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INTRODUCTION

Drought occurs around the globe, affecting human 
lives more than any other major natural hazard.  It is 
widely considered to be the most complex and least 
understood of all the natural hazards (Dai et al., 2004; He 
et al., 2011).  One of the major challenges presented by 
agricultural systems is how to mitigate the impact of 
droughts.  Droughts affect agricultural systems economi-
cally as well as environmentally.  With respect to eco-
nomic impacts, droughts damage agricultural production, 
and can cause economic damage to industries that are 
connected to agricultural production, in addition to lead-
ing to unemployment because of reduced production.  
From an environmental perspective, droughts can deprive 
crops and soils of essential precipitation, as well as 
increasing the salt content in soils and irrigation systems 
(Mishra and Singh, 2010). 

In order to mitigate the impact of drought, an effec-
tive and timely monitoring system is required.  The effec-
tive monitoring of droughts can aid in the development 
of an early warning system.  An objective evaluation of 
the drought condition in a particular area is the first step 
towards planning water resources, in order to prevent 
and mitigate the effects of future occurrences of drought.  
The evaluation and forecasting of drought is made possi-

ble by the use of drought indices.  Several drought indices 
are commonly employed, such as the Palmer Index, the 
Crop Moisture Index, the Standardized Precipitation 
Index (SPI), and the Standardized Precipitation 
Evapotranspiration Index (SPEI).  The Palmer Index and 
SPI are traditionally the most popular indices for forecast-
ing drought, due to their standardization.  For the pur-
poses of comparing drought conditions from different 
areas, which often have different hydrological balances, 
the most important characteristic of a drought index is its 
standardization (Bonaccorso et al., 2003).  Standardization 
of a drought index ensures independence from geo-
graphical position, as the index in question is calculated 
with respect to the average precipitation in the same loca-
tion (Cacciamani et al., 2007).  One of the differences 
between the Palmer Index and SPI is that the character-
istics of the Palmer Index vary from site to site, while 
those of SPI do not.  Another difference is that the Palmer 
Index has a complex structure with a very long memory, 
while SPI is an easily interpreted and simple moving 
average process (Tsakiris and Vangelis, 2004).  This 
characteristic makes SPI useful as the primary drought 
index, because it is simple, spatially invariant in its inter-
pretation, and probabilistic, allowing for its use in risk and 
decision making analyses.  In addition, SPI is more rep-
resentative of short–term precipitation than the Palmer 
Index, and is therefore a better indicator of soil moisture 
variation and soil wetness (Mishra and Singh, 2010).  
Given the focus of this paper on short–term drought, this 
characteristic makes the use of SPI advantageous.  SPI 
also provides a better spatial standardization than the 
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Palmer Index does, with respect to extreme drought 
events (Lloyd–Hughes and Saunders, 2002).  
Furthermore, SPI has been found to be better than the 
Palmer Index in detecting the onset of a drought event 
(Hayes et al., 2010).  The SPEI index is calculated based 
on precipitation and evapotranspiration.  Like SPI, SPEI 
is useful as the primary drought index because it is sim-
ple, spatially invariant in its interpretation, and probabil-
istic, and so can be used in risk and decision making anal-
yses (Vicente–Serrano et al., 2010).  Given the afore-
mentioned advantages of SPI over the Palmer Index, and 
the shared characteristics of SPI and SPEI, the SPI and 
SPEI indices are chosen for application to drought fore-
casting in the present research.

El Nino–Southern Oscillation (ENSO), the most 
well–known coupled ocean–atmosphere phenomenon, is 
one of the most important regarding internal climate vari-
ations (Philander, 1990).  El Nino refers to the phenom-
enon of abnormal increase in sea surface temperature 
(SST), from the equator to the east of the Pacific Ocean, 
which creates a hot water stream spreading from the 
equator along the coast of Peru and Ecuador to the 
south.  This hot water stream often reaches peak intensity 
by the end of December (Wyrtki, 1975).  Countering El 
Nino is the phenomenon in which the SST of the equato-
rial zone of the Pacific Ocean becomes exceptionally cold, 
which is known as La Nina, and causes climatic anoma-
lies in many regions.  Southern Oscillation (SO), regu-
larly existing in the atmosphere around the South Pacific, 
is the cause of air exchange between the eastern and 
western hemispheres.  This phenomenon was observed 
late in the previous century, prior to being described in 
detail by Walker and Bliss (1932) in terms of scale, spe-
cific characteristics, and confirmation of its relationship 
with the variation of temperature and rainfall in Oceania, 
South Asia, and some other regions of the world.  This 
was based on SSTA for the observation of ENSO activi-
ties, at four specific zones of the equatorial Pacific Ocean; 
namely, the Nino12 zone (0°N–10°S; 90°W–80°W), Nino3 
zone (5°N–5°S; 150°W–90°W), Nino 4 zone (5°N–5°S; 
160°E–150°W), and NinoW zone (15°N–0°S; 
130°E–150°E).  In these four zones, the temperature 
change tendency in the NinoW zone often opposes that 
of the remaining three zones.  According to absolute val-
ues, standard deviations will reduce gradually from the 
Nino12 zone to the NinoW zone (Xiao and Mechoso, 2009; 
Balmaseda et al., 2009).

The area that the research was conducted lay on 
Indochina, whose climate is directly affected by the South 
Asian summer monsoon (SASM) (Chen and Yoon, 2000; 
Zhang et al., 2002; Yanai et al., 1992).  Because SASM is 
known to interact with ENSO (Walker, 1924; Yasunari, 
1990; Chung and Nigam, 1999), changes in SSTA events 
of the Pacific Ocean will effect SASM, and alter the pre-
cipitation of Indochina (Goswami et al., 1999; Chen and 
Yoon, 2000; Wang et al., 2003).  Therefore, in this 
research, the author will study the correlation between 
SSTA at four observation zones for ENSO activity, and the 
SPI and SPE indices.  Correlation analyses for the selec-
tion of potential variables serves as a method of drought 

forecast.
New techniques, such as artificial neural networks 

(ANN), Fuzzy Logic (FL), and Adaptive Neuro–Fuzzy 
Inference Systems (ANFIS), have recently been accepted 
as efficient alternative tools for the modeling of complex 
hydrologic systems, and widely employed for forecast-
ing.  Some specific applications of ANN to hydrology 
include the modeling of the rainfall–runoff process (Jeong 
and Kim, 2005; Senthil Kumar et al., 2005; Rajurkar et 
al., 2004), hydrologic time series modeling (Jain and 
Kumar, 2007), sediment concentration estimation (Nagy 
et al., 2002), the estimation of heterogeneous aquifer 
parameters (Mantoglou, 2003), and runoff and sediment 
yield modeling (Agarwal et al., 2006).  Morid et al. (2007) 
examined the utility of the ANN approach for medium 
and long–term forecasting of both the likelihood of 
drought events and their severity.  Mishra and Desai 
(2006) applied the feed–forward recursive neural network 
and ARIMA models for drought forecasting using the SPI 
series as a drought index.  The results have demon-
strated that the neural network method can be success-
fully applied to drought forecasting.  Moreover, ASCE 
Task Committee reports (ASCE, 2000) carried out a com-
prehensive review of applications of ANN in the context 
of hydrological forecasting.  In addition, several studies 
have been carried out using FL in hydrology and water 
resources planning (Mahabir et al., 2003; Liong et al., 
2000; Nayak et al., 2005; Altunkaynak et al., 2005).  In 
recent years, ANFIS, which constitutes an integration of 
the ANN and FL methods, has been applied to the mod-
eling of nonlinear engineering and water resources prob-
lems (Chang and Chang, 2006; Nayak et al., 2004; Şen and 
Altunkaynak, 2006; Firat and Güngör, 2007; 2008).  
Furthermore, Chou and Chen (2007) have used neuro–
fuzzy computing techniques for the development of a 
drought early warning index.  With this aim, an approach 
has been proposed for the development of a drought early 
warning index (DEWI) in southern Taiwan, to detect 
droughts in advance in order to set up proper plans for 
reducing the impact of water shortages.

Traditional methods, such as regression analysis and 
autoregressive moving average models, are commonly 
used in the estimation of hydrological processes.  
However, the FL and ANN methods offer real advantages 
over conventional modeling, especially when the under-
lying physical relationships are not fully understood.  FL 
is employed in order to describe human thinking and 
reasoning, within a mathematical framework.  The main 
problem with FL is that no systematic procedure exists 
to define the MF parameters and to design fuzzy rules.  
To construct fuzzy rules it is necessary to define premises 
and consequences as fuzzy sets.  In this paper, an 
Adaptive Neuro–Fuzzy Inference System (ANFIS), which 
is an integration of the ANN and FL methods, is proposed 
as an alternative to the traditional methods for drought 
forecasting, using SPI/SPEI for multiple time scales.  The 
main contribution of the ANFIS method is that it elimi-
nates the basic problems in fuzzy modeling (the definition 
of the membership function parameters and the design 
of fuzzy if–then rules), using the learning capability of 
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ANN for automatic fuzzy rule generation and parameter 
optimization.  SSTA events are used to construct the 
ANFIS forecasting models, and the best fit forecasting 
model structure is determined by comparing the fore-
casted and observed values.

MATERIALS AND METHODS

Study area
The basin that we study lies between 12°02′49″–

12°36′13″N and 108°40′03″–109°11′38″E in the Khanhhoa 
Province, Vietnam, with a total area of 1,889 km2 (Fig. 
1).  This basin is located in a tropical monsoon zone that 
exhibits rather unique deformational features, and an oce-
anic climate.  The average rainfall in the period 1982–
2012 was 1,616 mm, and there are two distinct seasons: 
rainy and dry.  The rainy season usually lasts from May to 
December, and rainfall is largely concentrated in 
September, October, and November, comprising 55% of 
the average annual rainfall.  During many dry season 
months, there is no rain.  With a high temperature foun-
dation, the average annual temperature during many 
years is 26.7°C, and the difference in temperature 
between the months is relatively small.  The potential 
evaporation in this region is high, averaging approxi-
mately 1,200–1,600 mm/year.

 
Datasets
Rainfall and temperature datasets

Rainfall and temperature data were recorded at the 
Khanhvinh Meteorological Station in the Khanhhoa 
Province, Vietnam.  These datasets are under the man-
agement of the Vietnam Institute of Meteorology and 
Hydrography.  The data quality is assured, and reliable 
enough for calculations.  The period covered by the data 

that was mined for use in the research was January 1983 
to December 2012.  

SSTA datasets
The Four SSTA datasets in the Nino12, Nino3, Nino4, 

and NinoW zones were standardized by dividing stand-
ard deviations.  The data was collected from 1982 to 2012, 
a duration of 31 years.  SSTA data was collected from the 
Comprehensive Ocean Atmosphere Data Set (COADS) 
(Reynolds et al., 2002), via the website (APDRC, 2013).  
For the purposes of this research, the field of SSTA used 
in the Nino12, Nino3, Nino4, and NinoW zones was within 
the corresponding coordinates of (0°N–10°S; 90°E–80°W), 
(5°N–5°S; 150°W–90°W), (5°N–5°S; 160°E–150°W), and 
(15°N–0°S; 130°E–150°E).  A 2° latitude × 2° longitude 
resolution was applied, by using averaged computation 
from the original 1×1 grid point datasets.

Correlation between the SSTA and SPI/SPEI 
drought indices
The SPI and SPEI drought indices 

SPI (Standardized Precipitation Index) was first 
introduced by McKee et al. (1993).  Based on the high 
conformance of the gamma distribution with rain data 
indices over time in many places, McKee et al. (1993) 
developed SPI in the form of a stochastic variable with a 
normal distribution.  The SPI index is based on precipita-
tion alone, making its evaluation relatively easy in com-
parison with other drought indices, namely the Palmer 
Index and the crop moisture index (Cacciamani et al., 
2007).  In addition to the advantages mentioned earlier, 
a major benefit of the SPI index is that it makes it possible 
to describe drought on multiple time scales (Cacciamani 
et al., 2007; Mishra and Desai, 2006; Tsakiris and 
Vangelis, 2004).  SPEI (Standardized Precipitation 
Evapotranspiration Index) was introduced by Vicente–
Serrano et al. (2010), in order to study and follow up on 
the drought process under the effect of the global warm-
ing phenomenon.  It is based on the index (D), the differ-
ence between rainfall (P) and potential evaporation 
(PET).  SPEI is calculated in the same way as SPI. 

SPI/SPEI constitutes an easily interpreted, simple 
moving average process.  This characteristic makes SPI/
SPEI useful as the primary drought index, because it is 
simple, spatially invariant in its interpretation, and prob-
abilistic, allowing it to be used in risk and decision mak-
ing analysis.  For these reasons, it was selected for this 
study.

In this study, the author used the SPI/SPEI program 
available on the Website (Beguería and Vicente Serrano, 
2009), in order to calculate SPI and SPEI at different 
time scales (i.e., 1–, 3–, 6–, and 12–month) (WMO, 2012).  
According to the World Meteorological Organization 
(WMO), (drought or wet) climatic conditions have been 
classified as per SPI and SPEI as presented in Table 1 
(WMO, 2012).

 
Correlation between SSTA and SPI/SPEI

Correlation equations are widely used in sciences 
today as a measure of linear dependence between two 

Fig. 1.  Cai River basin, Vietnam.
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variances.  This procedure was developed by Karl 
Pearson, from a related idea that was introduced by 
Francis Galton in the 1880s (Rodgers and Nicewander, 
1988; Stigler, 1989).  We use the correlation equation 
between SSTA and SPI/SPEI for determining correlation 
coefficients.  If the correlation coefficient is positive 
(reflecting a covariant relationship, then the absolute 
value of correlation coefficient is greater, and the level of 
linear dependence between SSTA and SPI/SPEI is 
greater.  The reverse holds if the correlation coefficient is 
negative (reflecting a counter covariant relationship).

We will employ the correlation between an SSTA data 
chain x{x1, x2, ... , xn} and an SPI/SPEI data chain y{y1, y2, 
... , yn}, with n observatory value pairs {xi, yi} (i=1,.., n), to 
establish a correlation matrix between SSTA and SPI/
SPEI.  The data chains used for our calculation are 
described as follows: 

(1) Our SSTA data chain includes factors from SSTA 
in the Nino12, Nino3, Nino4, and NinoW zones with time 
scales of 1–, 3–, 6–, and 12–months.  These are designated 
for the respective zones as N12j, N3j, N4j, and NWj.  The 
index signs j = 1, 2, ..., 12 indicate SSTA data at the jth 
time (j = 1 at SSTA indicates the same period as SPI/SPEI, 
j = 2 indicates SSTA at 1 month ahead of SPI/SPEI, j = 
12 indicates SSTA at 11 months prior to SPI/SPEI).

(2) The comparative element series is given by the 
SPI/SPEI value series at the case study site, whose 
objects are denoted by SPIk, SPEIk, where index k = 1, 2, 
3, 4.  Here, k = 1 when SPI/SPEI is for 1–month time 
scales, k = 2 when SPI/SPEI is for 3–month time scales, k 
= 3 when SPI/SPEI is for 6–month time scales, and k = 4 

when SPI/SPEI is for 12–month time scales.
The correlation matrix results between SSTA and 

SPI/SPEI presented in Fig. 2 show that the correlation 
between SSTA and SPI is greater than the correlation 
between SSTA and SPEI.  However, there is one notable 
shared characteristic.  That is, the correlation between 
SSTA and SPI/SPEI decreases gradually from NinoW to 
Nino4, then to Nino3, and is smallest in Nino12 zones.  
The correlation between SSTA and SPI/SPEI in NinoW is 
positive, while it is negative in most other cases.  The 
results in Fig. 2 also show that the correlation between 
SSTA and SPI/SPEI over 12–month time scales is most 
often the greatest, while it is smallest over 1–month time 
scales.

The results for the correlation coefficient value 
between the SSTA and SPI/SPEI indices show that the 
correlation at Nino3 and Nino2 zones is weak, while the 
correlation at NinoW and Nino4 zones is relatively high.  
Furthermore, the highest correlation coefficient always 
occurs when SPI/SPEI is larger than SSTA from a range 
of 1 to 3 months.  It can be seen that the level of linear 
dependence between SPI/SPEI and SSTA in the NinoW 
and Nino 4 zones is relatively high.  Therefore, in this 
research we will use SSTA data from these zones with a 
high coefficient of correlation with SPI/SPEI as input vari-
ables to build drought forecast models for the area under 
consideration.

ADAPTIVE NEURO–FUZZY INFERENCE 
SYSTEM (ANFIS) MODELS

The ANFIS model, proposed by Jang (Jang (1993); 
Jang et al. (1997)), has been applied in order to study 
many problems.  The ANFIS model is based on a fuzzy 
interface system, which is trained by a learning algorithm 
derived from neural network theory.  A detailed treat-
ment of ANFIS is provided by Ying (2000).  The ANFIS 
of Sugeno–type systems with three inputs and two rules, 
which was used in this study, is shown in Fig.  3.  The 
square and circle nodes are used to reflect different prop-
erties of adaptive learning.  Square nodes (adaptive 
nodes) have parameters, while circle nodes (fixed nodes) 
do not.  Each node has an own node function.  The node 
functions vary from node to node.  The connection 
between the two nodes indicates the direction of signal.  
No weight is associated with the connection.

In Fig. 3, the ANFIS has three input variables: SSTA1 
(indicated by x), SSTA2 (y), and SSTA3 (z); and one out-

Table 1.   Standard Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI) 
classifications

SPI/SPEI Classification SPI/SPEI Classification

2.00 or more Extremely wet –0.50 to –0.99 Mild drought

1.50 to 1.99 Very wet –1.00 to –1.49 Moderate drought

1.00 to 1.49 Moderately wet –1.5 to –1.99 Severe drought

0.50 to 0.99 Mildly wet –2,0 or less Extreme drought

–0.49 to 0.49 Normal

Fig. 2.  Correlation between SSTA and SPEI/SPI.
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put variable: SPI/SPEI.  Each input variable has two mem-
bership functions, given by (A1, A2), (B1, B2), and (C1, 
C2), respectively.  

The Sugeno–type fuzzy if – then rule for linear out-
put is set up as:

 Rule1: if x equal to A1, y equal to B1, and z equal to C1, 
then     f1 = p1x + q1y + r2z + s1   (1)

 Rule2: if x equal to A2, y equal to B2, and z equal to 
C2, then    f2 = p2x + q2y + r2z + s2  (2)

In the above, Ai, Bi, and Ci are fuzzy sets (a fuzzy set 
is uniquely specified by its membership function); fi is the 
output within the fuzzy region; and pi, qi, ri, and si are 
the consequence parameters determined during the train-
ing process, where i runs from one to two. 

A membership function (MF) is a curve that defines 
how strongly a point x’ ∈X belongs to a set, by assigning 
a membership degree between 0 and 1, μz’(x’) : X → {0,1}.  
There are several possible MFs, such as a bell MF, 
Gaussian MF, two–side Gaussian MF, triangular MF, trap-
ezoidal MF, and pi–shape MF.  In the paper, the Gaussian 
membership function is introduced as an example.  The 
Gaussian MF takes the form:

μz’ (x’) = f(x’,σ) = exp(–(x’ c/σ)2) ,  (3)

where x’ is the value of the input to node i, and c 
and σ are the center and the width of the Gaussian curve 
of the fuzzy set Z’, respectively.  c and σ are also called 
the premise parameters.

The first layer of Fig. 3 is contains adaptive nodes 
represented by i, whose outputs are computed by the 
function member:

O1,i = μAi(x), i = 1, 2    (4)

O1,i = μBi–2(y), i = 3, 4    (5)

O1,i = μCi–4(z), i = 5, 6    (6)

where Ai, Bi–2, Ci–4 and are linguistic variables (in this 
study, the linguistic variables are ‘low’, ‘medium’, and 
‘high’) associated with that node, and μ is the member-
ship function.  As such, O1,i represents the membership 
grade of a fuzzy set Z’(= A1, A2, B1, B2, C1, or C2), and 

specifies the degree to which each input x, y, z satisfies 
the fuzzy set A. 

The second layer is the rule layer.  Every node in this 
layer is a fixed node, indicated as Π, which are called rule 
nodes.  An output from the rule nodes represents a prod-
uct of the input signals.  That is, the fixed node receives 
inputs from the respective adaptive nodes, and computes 
the firing strength of the given rule: 

O2,i = w1 = μAi(x)μBi (y)μCi (z), i = 1, 2  (7)

In the third layer, every node is a fixed node, and is 
indicated as N.  The number of nodes in this layer is the 
same number nodes as in the rule layer.  The ith node in 
this layer receives inputs from all nodes in the rule layer, 
and calculates the normalized firing strength of the rules:

O3,i = w–1 =            , i = 1, 2   (8)

In the fourth layer, every node is an adaptive node, 
and is indicated as Z.  The number of nodes in this layer 
is the same as the number of nodes in the third layer.  
The output from each node is the weighted consequent 
value of a given rule:

 
O4,i = w–1 f1 =            (p1x + q1 + r1z + si), i = 1, 2 (9)

where w–1 is a normalized firing strength from the 
third layer, and {pi, qi, ri, si} represents the sequence of 
linear parameters of node i. 

The fifth layer contains only one output node, and is 
called the summation layer.  This single node is a fixed 
node, and indicated as ∑.  This node computes the over-
all ANFIS output, as the sum of the outputs of all the 
adaptive nodes in the fourth layer, SPI/SPEI:

O5,i =∑ O4,i =∑  w–i fi = w–i f1 +w–i f2 =   

                 (10)

SPI/SPEI= f(x, y, z) =                           = 
 

= 

                (11)

ANFIS uses a hybrid learning algorithm to calibrate 
the network.  The combination of a back–propagation 
algorithm with a least–squares approximation or back 
propagation algorithm is used in the hybrid learning 
algorithm to optimize the parameters in layers 1 and 4, 
respectively.  The mathematical details of these algo-
rithms are given in Jang et al. (1997), Nayak et al. (2004), 
and Bacanli et al. (2009). 

Fig. 3. The scheme of the Adaptive Neuro–Fuzzy Inference 
System.
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DROUGHT FORECASTING BY ANFIS

Input variables 
In this study, SSTA events (1–, 3–, 6–, and 12–month) 

are used to generate a drought estimation model with 
the ANFIS method.  For this, SPI/SPEI (1–, 3–, 6–, and 
12–month) outputs are considered.  In the construction 
of the estimation models, again, different models are 
generated for each of the SPI/SPEI (1–, 3–, 6–, and 
12–month) outputs.  The datasets are divided into two 
subsets: training and testing datasets.  The training data-
set includes data records measured between the years 
1983 and 2008.  In order to achieve a more reliable evalu-
ation and comparison, the models are tested by the eval-
uation if a dataset that was not used during the training 
process.  The testing dataset consists of data records 
observed between 2009 and 2012.

Model structures 
One of the most important steps in developing a sat-

isfactory forecasting model is the selection of the input 
variables.  This is because these variables determine the 
structure of the forecasting model, and affect the 
weighted coefficients and the results of the model.  
Presently, different estimation models are constructed 
for each phase.  The models for 1, 3, 6, and 12 months are 
named as SPI/SPEI–1, SPI/SPEI–3, SPI/SPEI–6, and SPI/
SPEI–12, respectively.  Here, SPI/SPEI–1, SPI/SPEI–3, 
and SPI/SPEI–6 are considered as the indices for short 
term or seasonal variation, and SPI/SPEI–12 is consid-
ered as the long–term drought index.  Eighteen models 
with different input numbers and structures are con-
structed for each phase, using these variables.  In this 

study, forecasting models based on various combinations 
of SSTA events in NinoW and Nino4 are constructed 
(Table 2).  The SSTA events in NinoW and Nino4 are 
named as SSTAW and SSTA4.

In each model, every input variable must be clustered 
into several class values in layer 1, to build up fuzzy rules.  
In addition, each fuzzy rule will be constructed through 
several parameters of the membership function in layer 
2.  As the number of parameters increases with the fuzzy 
rule increment, the model structure becomes more com-
plicated.  In this study, the subtractive fuzzy clustering 
function is used to establish the fuzzy rule, based on the 
relationship between the input–output variables.  In order 
to determine the nonlinear input and linear output param-
eters, a hybrid algorithm was used.  The learning proce-
dure and the construction of the rules are provided by 
this algorithm.  The performance of the ANFIS models for 
the training and testing datasets is evaluated according 
to statistical criteria, such as the Correlation Coefficient 
(CORR), Efficiency (E), and Root Mean Square Error 
(RMSE).  CORR is a commonly used statistic, providing 
information on the strength of the linear relationship 
between the observed and computed values.  E is one of 
the most widely employed statistics for evaluating model 
performance.  Values of CORR and E close to 1.0 indicate 
a good model performance.  The RMSE statistic indicates 
a model’s ability to predict a value separated from the 
mean.  

RESULTS AND DISCUSSION 

When comparing the performances of the ANFIS 
models for SPI/SPEI, it is seen that the performance of 

Table 2.  Structures of the forecasting models

Model Input structure Output

M1 SSTAW(t–1), SSTAW(t–2) SPI(t), SPEI(t)

M2 SSTAW(t–1), SSTAW(t–2), SSTAW(t–3) SPI(t), SPEI(t)

M3 SSTAW(t–1), SSTAW(t–2), SSTAW(t–3), SSTAW(t–4) SPI(t), SPEI(t)

M4 SSTAW(t–1), SSTAW(t–2), SSTAW(t–3), SSTAW(t–4), SSTAW(t–5) SPI(t), SPEI(t)

M5 SSTAW(t–1), SSTAW(t–2), SSTAW(t–3), SSTAW(t–4), SSTAW(t–5), SSTAW(t–6) SPI(t), SPEI(t)

M6 SSTAW(t–2), SSTAW(t–3), SSTAW(t–4), SSTAW(t–5) SPI(t), SPEI(t)

M7 SSTAW(t–2), SSTAW(t–2), SSTAW(t–4), SSTAW(t–5), SSTAW(t–6) SPI(t), SPEI(t)

M8 SSTAW(t–2), SSTAW(t–3), SSTAW(t–4), SSTAW(t–5), SSTAW(t–6), SSTAW(t–7) SPI(t), SPEI(t)

M9 SSTAW(t–1), SSTAW(t–2), SSTAW(t–3), SSTA4(t–1) SPI(t), SPEI(t)

M10 SSTAW(t–1), SSTAW(t–2), SSTAW(t–3), SSTAW(t–4), SSTA4(t–1) SPI(t), SPEI(t)

M11 SSTAW(t–1), SSTAW(t–2), SSTAW(t–3), SSTAW(t–4) SSTAW(t–5), SSTA4(t–1) SPI(t), SPEI(t)

M12 SSTAW(t–1), SSTAW(t–2), SSTAW(t–3), SSTA4(t–1) ), SSTA4(t–2) SPI(t), SPEI(t)

M13 SSTAW(t–1), SSTAW(t–2), SSTAW(t–3), SSTAW(t–4), SSTA4(t–1), SSTA4(t–2) SPI(t), SPEI(t)

M14 SSTAW(t–2), SSTAW(t–3), SSTA4(t–1), SSTA4(t–2) SPI(t), SPEI(t)

M15 SSTAW(t–2), SSTAW(t–3), SSTAW(t–4), SSTA4(t–1), SSTA4(t–2) SPI(t), SPEI(t)

M16 SSTAW(t–2), SSTAW(t–3), SSTAW(t–4), SSTA4(t–2) SPI(t), SPEI(t)

M17 SSTAW(t–2), SSTAW(t–3), SSTAW(t–4), SSTAW(t–5), SSTA4(t–2) SPI(t), SPEI(t)

M18 SSTAW(t–2), SSTAW(t–3), SSTA4(t–2), SSTA4(t–3) SPI(t), SPEI(t)
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the ANFIS model for SPI/SPEI–12 is better than that of 
the models for SPI/SPEI–1 to SPI/SPEI–6.  However, the 
ANFIS models for SPI–1 and SPI–3 show a higher per-
formance than for SPEI–1 and SPEI–3.  Furthermore, the 
ANFIS models for SPI–6 and SPI–12 show an even lower 
performance.  The average performance of all models is 
shown in Table 3.

When the results for the ANFIS models are com-
pared, models with small input variables usually show a 
lower performance.  The model with the highest perform-
ance is most often a model with a high number of input 
variables, such as M5, M11, or M13.  The ANFIS model for 
SPI/SPEI–1 with the highest performance is M5.  For 
SPI/SPEI–3 and SPI/SPEI–12, it is M11, and for SPI/

Table 3.   Average performances of all the models

Drought Index
Training set Testing set

CORR E RMSE CORR E RMSE

SPI–1 0.73 0.55 0.58 0.45 0.16 0.71

SPI–3 0.79 0.63 0.58 0.65 0.36 0.52

SPI–6 0.84 0.70 0.53 0.75 0.47 0.39

SPI–12 0.88 0.77 0.47 0.68 0.51 0.30

SPEI–1 0.71 0.54 0.63 0.47 0.19 0.82

SPEI–3 0.78 0.63 0.58 0.69 0.38 0.63

SPEI–6 0.84 0.72 0.51 0.75 0.48 0.46

SPEI–12 0.88 0.77 0.46 0.60 0.53 0.32

Table 4.   Performances of the most suitable models for SPI/SPEI

Drought Index 
(best model)

Training set Testing set

CORR E RMSE CORR E RMSE

SPI–1 (M5) 0.9402 0.8827 0.3098 0.45 0.16 0.71

SPEI–1 (M5) 0.9089 0.8251 0.4027 0.65 0.36 0.52

SPI–3 (M11) 0.9451 0.8923 0.3231 0.75 0.47 0.39

SPEI–3 (M11) 0.9448 0.8919 0.3213 0.68 0.51 0.30

SPI–6 (M13) 0.9527 0.9071 0.3052 0.47 0.19 0.82

SPEI–6  (M13) 0.9572 0.9158 0.2855 0.69 0.38 0.63

SPI–12 (M11) 0.9486 0.8997 0.3173 0.75 0.48 0.46

SPEI–12 (M11) 0.9598 0.9210 0.2775 0.60 0.53 0.32

Fig. 4.  Comparison of the performances of the ANFIS Models for SPI/SPEI–6.

Fig. 5.  Performances of the ANFIS models for SPI/SPEI–1, SPI/SPEI–3, SPI/SPEI–6, and SPI/SPEI–12.
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SPEI–6, it is M13.  The performances for the most suita-
ble models are shown in Table 4.

 As it would require too much space to show the 
model results for each phase, having 18 models overall, 
only the results for SPI/SPEI–6 are presented.  The train-
ing performances of the ANFIS models for SPI/SPEI–6 
are given in Fig. 4.  This figure shows that the perform-
ance of the ANFIS Models for SPEI–6 is higher than for 
SPI–6, but there is also a shared feature, in that the high-
est performance is in the M13 case.

Fig. 5 shows the performances of the best fit models 

for the data from 1–month to 12–month (SPI/SPEI–1 to 
SPI/SPEI–12).  In this figure, the variations of the CORR 
and RMSE criteria for SPI/SPEI–1 to SPI/SPEI–12 during 
the training period are presented.

The values of CORR and E for the ANFIS models for 
SPI/SPEI–1 are lower than those for the other models.  
The reason that the ANFIS models developed using the 
SPI/SPEI outputs of 12 months show a better perform-
ance is that SPI/SPEI values calculated for such a long 
term include dry and wet periods for a longer duration.  
Short–term periods, such as one or three months, may 

Fig. 6.  The results of the ANFIS models for SPI; (a) SPI–1; (b) SPI–3; (c) SPI–6; (d) SPI–12.
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include a wet or a dry period for only a short time.  For 
example, in a three months period, drought occurs more 
frequently and for a shorter time, and when the period 
increases the duration of drought increases, but its fre-
quency decreases.  This means that for shorter periods, 
the SPI/SPEI values may contain a one–month dry and a 
one–month wet period, and this causes instability.  
Passages between positive and negative values occur 
more frequently, and this also results in the instability.  
For this reason, the ANFIS estimation models constructed 
with SPI/SPEI values calculated for shorter periods can-

not catch dry and wet periods, and therefore yield 
unsuccessful results.  In addition, the SPI/SPEI outputs 
for 12 months have a more stable run.  Therefore, the 
ANFIS models developed using SPI/SPEI outputs for 12 
months can catch dry and wet periods and yield better 
results.  Fig. 6 shows the results for the best fit models for 
SPI–1 to SPI–12, and Fig. 7 shows the results of the best 
fit models for SPEI–1 to SPEI–12. 

From Fig. 6 and Fig. 7 is it seen that for forecasting 
droughts with a short–term index (1–, 3–month), the SPI 
index delivers a higher performance than SPEI, and for 

Fig. 7.  The results of the ANFIS models for SPEI; (a) SPEI–1; (b) SPEI–3; (c) SPEI–6; (d) SPEI–12.
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forecasting drought with a seasonal or long–term index 
(6–, 12–month), the SPEI index performs better than SPI.  
The M11 model SPEI–12 shows the best performance.  
As a result, we conclude that that ANFIS can be success-
fully applied and provide a high accuracy and reliability 
for drought forecasting.

CONCLUSIONS

SPI /SPEI is one of the most widely employed meth-
ods in relation to drought.  An accurate and reliable esti-
mation of SPI/SPEI is highly important.  Traditional meth-
ods, such as regression analysis and autoregressive mov-
ing average models, are commonly used in the estimation 
of hydrological processes.  In this paper, Adaptive Neuro–
Fuzzy Inference System (ANFIS) was proposed as an 
alternative drought–forecasting tool to the traditional 
methods. 

In order to illustrate the applicability of the ANFIS 
method in forecasting drought, SSTA data at NinoW and 
Nino4 zones was selected for input variables, in order to 
forecast drought in the region chosen for our research.  
Various ANFIS forecasting models for SPI/SPEI (1–, 3–, 
6–, and 12–month) were trained and tested, and the 
results showed that the models with the highest per-
formance are M5, M11, and M13.  The ANFIS models for 
SPI/SPEI–1 that deliver the highest performance are M5, 
for SPI/SPEI–3 and SPI/SPEI–12 they are M11, and for 
SPI/SPEI–6 they are M13.

The ANFIS models for SPI/SPEI–12 perform better 
than those for SPI/SPEI–1 to SPI/SPEI–6.  The reason this 
is that SPI/SPEI values calculated for long periods con-
tain longer dry and wet periods.  This means that for 
shorter periods, the SPI/SPEI values may contain only a 
1–month dry or 1–month wet period, and this causes 
instability.  In addition, passages between positive and 
negative values occur more frequently, and this also 
results in instability.  For this reason, the ANFIS estima-
tion models constructed with SPI/SPEI values calculated 
for shorter periods cannot catch dry and wet periods, 
and yield unsuccessful results.  In addition, the SPI/SPEI 
outputs for 12 months have more stable run.  Therefore, 
the ANFIS models developed using SPI/SPEI outputs for 
12 months can catch dry and wet periods, and yield bet-
ter results. 

For forecasting drought with a short–term index (1–, 
3–month), the SPI index performs better than SPEI, and 
for forecasting drought with a seasonal or long–term 
index (6–, 12–month), the SPEI index performs better 
than SPI.  The M11 model SPEI–12 gives the best fore-
casting performance.  As a result, it we can conclude 
that the ANFIS method with SSTA events as input varia-
bles can be successfully applied to establish accurate 
and reliable drought forecasting models. 
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