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Abstract

We study neural networks for interpretation of travel time data of refracted
waves in a field experiment. The designed multilayer network consists of an input
layer, two hidden layers and an output layer. Fifty examples of simple velocity
structure consisting of two layers seperated by a plane interface dipping less than
10 degrees are used to train the neural network. Surface layer velocity, travel
times and distances between two sources and five receivers are used as the
network inputs. Target output is the expected velocity structure model. The
trained neural network produces results that are close to the actual output of the
new examples not included in the training set. The trained neural network also
gives acceptable results for travel time data of field experiment. We demonstrate
that neural networks are able to perform transformation giving the correct
connections between data and model parameters in seismic refraction surveys.

Introduction

The expression for travel time of seismic refracted wave through a two
layered velocity structure, whose interface consists of a plane dipping surface, as
shown in Fig. 1, can be represented in several ways. One formulation is

HA cos 8 HB cos ¢ A cos ¢
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where HA and HB are the prependicular distances from the shot A and the re-
ceiver B to the interface. V; and V> are the seismic wave velocities in the upper
A A B and lower layers, respec-
tively. ¢ is the ecritical
\ A HB angle or sin 8 = % and ¢
! £ s the dip angle of the in-

terface.
/ The neural network
) applications is an impor-

tant technique that solve

t 1)

HA

vy
Vo,
Fig. 1. Ray path along a dipping refractor interface
from shot A to receiver B (after SCHEIDEGGER and WILLMORE, 1957 ).
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problems without specifying an algorithm. In order to solve a problem the neural
network goes through a training process with some examples or patterns. Then
the neural network with patterns supervision approximates the functional
relationship between the input and output spaces.

Neural networks have been used for inversion of seismic data by ROTH and
TARANTOLA (1994) and seismic travel time tomography by LU and BERRYMAN
(1990). Neural networks have also been used in other seismological studies, e.g.,
for seismic data trace editing (MCCORMACK et al, 1993), first arrival picking by
MUART and RUDMAN (1992) and also by MCCORMACK et al. (1993), in seismic
event classification by PULLI and DYSART (1990).

There are some traditional methods for using equation (1) in refraction travel
time analysis. For example SCHEIDEGGER and WILLMORE (1957) have introduced
the time-term method.

In this paper, we will describe the application of artificial neural networks
to analyze refracted wave travel time data for determining the depth of interface
and refractor velocity. The designed network has been trained with a set of
numerical models, based on equation (1). Finally, the accuracy of trained network
will introduce by comparison of its results with numerical models, not present
in the trainig set, and field experiment and also with the Mereu’s iterative method
for solving the time-term equations (1966).

Field experiment

On 27 November 1994 a simple seismic experiment was arranged in the
Hakozaki campus of Kyushu University (Fig. 2). Seismic refraction profile was 40
meters with 1 meter recording space.

In this seismic refraction measurment, hammer was the signal source and two
geophones, one on the source point and another on the receiver point, were finding
out seismic energy arriving. Difference between signal receiving times at source
point geophone and receiver point geophone is travel time.

Digital recorder (TEAC DR-F1) was recoding the output of geophones after
amplification, in floppy disk. After completion data of forward and reverse
direction, these data were analyzed by PC-9801 in order to find each arrival time
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Fig. 2. Map showing location of field experiment in Hakozaki campus of Kyushu University.
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and make record sections or the display of seismic traces in a time-distance
graph, by using shot time as zero point for each trace. Fig. 3 shows record sec-
tions of forward and reverse directions.

We have analyzed the first refracted arrival times by an iterative method for
solving time-term equations that MEREU (1966) has presented. In time-term
analysis for the above-mentioned field experiment, because record sections of
stations on 35 and 38 meters of reverse direction have not a clear arrival time,
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Fig. 3. Record sections of forward (right) and reverse (left) directions.
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Fig. 5. Model of seismic P wave velocity structure.

these stations have been omitted. The values of time-terms are shown in Fig. 4
and refractor velocity is; Ve=1.53km/sec. Fig. 5 shows the seismic P wave velocity
structure model. The perpendicular distance from each station to the interface is
calculated by the time-term of station and first layer velocity, V;=0.33km/sec.

Principles of multilayered neural networks

Artificial neural networks, which we simply call neural networks, can be
characterized most adequately as ‘computational models’ with particular
properties such as the ability to adapt or learn, to generalize, or to cluster or
organize data (KROSE and SMAGT, 1993). In general a neural network can be
thought of black box and consists of a pool of simple processing elements which
communicate to each other over a large number of weighted connections. Fig. 6
illustrates a typical neural network. Each processing element in a neural network
collects the values from all of its input connections and produces a single output
value:

n
NET!=3 W} 1,467 2)
i=1
where 7 is the number of neurons in input layer. I, W;‘,- and 0]-’1 are input neuron,
connection weight and an external input or bias in hidden layer, respectively.
Upper suffix i means the hidden layer.

Using continuously differentiable functions, such as Sigmoid function, the
network can learn practically any nonlinear mapping to any desired degree of
accuracy,

H;=f(NET?) 3)
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Input Hidden Qutput

Layer Layer Target

Fig. 6. Explanation of a neural network (see text in detail).

where Hj is output of the neuron j in the hidden layer and f is the activation func-
tion.

The output of hidden layer neurons are then transmitted to the input of the
output layer neurons through another network weights denoted by W7, . Thus the
output of the output layer, Oy, is expressed as follows:

)

NETg =3 W¢; H; + 6 ()
j=1

Ok = f (NET} ) (5)

where [ is the number of neurons in hidden layer, upper suffix o means the output
layer and €} is a bias in output layer.
The error, E?, is the summed square error for pattern p and is defined to be

1 m
Ef=— S(Ty— 0, ) (6)
2 k=1

where the variable T} is the desired or target output and m is the number of neu-
rons in output layer.

Learning is used to determine the values of connection weights which
minimize the error between the computed and desired output. In one common
technique for learning in multilayer networks, back propagation method (BPM),
neural network goes through an iterative period of training for adjustment of
weights of a neural network by a method called gradient descent. The idea is to
make a change in the weight proportional to the negative of the derivative of
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error as measured with respect to each weight:
oE?
o Wi
where 7 is learning rate coefficient. The derivative is
o EP oEP oNET}: o NET}

= ; :H. 8
oWy,  OoNETy oWy, oW, ’ ®)

AWZJ: _7]

When we define

o OE 90 L 1—0,)f (NET] 9
ONET; = 20, aNETy (T O (NETL )

Ok =

from equations (7) , (8) and (9) we get an update rule resulting in a gradient
descent on the error:

AWE; =7 84 Hy (10)

Therefore the weights W§; and W?i can be adjusted to minimize error for the set
of training patterns:

AWR =AW+ 7 8 H, (11)
AWh =AWl +70,1; (12)
where
o -(ia wg. ) H! H'-—E—HL 13)
e D g ‘

Neural networks experiments

Neural networks can find a set of weights that can successfully associate or
map input vectors with output values. The process of finding the weights is called
training. In order to train, some external teachers (also called patterns) are
required to find the weights which minimize the difference between the computed
and desired output pattern, for each of the input patterns.

We trained the multilayer network by 50 patterns of numerical models. These
models consist of two layers seperated by a plane interface (see Fig. 7). V; ranges
from 0.15km/sec to 7.5km/sec and V; ranges from 0.4km/sec to 8.4km/sec. The dip
of the interface is less than 10 degrees and measured from the horizontal in up or
down direction. Travel times have been computed from two shots on the two ends
of models. The number of receivers between two shots has been chosen to be five.
Of course if we select more receivers the solution will be better. But we found
from our experiment that five receivers are enough. The other condition that we
impose on the models is; the maximum depth of interface should be equal to half
of the surface distance between shots. As two shot points and all receiver
stations corresponding to each model have a fixed distance, Fig. 7, each model
introduces 10 travel times of refracted waves, based on equation (1), with respect
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Fig. 7. Conditions for pattern models.

to 10 distances between shots and receivers. These 20 data and first layer
velocity are the input vector. The results consist of 7 depths of the interface
from five stations and two shots, and one velocity of the refractor.

The input neurons correspond to elements of the input vector. The output
layer produces the results. Therefore there are 21 neurons in input layer and 8
neurons in output layer. Choosing the number of hidden layers and the number of
neurons in each hidden layer is usually done through experimentation and there
are no strict rules. Too large a number of units in the network will give slow
convergence, and may not generalize well; too few units will not allow a solution
to the problem (ANTHONY et al., 1992).

At first one hidden layer was employed but was not sufficient and the neural
network could not find the solution. Two hidden layers with 18 neurons in first
and 14 neurons in second layer have been found to be suitable for our problem.
We also used three hidden layers but did not increase the benefit. Use of more
than three hidden layers gives no benefit (WILLIAMS and GUCUNSKI, 1995 : WARD
SYSTEMS GROUP, 1993).

The neural network was trained with the normalized inputs and targets. The
velocity was normalized with respect to a maximal value of 10km/sec. The
maximum value for normalizing depths of interface and distances between shots
and receivers was 2.5 A. Travel times were also normalized with maximum value
of 2.5A, whose dimension is msec or sec where the dimension of A is meter or km,
respectively.

The activation functions, f(NET), of three layers are chosen to be the
sigmoidal function, which takes the form (WANG and TENG, 1995)

1
f(NET) 1+ exp (— #NET) (14)
where y controls the slope of the semi-linear region (see Fig. 8). We chose u
=0.2 because of a minimum TSSE as shown in Figure 9. The weights are adjusted
based on the error function E” with the learning rate 7 =0.8.

The ability of the network to converge is shown by total sum square error,
TSSE, which is defined as
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location and slope of the sigmoid, respectively. ' ’ 4
Fig. 9. Total sum square error, TSSE,
change for different values of # after
1000 iterations.
N?’
TSSE = 3>, EP (15)
p=1

where NP is the number of patterns. Fig. 10 shows TSSE against number of
iterations. The network has kept iterating untill the TSSE has been reduced to
0.0045, with 50000 iterations.

After the training process, for testing the generalization capacity of the
network, 10 new examples under before mentioned restrictions for numerical
models, set to the trained networks. Fig. 11 gives the comparison of the computed
and desired new velocity models, not used for training, by sum square error for
each one. This figure introduces the high accuracy and capability of the proposed
system for interpretation of a simple structure as the presented models.

Testing the accuracy of the trained network with the field experiment we
have used the travel time data of five receivers on 10, 15, 20, 25 and 30 meters
from shot 1. Table 1 compares the model results computed by the presented
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Fig. 10. TSSE against number
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Table 1. Comparison of results by time-term method and neural network.
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Interface Depth (m) Distance
Station
Time Term Method| Neural Network from Si(m)

St 3.60 3.38

R: 3.72 3.50 10
Ry 3.59 3.56 15
R3 3.81 3.58 20
Ry 3.84 3.61 25
Rs 3.89 3.62 30
Sy 3.52 3.28 40

Velocity (V5) 1.53 (km/sec) 1.54 (km/sec)

trained network and those of calculated
by the time-term method. Fig. 12 shows
. the plots of calculated travel time from
structure results of time-term method
and the neural network and also ob-
served travel times. Note that the
values derived from the time-term meth-
od are not only based on the travel
| times of five mentioned receivers but
also the rest of travel time data from
other receivers in field experiment.
Thus these values are expected to be
more accurate. In addition, we trained
the neural network only by plane
interface examples. In other words, the
accuracy of the neural network when the
interface is not plane will not be the
same as plane interface models.
Therefore, although Fig. 12 demonstrates a little lower fitting of the neural
network results to observed travel times, neural networks expected can
interprete more satisfactory field data if networks are trained by more input
travel time data and also by uneven interface models.

Travel time (ms)

Observed
L Time Term --------x
4 Neural Network —-—-— |

1'0m 1(5m 20m 2‘5m 30m
Ry R, R; Ry R;

Fig. 12. Comparison of travel times
calculated by time-term method
and the neural network with
observed ones.

Conclusions

We have trained a multilayer neural network to construct a simple velocity
structure from travel time data. The results show the high accuracy of the neural
network for interpretation of travel times calculated for a simplistic structure. It
seems that neural networks can also provide a useful technique for the analysis
of field travel time data. This result is preliminary. More detailed investigation
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may be able to construct a more complicated structure and using neural network
techniques may provide .alternative methods for interpretation of seismic
refraction data.
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