
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Multi-Operand Adder Synthesis on FPGAs using
Generalized Parallel Counters

Matsunaga, Taeko

Kimura, Shinji
Graduate School of Information, Production and Systems, Waseda University

Matsunaga, Yusuke
Faculty of Information Science and Electrical Engineering Kyushu University

https://hdl.handle.net/2324/15428

出版情報：International Workshop on Logic & Synthesis. 18, 2009-08-01
バージョン：
権利関係：

Multi-Operand Adder Synthesis on FPGAs using Generalized
Parallel Counters

Taeko Matsunaga Shinji Kimura Yusuke Matsunaga

Graduate School of Information, Graduate School of Information, Faculty of Information Science
Production and Systems Production and Systems and Electrical Engineering

Waseda University Waseda University Kyushu University
t matsunaga@akane.waseda.jp shinji kimura@waseda.jp matsunaga@c.csce.kyushu-u.ac.jp

Abstract
Multi-operand adders, which are also found in parallel mul-
tipliers, usually consist of the compression trees which re-
duce the number of operands per a bit to two, and the carry-
propagate adder for the two operands in ASIC implementa-
tion. The former part is usually realized using full adders or
(3;2) counters like Wallace-trees in ASIC, though adder trees
or dedicated hardware are used in FPGA. In this paper, an ap-
proach to realize compression trees on FPGAs is proposed.
In case of FPGA with m-input LUT, any larger or generalized
parallel counters with up to m inputs can be realized with one
LUT per an output. Our approach utilizes generalized par-
allel counters with up to m inputs and synthesizes the com-
pression trees to implement high-performance multi-operand
adders by setting some intermediate height limits in the com-
pression process like Dadda multipliers. Several experiments
on Altera’s Stratix III show its effectiveness against existing
approaches.

1. Introduction

Multi-operand addition, which is often found in partial
product reduction of multipliers, or some combinations of ad-
dition and multiplication, is a fundamental and frequently-
used arithmetic operation. Though it can be realized with
carry-propagate adder (CPA) trees, fast multi-operand addi-
tion usually consists of two phases, where the number of
addends is compressed to 2 such as a Wallace tree[1] and a
Dadda tree[2], and then the final CPA generates the result of
multiplication for ASIC implementation.

Such trees are often constructed using 3-input 2-
output counters (also called carry-save adder or full
adder) and 2-input 2-output counters (half adder) as basic
components[1][2][3][4]. These compression trees can be con-
structed using not only (3;2) and (2;2) counter, but also larger
counters[5][6]. Larger counters can compress the number of
addends rapidly, while the costs of each counter such as de-
lay and area become higher. So it is not obvious how fast or

small the compression trees become without considering im-
plementation details of the larger counters and cell libraries to
be used.

On the other hand, arithmetic operations are usually im-
plemented using dedicated hardware on FPGAs. Many FPGA
architectures support fast carry calculation and some DSP
modules, and it is considered to be better to utilize such struc-
tures to achieve fast operations like addition and multipli-
cation than to construct compression trees on FPGA using
LUTs.

However, a larger counter can be implemented as the sim-
ilar cost as a smaller counter if the numbers of inputs of those
counters are within the number of inputs of LUT for each out-
put. As the available number of inputs of LUT, m, becomes
larger, compression trees could be implemented more effec-
tively on m-LUTs and high-performance multipliers could be
generated using such compression trees. That observation
was pointed out in [7], and an heuristic and an approach using
Integer Linear Programming (ILP) to construct compression
trees using GPCs have been proposed in [7] and [8], respec-
tively.

In this paper, the same problem, that is, synthesis of com-
pression trees targeting m-LUT based FPGAs is addressed.
Our objective is to synthesize fast compression trees for prac-
tical size of problems in reasonable time by setting some
intermediate height limits in the compression process like
Dadda-tree. Performance on FPGAs depends not only the
maximal level of counters but also the number of counters.
Our approach suppresses generation of unnecessary counters
for reduction of the maximal level, which results in reduction
of delay as well as area.

The rest of this paper is organized as follows. Some def-
initions and the target problem are shown in the section 2.
After related work is reviewed in section 3., the main features
of our approach is shown in section 4. Then experimental re-
sults for multipliers and multi-operand adders and conclusion
are shown in section 5. and 6. respectively.

2. Preliminaries

Assume that A = an−1an−2 . . .a0 is an n-bit unsigned bi-
nary number. An index of ai, i, is referred to as the rank of ai
where 0 ≤ i ≤ n−1.

Definition 1 A single column parallel counter, (m;n) is a
combinational circuit which inputs m bits, counts the number
of bits that are set to 1, and outputs the number as an n-bit
unsigned binary number ranging from 0 to m. The following
relation is satisfied between m and n:

n = dlog2(m+1)e

A single column parallel counter (m;n) accepts inputs
of the same rank,i, and the ranks of outputs become i, i +
1, . . . , i +(n−1). A full adder and a half adder is a (3;2) and
(2;2) counter respectively.

Definition 2 A generalized parallel counter, referred to as
a GPC, is a combinational circuit which accepts input bits
with different ranks, calculates the sum of input bits, and out-
puts the number as an n-bit unsigned binary number ranging
from 0 to M. A GPC is represented as (mk−1,mk−2, . . . ,m0;n)
where mk−1 > 0. mi is the number of inputs with the rank
i, and n is the number of outputs. The following relation is
satisfied among M,mi, and n:

M =
k−1

∑
i=0

mi2i

n = dlog2(M +1)e

For example, GPC(4,4;4) accepts 4 inputs with rank 0
and 4 inputs with rank 1, and outputs a 4-bit unsigned binary
number. The maximum number M occurs when all inputs are
set to 1 and the value is M = 4 ·21 +4 ·20 = 12, which requires
4-bit.

Definition 3 The ratio of the number of inputs to the number
of outputs,

∑k−1
i=0 mi

n
is referred to as the reduction ratio of a GPC.

In the followings, only GPCs whose reduction ratios are
greater than or equal to 1 are considered.

Definition 4 A dot diagram represents all operands to be
summed aligned by columns. Each bit of each operand corre-
sponds to a dot located in a column corresponding to the bit
position.

Figure 1 shows an example of dot diagrams. (a) and (b)
represent a 4*4 multiplier and a GPC(4,4;4), respectively. In
Figure 1(b), the upper part above the line corresponds to in-
puts and the lower part corresponds to outputs.

 a3 a2 a1 a0
 x b3 b2 b1 b0
 a3b0 a2b0 a1b0 a0b0
 a3b1 a2b1 a1b1 a0b1
 a3b2 a2b2 a1b2 a0b2
 a3b3 a2b3 a1b3 a0b3
 p7 p6 p5 p4 p3 p2 p1 p0

6 5 4 3 2 1 0

(a) 4x4 multiplier (b) GPC (4,4;4)

Figure 1. Examples of dot diagrams

Definition 5 A compression tree accepts more than two in-
puts Ai to be summed, and outputs the specified number k of
operands O j such that

k

∑
j=1

O j =
l−1

∑
i=0

Ai

Outputs of compression trees are connected to inputs of
the carry-propagate adder(CPA) whose outputs are the final
results of multi-operand additions. The number of operands
of CPAs, k is usually 2, but can be more than 2 when the target
FPGAs support fast k-ary addition.

Our target problem is as follows:

Problem 1 Given a dot diagram which represents all inputs
to be summed, the maximum number of inputs of GPC, m, the
number of outputs of GPC, n, and the number of outputs of a
compression tree, k, find a compression tree which consists of
m-input n-output GPCs and outputs k operands.

We call a compression tree as a GPC network where only
m, n, and k are given and any other detailed architectures of
FPGAs are not assumed.

3. Related work
There have been many approaches for constructing (3;2)

and (2;2) counter trees in multipliers[1],[2],[3],[4] for ASIC
implementation. Larger counters have been discussed in
[5],[6].

As mentioned before, larger GPCs can reduce the maxi-
mal level of a compression tree, while each cost of GPC re-
lated to area and delay is getting larger and slower depending
on library cells and technology mapping algorithms to be used
for ASIC. On the other hand, when the number of inputs of
LUTs is m, each cost of GPC could be roughly estimated as
same as long as the number of inputs of GPC is within m, so
remarkable gain could be expected.

This problem has been first stated in [8]. Their heuris-
tic at first lists up possible m-input n-output GPCs based on
the given m,n, and gives them orders of priorities based on
their reduction ratios. Then the highest column is focused
and the GPC which covers dots in the column is selected ac-
cording to priorities, and covered dots are removed. This pro-
cess is repeated until there are no more dots to be covered
by the GPCs, then new dots generated by the assigned GPCs
are added to the corresponding columns. Repeat this until all
columns have at most k dots.

Though this simple heuristic does not guarantee the mini-
mum delay nor the minimum number of GPCs, experimental
results indicate their advantages to FPGA dedicated imple-
mentation. The same authors also proposed an ILP version
for the problem with some constraints in [7]. Compared with
trees of ternary CPAs which exploits fast carry chains, their
heuristic and ILP-based approach produced 27% and 32%
faster circuits on Altera Stratix II on average for their experi-
ments.

4. Proposed approach
Our objective is to explore a delay minimization algorithm

which outperform the existing heuristic and can be applied to
larger problem where ILP approach could not be applied in
reasonable time.

There are several factors which affect the speed of com-
pression trees. The most direct measure at GPC network level
would be the maximal number of serially connected GPCs,
and we call it the maximal level of GPCs. It roughly corre-
sponds to LUT related delay on FPGA. Though wiring de-
lay on FPGA can not be measured accurately at GPC level
where the target FPGA device is not specified, we observed
experimentally that the number of GPCs would affect the de-
lay because a larger circuit causes wire delay to be expanded.
Other than above two factors, arrival times for input signals
which correspond to dots in the original dot diagram would
also affect the total delay.

We focus on minimization of the maximum level and the
number of GPCs as objectives of delay minimization at GPC
network, and adopt an idea where some intermediate limits
on the column heights are set and the number of dots per a
column is reduced to the height using GPCs at each stage of
reduction like Dadda tree[2]. As for arrival times, dots in
a column would be covered to GPCs in ascending order of
arrival times.

In the followings, Dadda’s method is first reviewed and
then our approach is explained.

4.1. Dadda’s method
In Dadda’s method using (3;2) and (2;2) counters, the col-

umn height is iteratively reduced to the predetermined limits
at each stage until all columns have at most 2 dots. The col-
umn height for the last j-th stage is d j, and heights for other

FA HA

Wallace Dadda

Figure 2. Wallace-tree and Dadda-tree

stages are calculated as d1 = 2,d j+1 = b1.5 · d jc. So, the se-
quence of the column heights is

2 → 3 → 4 → 6 → ··· .

At each stage, find the smallest j where at least one column
d j of the dot diagram have more than d j dots. At each j-th
stage from the last, compress the heights of all columns to not
more than d j dots, using (3;2) and (2;2) counters.

Figure 2 shows the difference between Wallace tree and
Dadda tree. Since the maximal height is 4 in the first stage,
the target height is 3 and only two counters are necessary to
reduce all heights to not more than 3. Though this is a small
example, resulting compression trees have 4 FAs and 6 HAs
in Wallace tree and 3 FAs and 3HAs in Dadda tree. Both
maximal levels are same.

4.2. Synthesis of compression trees using GPCs
Given the number of inputs(m) and outputs(n) of GPCs

and the target height(k), our approach for synthesizing com-
pression trees is as follows:

• Pre-processing:

– List up candidate GPCs which have up to m inputs
and n outputs, and order them based on their reduc-
tion ratios.

– Calculate the target heights of intermediate stages
based on the maximum number of dots among all
columns.

• Compression phase: Repeat the following process until
all columns have at most k dots.

– Starting from the lowest column in which the num-
ber of dots exceeds the limit, select GPCs which
can reduce the excess and cover dots in the upper
columns as many as possible until the number of
dots including ones added from the lower columns
get to the limit.

The main difference of our approach to the existing one is
to set intermediate limits of heights, which is explained below.

4.3. Setting of the intermediate heights
In Dadda’s method, the target heights can be defined based

on (3;2) counter since a basic element is a (3;2) counter, while
there are many candidates for m-input n-output GPCs and
how to decide the target limits is of a problem.

As for transformation of dot diagrams using various pos-
sible GPCs, there have been some considerations in ASIC
implementation[9][5], especially for use of single column
counters and GPCs with input columns of equal height(Figure
3). Considering that our target is to syntheise on k-LUT based
FPGA, we have the following observations:

• As the viewpoint of reduction ratio of columns’ height,
it would be preferable to use a single column counter. It
is because m j+1 has twice weight of m j and when the
total number of inputs are fixed, the highest reduction
per a column, as well as highest ratio, is achieved where
all inputs have the lowest rank for the same number of
outputs.

• A GPC with input columns of equal height could reduce
the height of a column to less than the number of out-
puts of the GPC. For example, a GPC(5,5;4) in Figure
3 produces four dots at interval of two columns, so only
4/2 = 2 outputs contribute to one column. Though the
reduction ratio is lower than that of the single column
counter with the same number of inputs, it could be uti-
lized to reduce column heights to less than the number
of outputs of a GPC. However, the number of inputs of
GPC are decided according to the number of inputs of
an LUT, which means the number will not be so large.
As a result, there are not so many GPCs with the above
property.

The intermediate heights d j are decided based on the single
column counter (m;n) with the maximum reduction ratio in
our approach. The sequence of intermediate heights is calcu-
lated as follows:

d1 = k, d j =
⌊
d j−1 ·

m
n

⌋
Only when the height should be reduced to less than the num-
ber of outputs of the single column counter, GPCs with the
above features or single column counters with fewer outputs
are considered.

Figure 3. Dot diagram with a flat shape

These intermediate heights are calculated under the as-
sumption that almost all the columns have equal number
of dots, so this calculateion can not guarantee the mini-
mum height for dot diagrams with inputs of unequal heights.
Nonetheless, we adopted these intermediate heights. Dot dia-
grams of any shapes are covered by the flat dot diagram whose
height is of the highest column and (m;n) counter is an ele-
ment of candidate GPC set. By reducing as many dots in the
upper columns as possible while satisfying the target height,
the number of dots would not increase more than those when
(m;n) counter are used. So, the intermediate height is guar-
anteed to be satisfied at each stage without any extra levels.

4.4. An example: 6-input 3-output GPCs
Figure 4 shows 6-input 3-output GPCs as an example of

a set of GPCs. ∆H indicates the increased or decreased num-
ber of dots of each column. For example, (0,6;3) decreases
the number of dots of column j by 5 and increases by 1 for
columns j +1 and j +2.

When the target height, the intermediate height is calcu-
lated based on (0,6;3) GPC with the reduction ratio 6/3 = 2.
Assume that the number of CPA inputs is 3, the intermediate
heights are set to

3 → 6 → 12 →

Figure 5 shows the process of reduction. Assume that the
first column which exceeds the target intermediate height is
j and the excess is two. (2,3;3), which can reduce the col-
umn j by two dots and have the highest ratio, is selected. It
removes three dots in the column j and two dots the column
j +1 in ascending order of arrival times, and adds one dot to
the columns j, j +1, and j +2. This process is repeated until
the heights of all columns including dots generated from the
lower columns get to the limit.

When the number of CPA inputs is 2, (0,6;3) GPC can not
be used. In this case, GPC(2,3;3) have the property of GPCs
with inputs of equal height as described above, and can be
used for that purpose (Figure 6). The number of GPCs can be
reduced compared to the case of using (3;2) or (2;2) counters.

5. Experiments
We implemented the above heuristic in C++, and executed

for the following examples:

(1,2;3)(1,3;3)(0,4;3)(0,5;3)

(0,3;2) (0,2;2)

(2,2;3)(2,3;3)(1,4;3)(1,5;3)(0,6;3)

∆Η: +1 +1 −5 ∆Η: +1 0 −4 ∆Η: +1 0 −3 ∆Η: +1 −1 −2 ∆Η: +1 −1 −1

∆Η: +1 +1 −4 ∆Η: +1 +1 −3 ∆Η: +1 0 −2 ∆Η: +1 0 −1

∆Η: +1 −2 ∆Η: +1 −1

ratio=6/3 ratio=5/3

ratio=4/3 ratio=3/3

ratio=3/2 ratio=2/2

ratio=6/3 ratio=4/3ratio=5/3

ratio=5/3 ratio=4/3

Figure 4. A set of 6-input 3-output GPCs

• n-bit × n-bit multiplications:
n = 16,24,32,64,96,128

• 16 operand n-bit additions:
n = 16,24,32

The number of operands of CPAs, k is set to 2 and 3. Assumed
that the target FPGA is Altera StratixIII[10] which utilizes 6-
input LUTs and fast ternary addition, the number of inputs
and outputs of GPCs are set to 6 and 3 respectively.

Our algorithm generated overall circuits including com-
pression trees and CPAs described in Verilog HDL, and then
they were compiled by Quartus II v.8.0 on Altera Stratix-III.
The CPA part was implemented using fast binary or ternary
addition of the device according to the target number k.

As a target for comparison, we implemented a greedy
heuristic similar to [8].

5.1. Experimental results at GPC network level

Table 1 and 2 show the results at GPC network level for
n-bit multipliers and 16-operand n-bit adders, respectively.
’Ours’ and ’greedy’ in the first column mean our proposed
method and a heuristic similar to [8]. The second column
shows the bit width of operands where all operands have the
same width. The third and forth columns show the number of
GPCs and the maximal level in case that k = 3 and the fifth
and sixth columns are those in case that k = 2. As shown

the target height

... ...

j
j+1

j+2

... ...

... ...

... ...

.

.

.

Figure 5. Reduction process

Figure 6. Dot diagram covered by (2,3;3)

in these tables, our method produces smaller GPC network
under the same or less maximal level. Execution times are
within 2 seconds for 128-bit multiplier and within 0.1 second
for each multi-operand additions(Pentium 4, 2.40GHz).

Table 1. Experimental results at GPC level(multipliers)

k = 3 k = 2
type bit #GPC #lv #GPC #lv
ours 16 65 3 80 4
greedy 16 78 3 91 5
ours 24 163 3 186 4
greedy 24 178 3 198 4
ours 32 303 4 334 5
greedy 32 337 4 363 5
ours 64 1,284 5 1,347 6
greedy 64 1,382 5 1,434 6
ours 96 2,949 5 3,044 6
greedy 96 3,084 5 3,168 6
ours 128 5,297 6 5,424 7
greedy 128 5,547 6 5,651 7

Table 2. Experimental results at GPC level(16-operand
additions)

k = 3 k = 2
type bit #GPC #lv #GPC #lv
ours 16 73 3 82 4
greedy 16 86 4 95 4
ours 24 109 3 122 4
greedy 24 130 4 143 4
ours 32 145 3 162 4
greedy 32 174 4 191 4

5.2. Evaluateion on FPGA
Table 3 and 4 show area and delay on Stratix III for

multipliers and 16 operand adders respectively. ’add’ in the
first column indicates the results where compression networks
are implemented as ternary adder trees using FPGA-specific
fast carry structure. The third column shows the number of
used ALMs which are basic components in StratixIII, and the
fourth column shows the maximal delay.

As shown in those tables, our approach produces 7-25%
gain for multipliers and 23-47% for multi-operand additions
compared to ternary adder trees in speed for our examples.

Compared to a greedy approach, our approach produced
faster circuits in most cases. Since the maximal levels of GPC
network are often same, reduction of the number of GPCs
would lead speed up. However, the greedy approach could
achieve faster circuits in 16-operand 32bit adders in spite of
the fact that the number of GPCs and the maximal level is
smaller. One reason could be that we evaluated the multipli-
ers and adders including not only compression trees but also
the last CPA. In our experiments, CPAs were implemented as
ripple-carry adders by using fast carry chain automatically. In
this case, required times for outputs of GPC network could
be bit-wise different, so the objective that the maximal level

Table 3. Experimental results on FPGAs(multipliers)

type bit #ALM dpath
ours 24 716 5.113
greedy 24 745 5.317
add 24 246 6.038
ours 32 1,333 6.134
greedy 32 1,399 6.628
add 32 425 6.989
ours 64 5,728 9.416
greedy 64 5,889 9.656
add 64 1,624 10.085
ours 96 13,177 11.752
greedy 96 13,407 12.061
add 96 3,579 14.093
ours 128 23,728 14.472
greedy 128 24,075 14.940
add 128 6,316 18.142

Table 4. Experimental results on FPGAs(16-operand
adders)

type bit #ALM dpath
ours 16 204 3.969
greedy 16 224 4.106
add 16 176 4.900
ours 24 310 3.637
greedy 24 335 4.430
add 24 249 5.374
ours 32 417 4.579
greedy 32 442 4.541
add 32 349 5.918

is minimized could not be adequate for minimization of the
maximal delay of the whole circuits. As for CPA implementa-
tion, one could apply some approach targeting ASIC such as
parallel prefix adder synthesis[11] considering bit-wise tim-
ing constraints to FPGA implementation. Future work should
include an approach which considers the relation between
GPC networks and the last CPA.

In the above experiments, the number of inputs GPCs is
fixed to 6 according to the number of inputs which a LUT
can accept in case of Stratix III. The proposed approach is not
specialized into those figures, and can be applied to any m
and n which can be implemented in a m-LUT per an output.
In those cases, all GPC candidates should be enumerated with
their priorities according to those numbers. In general, m and
n would be not so large number, and enumeration should be
executed only once before the reduction phase, so overhead is
expected not so large.

6. Conclusion

In this paper, an approach to generate compression trees
based on GPCs are proposed targeting FPGA based on m-
LUTs. By setting the intermediate heights as in Dadda-tree,
and covering more dots in the upper columns satisfying with
the limit of height, faster compression trees can be obtained at
global structure level and on Altera Stratix III experimentally
than another heuristic and ternary adder trees. Though we
could not compare our approach with ILP-based one directly,
our approach can be applied to larger problems in practical
execution times and that could be the advantage to ILP-based
approach.

The effectiveness could vary depending to design, so fur-
ther evaluation is needed for the dot diagrams with various
shapes which are shown in practical designs other than multi-
plications and multi-operand additions. We should also con-
firm that our intermediate heights are adequate in such cases.

Acknowledgments

This research was supported by Waseda University Global
COE Program “International Research and Education Center
for Ambient SoC” sponsored by MEXT, Japan, and Grant-In-
Aid for Scientific Research from JSPS.

References

[1] C. Wallace, “A suggestion for a fast multiplier,” IEE
Transactions on Electronic Computers, vol. EC-13, pp.
14–17, 1964.

[2] L. Dadda, “Some schemes for parallel multipliers,” Alta
Frequenza, vol. 34, pp. 349–356, 1965.

[3] V. G. Oklobdzija and D. Villeger, “Improving multiplier
design by using improved column compression tree and
optimized final adder in cmos technology,” IEEE Trans-
actions on VLSI Systems, vol. 3, no. 2, 1995.

[4] P. Stelling, C. Martel, V. G. Oklobdzija, and R. Ravi,
“Optimal circuits for parallel multipliers,” IEEE Trans-
action on Computers, vol. 47, no. 3, pp. 273–285, 1998.

[5] W. J. Stenzel and W. J. Kubitz, “A compact high-speed
parallel multiplication scheme,” IEEE Transaction on
Computers, vol. C-26, pp. 948–957, 1977.

[6] A. K. Verma and P. Ienne, “Automatic synthesis of com-
pressor trees: Reevaluating large counters,” in DATE,
2007.

[7] H. Parandeh-Afshar, P. Brisk, and P. Ienne, “Improving
synthesis of compressor trees on fpgas via integer linear
programming,” in DATE, 2008.

[8] H. Parandeh-Afshar, P. Brisk, and P. Ienne., “Efficient
synthesis of compressor trees on fpgas,” in ASPDAC,
2008.

[9] L. Dadda, “On parallel digital multipliers,” Reprinted
from Alta Frequenza, vol. 45, pp. 547–580, 1976.

[10] Altera Corp., “The Stratix III Device Handbook.”

[11] T. Matsunaga and Y. Matsunaga, “Timing-constrained
area minimization algorithm for parallel prefix adders,”
IEICE Transactions on Fundamentals, vol. E90-A,
no. 12, pp. 2770–2777, December 2007.

