublik-Grundke-Henderson-Lee-Levesque

(BGHLL) expression as[78]–[80]

gBGHLL
i (R + ri) =

1

1− ϕT

+
3

(1− ϕT )2
Rri

R + ri

(
ϕ1

a
+

ϕ2

b

)
+

2

(1− ϕT )3

{
Rri

R + ri

(
ϕ1

a
+

ϕ2

b

)}2

, (A.1)

where r1 = a and r2 = b. In addition, ϕT , ϕ1, and ϕ2 are the total, solvent, cosolvent,

packing fractions, respectively. The BGHLL expression is known to describe the

peak values of gi(r) of hard sphere mixtures very well.

Using the peak values of the BGHLL expression, I obtain the radial distribution

functions as

hi(r) =
hBGHLL
i (R + ri)

hHNC
i (R + ri)

hHNC
i (r) r ≥ R + ri, (A.2)

where hi(r) = gi(r) − 1, and hHNC
i (r) is the correlation function obtained by the

HNC approximation. Although gi(r) given by Eq. (A.2) has a peak value of the

BGHLL expression, gi(r) is not improved elsewhere.

Figure A.1 shows the peak value of w2(R+ b)/ρT and w1(R+ b)/ρT calculated by

Eq. (A.1). The peak of w2(R + b)/ρT increases with the cosolvent packing fraction

and cosolvent sphere radius. The peak of w1(R + b)/ρT decreases with increasing

cosolvent packing fraction and cosolvent sphere radius. These behavior are the
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same as observed in the results of the HNC approximation (Fig. 6.3). However, the

absolute value of the peaks are much smaller than those of the HNC approximation.

For instance, the value of w2(R+ b)/ρT given by the BGHLL expression is a eighth

less than that of the HNC approximation when b = 5a at ϕ2 = 0.01.

I calculate the boundary condition coefficient c using gi(r) given by Eq. (A.2)

(Fig. A.2). The calculated results show that c approaches the value of the stick

boundary condition with increasing the cosolvent sphere radius. Although values of

c are smaller than those obtained by the HNC approximation, it is expected that the

stick boundary condition holds at a size ratio larger than 6. Thus, I conclude that

the transition to the stick boundary condition is not qualitatively affected by the

approximation of the radial distribution functions. In order to obtain quantitatively

accurate values of c, however, one needs to improve gi(r) everywhere by methods

such as Monte Carlo simulations or more accurate approximation.
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Figure A.1 Mass densities of (a) cosolvent and (b) solvent at the solute surface,

w2(R + b) and w1(R + a), respectively, for a binary hard-sphere system. The peak

values of gi(r) are obtained using Eq. (A.1). Here, ρT is the total bulk mass density

and R, a, and b are the radii of solute, solvent, and cosolvent spheres, respectively,

The symbols are the same as those in Fig. 6.1.
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Figure A.2 Dependence of the boundary condition coefficient c on the packing

fraction of cosolvent spheres ϕ2. The radial distribution functions gi(r) are obtained

using Eq. (A.2). The symbols are the same as those in Fig. 6.1.
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(2011).

[12] G. D. J. Phillies, J. Phys. Chem. 85, 2838 (1981).

[13] T.-H. Lin and G. D. J. Phillies, Macromolecule 17, 1686 (1984).

[14] G. H. Koenderink, S. Sacanna, D. G. A. L. Aarts, and A. P. Philipse, Phys.

Rev. E 69, 021804 (2004).

[15] B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D. Watson, Molecular

biology of the cell, 5th ed. (Garland Publishing, New York, 2008).

70



Bibliography 71

[16] D. S. Goodsell, The Machinery of Life, 2nd ed. (Springer, New York, 2009).

[17] L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Butterworth-Heinemann,

Oxford, U.K., 1987).

[18] H. J. V. Tyrrell and K. R. Harris, Diffusion in Liquids (Butterworths, London,

1984).

[19] D. F. Evans, T. Tominaga, and C. Chan, J. Solution Chem. 8, 461 (1979).

[20] D. F. Evans, T. Tominaga, and H. T. Davis, J. Chem. Phys. 74, 1298 (1981).

[21] R. Biswas, S. Bhattacharyya, and B. Bagchi, J. Phys. Chem. B 102, 3252

(1998).

[22] G. Srinivas, S. Bhattacharyya, and B. Bagchi, J. Chem, Phys 110, 4477 (1999).

[23] S. Bhattacharyya, and B. Bagchi, J. Chem. Phys. 106, 1757 (1997).

[24] S. Bhattacharyya, Chem. Phys. Lett. 386, 83 (2004).

[25] S. A. Egorov, J. Chem. Phys. 134, 084903 (2011).

[26] T. Yamaguchi, T. Matsuoka, and S. Koda, J. Chem. Phys. 123, 034504 (2005).

[27] T. Yamaguchi, T. Matsuoka, and S. Koda, J. Mol. Liq. 134, 1 (2007).

[28] R. O. Sokolovskii, M. Thachuk, and G. N. Patey, J. Chem. Phys. 125, 204502

(2006).

[29] J. R. Schmidt and J. L. Skinner, J. Phys. Chem. B 108, 6767 (2004).

[30] S. H. Lee, Theor. Chem. Acc. 127, 613 (2010).

[31] J. R. Schmidt and J. L. Skinner, J. Chem. Phys. 119, 8062 (2003).

[32] Z. Li, Phys. Rev. E 80, 061204 (2009).

[33] F. Ould-Kaddour and D. Levesque, Phys. Rev. E 63, 011205 (2000).

[34] J. Liu, D. Cao, and L. Zhang, J. Phys. Chem. C 112, 6653 (2008).

[35] M. Sharma and S. Yashonath, J. Phys. Chem. B 110, 17207 (2006).

[36] T. Yamaguchi and Y. Kimura, Mol. Phys. 98 1553 (2000).



72 Bibliography

[37] O. Kravchenko and M. Thachuk, J. Chem. Phys. 134, 114310 (2011).

[38] M. Cappelezzo, C. A. Capellari, S. H. Pezzin, and L. A. F. Coelho, J. Chem.

Phys. 126, 224516 (2007).

[39] M. Fushiki, Phys. Rev. Lett. 68, 021203 (2003).

[40] Y. Inayoshi, A. Yoshimori, and R. Akiyama, J. Phys. Soc. Jpn. 81, 114603

(2012).

[41] A. Einstein, Ann. Phys. 19, 371 (1906).

[42] G. I. Taylor, Proc. R. Soc. London, Ser. A 219, 186 (1953).

[43] P. A. Heiney, Phys. Rev. Lett. 22, 2911 (1991).

[44] M. Terazima and N. Hirota, J. Chem. Phys. 98, 6257 (1993).

[45] E. Chen, P. Wittung-Stefshede, and D. S. Kliger, J. Am. Chem. Soc. 121, 3811

(1999).

[46] J. P. Hansen and I. R. McDonald, Theory of Simple Liquids (Academic Press,

London, 1986).

[47] U. Balucani and M. Zoppi, Dynamics of the Liquid State (Clarendon, Oxford,

1994).

[48] B. J. Alder, W. E. Alley, and J. H. Dymond, J. Chem. Phys. 61, 1415 (1974).

[49] J. J. Erpenbeck and W. W. Wood, Phys. Rev. A 32, 412 (1985).

[50] J. R. Mehaffey and R. I. Cukier, Phys. Rev. A 17, 1181 (1978).

[51] B. J. Alder, W. M. Gass, and T. E. Wainwright, J. Chem. Phys. 53, 3813

(1970).

[52] J. R. Mehaffey and R. I. Cukier, Phys. Rev. Lett. 38, 1039 (1977).
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