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Abstract

We simulate flow movement in an hourglass occupied by two fluids
with surface tension on the interface and compare the difference of
movements of fluids between the non-slip and slip boundary conditions
and small and large coefficients of surface tension. The simulation
is carried out by an energy-stable finite element scheme developed
recently by ourself.

1 Introduction

Multifluid and multiphase flows with surface tension are encountered fre-
quently in scientific and engineering problems. Many numerical schemes have
been developed and applied to those flow problems, see e.g.,[4, 10, 11, 12] and
references therein. It is, however, not an easy task to construct numerical
schemes, stable and convergent. To the best of our knowledge, there are no
numerical schemes whose solutions are proved to converge to the exact one.
There are very little discussion even for the stability of schemes [1].

Recently we have developed a class of finite element schemes based on
energy-stable approximation [5, 6, 7]. In the case of no surface tension, the
schemes are unconditionally stable in the energy norm. When there exists
surface tension, they are proved to be stable if a quantity corresponding to
L2-norm of the curvature remains bounded in the computation. Since we
do not use the maximum norm, the computation proceeds stably while the
integral value is bounded even if the interface becomes singular and if the
curvature becomes infinite at a point.

In this paper we apply an energy-stable finite element scheme to simulate
and analyze flow movement in an hourglass. Two immiscible incompressible
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viscous fluids occupy the hourglass. Surface tension is exerted on the interface
of the two fluids. We consider two boundary conditions, non-slip and slip
conditions, on the whole boundary of the hourglass, and also change the
surface tension coefficients. We compare the difference of movements of fluids
and reveal the effects of the non-slip and slip boundary conditions, and small
and large coefficients of surface tension.

The contents of this paper are as follows. In Section 2 we formulate
two-fluid flow problems with surface tension. In Section 3 an energy-stable
finite element scheme is described. We discuss the stability in the energy
norm in Section 4. In Section 5 we show numerical simulation results for the
movement of fluids in an hourglass.

2 Two-fluid flows in an hourglass

Suppose that two fluids, fluid 1 and fluid 2, occupy an hourglass, see Fig.
1. They are immiscible incompressible viscous fluids. Fluid 2 (black part)
is heavier than fluid 1 (white part), and it falls to the bottom. Surface
tension is exerted on the interface of the two fluids. On the boundary of
the hourglass the fluid is of non-slip or of slip. Both fluids are governed by
the Navier-Stokes equations. We simulate numerically the movement of the
fluids.

Figure 1: Two fluids in an hourglass.

We consider a two-dimensional model, whose mathematical formulation
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can be written as follows. The interior of the hourglass is denoted by Ω,
whose boundary Γ is smooth. Let T be a positive number. The problem
is solved from time t = 0 until T . At the initial time t = 0 the domain Ω
is occupied by two immiscible incompressible viscous fluids; each domain is
denoted by Ω0

k, k = 1, 2, whose interface ∂Ω0
1 ∩ ∂Ω0

2 is denoted by Γ0
12. Γ0

12 is
expressed by a closed curve. We suppose that fluid 2 is surrounded by fluid
1. At t ∈ (0, T ) the two fluids occupy unknown domains Ωk(t), k = 1, 2,
and the interface curve is denoted by Γ12(t). Let ρk and µk, k = 1, 2, be the
densities and the viscosities of the two fluids. Let

u : Ω × (0, T ) → R2, p : Ω × (0, T ) → R

be the velocity and the pressure to be found. The Navier-Stokes equations
are satisfied in each domain Ωk(t), k = 1, 2, t ∈ (0, T ),

ρk

{
∂u

∂t
+ (u · ∇)u

}
−∇

[
2µkD(u)

]
+ ∇p = ρkf, (1)

∇ · u = 0, (2)

where f : Ω × (0, T ) → R2 is a given function, usually, the acceleration of
gravity, and D(u) is the strain-rate tensor defined by

Dij(u) =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
.

The interface Γ12 is assumed to move with the velocity u at that position,
that is, any fluid particle on Γ0

12 remains on the interface Γ12(t) at any time
t. On Γ12(t), t ∈ (0, T ), interface conditions

[u] = 0, [ − pn+ 2µD(u)n] = σ0κn (3)

are imposed, where [·] means the difference of the values approached from
both sides to the interface, κ is the curvature of the interface, σ0 is the
coefficient of surface tension, and n is the unit normal vector. On the whole
boundary Γ the non-slip conditions

u = 0 (4)

or the slip conditions

u · n = 0, D(u)n× n = 0 (5)
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are imposed. Initial conditions at t = 0 for the velocity

u = u0 (6)

are given.
The problem described above can be reformulated as follows: find func-

tions
χ : [0, 1] × (0, T ) → R2, (u, p) : Ω × (0, T ) → R2 × R

satisfying for any t ∈ (0, T ),

∂χ

∂t
= u(χ, t), (s ∈ [0, 1]) (7)

and (1) and (2) in Ωk(t), k = 1, 2, with the interface conditions (3), the
boundary conditions (4) or (5), and the initial conditions (6) and

χ(·, 0) = χ0, (8)

where χ0 : [0, 1] → R2 is an initial closed curve in Ω. For any t, χ(1, t) =
χ(0, t) and

C(t) = {χ(s, t); s ∈ [0, 1]}

is a closed curve in Ω, where s is a parameter. C(t) is nothing but the interface
curve at t, and Ωk(t), k = 1, 2, are defined as the exterior and the interior of
C(t), respectively.

3 An energy-stable finite element scheme

In the paper [6] we have presented a finite element scheme based on the
energy-stable approximation [8]. We apply it to the problem described in
the previous section.

Let X, V , and Q be function spaces defined by

X = {χ ∈ H1(0, 1)2;χ(1) = χ(0)}, V = H1
0 (Ω)2 or H1(Ω)2, Q = L2

0(Ω),

where V is set to be the former space when the non-slip boundary conditions
(4) are imposed and the latter when the slip boundary conditions (5) are
imposed. We introduce an auxiliary function space Φ defined by

Φ = L∞(Ω).
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The solution is regarded as a set of functions

(χ, ρ, u, p) : (0, T ) → X × Φ × V ×Q.

Let Xh, Φh, Vh, and Qh be finite-dimensional approximation spaces of X, Φ,
V , andQ. Let ∆t be a time increment andNT = ⌊T/∆t⌋. At t = n∆t we seek
an approximate solution (χn

h, ρ
n
h, u

n
h, p

n
h) in Xh×Φh×Vh×Qh. More precisely,

these approximate function spaces are constructed as follows. Dividing the
domain Ω into a union of triangles, we use P1, P2 and P1 finite element
spaces for Φh, Vh and Qh, respectively. They are fixed for all time steps n. On
the other hand,Xh is composed of functions obtained by the parameterization
of polygons. We denote by {sn

i ∈ [0, 1]; i = 0, · · · , Nn
x } the set of parameter

values such that sn
0 = 0 and sn

Nn
x

= 1 and that {χn
h(sn

i ); i = 0, · · · , Nn
x − 1}

are vertices of a polygon. We set χn
h(1) = χn

h(0). The number Nn
x may

change depending on n. The notation Xh(N
n
x ) is used to express Xh with

Nn
x parameters. We denote by D̄∆t the backward difference operator, i.e.,

D̄∆tu
n
h =

un
h − un−1

h

∆t
.

Our scheme is to find

{(χn
h, ρ

n
h, u

n
h, p

n
h) ∈ Xh × Φh × Vh ×Qh;n = 1, · · · , NT}

satisfying

χ̃n
h − χn−1

h

∆t
={

un−1
h (χn−1

h ), ∀sn−1
i , n = 1

3
2
un−1

h (χn−1
h ) − 1

2
un−2

h (χn−1
h − ∆tun−1

h (χn−1
h )), ∀sn−1

i , n ≥ 2,
(9a)

χn
h = Xh(χ̃

n
h, A

0
h), (9b)

ρn
h = Rh(χ

n
h), (9c)(

ρn−1
h D̄∆tu

n
h +

1

2
un

hD̄∆tρ
n
h, vh

)
+ a1(ρ

n
h, u

n−1
h , un

h, vh) + a0(ρ
n
h, u

n
h, vh)

+ b(vh, p
n
h) + ∆t dh(u

n
h, vh; Cn

h ) = (ρn
hΠhf

n, vh) − dh(χ
n
h, vh; Cn

h ),

∀vh ∈ Vh, (9d)

b(un
h, qh) = 0, ∀qh ∈ Qh (9e)
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subject to the initial conditions

χ0
h = Πhχ

0, ρ0
h = Rh(χ

0
h), u0

h = Πhu
0, (10)

where Πh is the Lagrange interpolation operator to the corresponding finite-
dimensional space and A0

h is the area of the domain surrounded by χ0
h. Equa-

tions (9a)-(9e) are composed of the four stages.
Stage 1. Let (χn−1

h , un−1
h , un−2

h ) ∈ Xh(N
n−1
x )×Vh ×Vh be given for n ≥ 2.

When n = 1, (χ0
h, u

0
h) ∈ Xh(N

0
x) × Vh is given by (10), where the definition

of Rh is given in Stage 3. By (9a) we get a temporary function χ̃n
h,

(χn−1
h , un−1

h , un−2
h ) → χ̃n

h ∈ Xh(N
n−1
x ), n ≥ 2

(χ0
h, u

0
h) → χ̃1

h ∈ Xh(N
0
x), n = 1.

(9a) is the Adams-Bashforth approximation of (7) for n ≥ 2, and the forward
Euler approximation for n = 1.

Stage 2. By (9b) we fix a function χn
h,

(χ̃n
h, A

0
h) → χn

h ∈ Xh(N
n
x ).

Here we modify χ̃n
h to have a quasi-uniform distribution of vertices of the

polygon C̃n
h associated with χ̃n

h and to keep the area of the surrounded domain
to be equal to the initial area A0

h. In the case when the distribution of vertices
of C̃n

h is not good, i.e., the distance of two neighboring vertices are too small
or too large, we delete or add a particle and repeat the procedure to get
a modified function χ̄n

h ∈ Xh(N
n
h ), where Nn

x is the number of vertices of
the modified polygon. Since the velocity u is incompressible, the area of
the domain surrounded by C should be constant. Let C̄n

h be the polygon
associated with χ̄n

h and Ān
h be the area. We expand or shrink C̄n

h from the
centroid of the domain surrounded by χ̄n

h with the ratio A0
h/Ā

n
h to obtain

χn
h ∈ Xh(N

n
h ). Those all procedures are denoted by Xh(χ̃

n
h, A

0
h) in (9b).

Stage 3. By (9c) we obtain

χn
h → ρn

h ∈ Φh

as follows. Once χn
h is known, we can define Ωn

hk, k = 1, 2, as the exterior
and the interior of the polygon Cn

h , respectively. If the node Pi belongs to
Ωn

hk, we set
ρn

h(Pi) = ρk.
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This procedure is denoted by Rh(χ
n
h).

Stage 4. By solving a system of linear equations, (9d) and (9e), we get
un

h and pn
h,

(χn
h, ρ

n
h, ρ

n−1
h , un−1

h ) → (un
h, p

n
h) ∈ Vh ×Qh.

In (9d) the symbol (·, ·) shows the inner product in L2(Ω)2,

a1(ρ, w, u, v) =

∫
Ω

1

2
ρ
{

[(w · ∇)u] · v − [(w · ∇)v] · u
}
dx, (11)

a0(ρ, u, v) =

∫
Ω

2µ(ρ)D(u) : D(v) dx,

b(v, q) = −
∫

Ω

(∇ · v)q dx,

dh(χ, v; Ch) =
Nx∑
i=1

σ0D̄∆sχi · D̄∆svi
(si − si−1)

2

|χi − χi−1|
,

µ(ρ) = µ1
ρ2 − ρ

ρ2 − ρ1

+ µ2
ρ− ρ1

ρ2 − ρ1

,

and Cn
h is a polygon associated with χn

h. dh is an approximation to a bilinear
form d on the interface C,

d(χ, v; C) ≡
∫
C
σ0
∂χ

∂ℓ
· ∂v
∂ℓ

dℓ,

where ℓ is the arclength of the interface curve C.

Remark 1

(i) For smooth functions ρ, w, u, and v integration by parts implies the
identity,

a1(ρ, w, u, v) ≡
∫

Ω

{
ρ(w · ∇)u+

1

2
[(w · ∇)ρ]u+

1

2
ρ(∇ · w)u

}
· v dx

−
∫

∂Ω

1

2
ρ(w · n)(u · v)ds.

Substituting w = u, and using (2) and the boundary condition (4) or
(5), we obtain

a1(ρ, u, u, v) =

∫
Ω

{
ρ(u · ∇)u+

1

2
[(u · ∇)ρ]u

}
· v dx.
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The density ρ is governed by the convection equation,

∂ρ

∂t
+ u · ∇ρ = 0. (12)

We observe that (9d) is an approximation to a weak formulation(
ρ
∂u

∂t
+

1

2
u
∂ρ

∂t
, v

)
+ a1(ρ, u, u, v) + a0(ρ, u, v) + b(v, p)

= (ρf, v) − d(χ, v; C),

which is obtained by multiplying (12) by u/2 and by adding it to (1)
together with the interface condition (3).

(ii) The term ∆t dh(u
n
h, vh; Cn

h ) is added to improve the stability. For the
details we refer to [7, 9].

(iii) (9d) and (9e) compose a non-symmetric system of linear equations in
un

h and pn
h. We solve it by a non-symmetric solver, e.g., GMRES.

Remark 2 In place of P1 element for the auxiliary space Φh we can also
use P0 element. When the interface curve intersects an element, the value
of the element is set to be the area average of the densities in the element.
We refer [7] for the details of such a choice.

4 Stability in energy

An advantage of the scheme (9) is that we can discuss the energy stability
clearly. We equip the function spaces Vh, and Qh with the norms H1(Ω)2

and L2(Ω), respectively. They are denoted simply by || · ||1 and || · ||0. In (9d)
the functions ρn−1

h , ρn
h, un−1

h , and χn
h are all known. The system of (9d) and

(9e) is a generalized Stokes problem in un
h and pn

h. Since the P2/P1 element
satisfies the inf-sup condition [2, 3], the problem is uniquely solvable.

For a series of functions ϕh = {ϕn
h}

NT
n=0 in a Banach space W we prepare

norms defined by

||ϕh||ℓ∞(W ) ≡ max{||ϕn
h||W ; 0 ≤ n ≤ NT},

||ϕh||ℓ2(W ) ≡

{
∆t

NT∑
n=0

||ϕn
h||2W

}1/2

.

8



For a closed curve C we denote the L2-norm of a function v on the curve by

||v||0,C =

√∫
C
|v|2dℓ.

Since Cn
h is a polygon, we can apply the trace theorem; there exists a positive

constant c such that for any v ∈ H1(Ω) it holds that

||v||0,Cn
h
≤ c||v||1.

In general, the constant c depends on the length and the smoothness of the
curve. We assume that it does not depend on h and n and that the curve is
not self-intersecting for simplicity.

Hypothesis 1

(i) Cn
h is not self-intersecting.

(ii) There exists a positive constant c0 independent of h and n such that

||v||0,Cn
h
≤ c0||v||1 (∀v ∈ H1(Ω)). (13)

Remark 3

(i) If u is continuous and satisfies the Lipschitz condition with respect to
x, the ordinary differential equation (7) has a unique solution χ(s) for
each s, which implies that C(t) is not self-intersecting. On the other
hand, the approximation Cn

h , constructed from the solution χn
h of (9a),

may be self-intersecting, especially when ∆t is large.

(ii) If Cn
h is divided into a number (independent of h and n) of parts and

if the gradients ∇χn
h are uniformly (in h and n) bounded on each part,

then assumption (13) is satisfied. Although (13) looks like a rather
mild assumption, it seems not so easy to give a sufficient condition for
it.

Let χh ∈ Xh and {si ∈ [0, 1]; i = 0, · · · , Nx} be the set of parameters,
s0 = 0, sNx = 1, χh(1) = χh(0). We define the quantity ||χh||H2

0,h(Ch) by

||χh||H2
0,h(Ch) =

{Nx−1∑
i=0

|(D2
∆ℓχh)(si)|2ℓi

}1/2

, (14)
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where

ℓi =
1

2
(ℓi+1/2 + ℓi−1/2), ℓi+1/2 = |χh(si+1) − χh(si)|,

(D2
∆ℓχh)(si) =

(χh(si+1) − χh(si)

ℓi+1/2

− χh(si) − χh(si−1)

ℓi−1/2

)
/ℓi.

Proposition 1 Suppose that scheme (9) has a solution (χn
h, ρ

n
h, u

n
h, p

n
h) ∈

Xh ×Φh × Vh ×Qh, n = 0, · · · , NT , and that Hypothesis 1 is satisfied. Then
there exists a positive constant c independent of h and ∆t such that

||√ρhuh||ℓ∞(L2), ||
√
µhD(uh)||ℓ2(L2)

≤c
{
||
√
ρ0

hu
0
h||0 + ||√ρh Πhf ||ℓ2(L2) +

c0 σ0√
µmin

||χh||ℓ2(H2
0,h(Ch))

}
, (15)

where µmin = min(µ1, µ2).

Proof The proof is similar to that of Propsition 4.2 of [7], where the
function space Φh is chosen to be the P0 element space. The key point is
to get the finite difference formula in the energy norm, the first term of the
right-hand side of the following identity. Substituting vh = un

h in (9d), we
have (

ρn−1
h D̄∆tu

n
h +

1

2
un

hD̄∆tρ
n
h, u

n
h

)
= D̄∆t

(
1

2
||
√
ρn

hu
n
h||20

)
+

1

2
||
√

∆t
√
ρn−1

h D̄∆tu
n
h||20

by virtue of the energy stable approximation [8]. We omit the remains of the
proof.

Remark 4 There are correspondences,

||√ρhuh||ℓ∞(L2) ∼ max
{{∫

Ω

ρ(t)|u(t)|2dx
}1/2

; 0 ≤ t ≤ T
}
,

||χh||ℓ2(H2
0,2(Ch)) ∼

{∫ T

0

dt

∫
C(t)

κ2 dℓ
}1/2

.

Hence, (15) is a discrete version of the fact that the total energy remains
bounded if the curvature is bounded in L2-norm.
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5 Numerical results

5.1 Preparation

A1 A2

A3

A4

A5A6

A7

A8

Figure 2: Domain Ω and a mesh.

The domain Ω is shown in Fig. 2, whose data are as follows. Let

a = 0.3, b = 0.2, c = 1.1, r0 = 1 − 1

c
.

The positions of Ai, i = 1, · · · , 8, are

A1(−
1

2
+ r0, 0), A2(

1

2
− r0, 0), A3(

1

2
, r0), A4(

1

2
, 2 − r0),

A5(
1

2
− r0, 2), A6(−

1

2
+ r0, 2), A7(−

1

2
, 2 − r0), A8(−

1

2
, r0)

and

curve(A2A3) =

{
(x1, x2); x1 =

1

2
− r0 + r0 cos θ, x2 = r0 + r0 sin θ, θ ∈ [

3

2
π, 2π]

}
curve(A3A4) = {(x1, x2); x1 = a+ b cosπ(c(x2 − 1) + 1)} .

curve(A4A5) =

{
(x1, x2); x1 =

1

2
− r0 + r0 cos θ, x2 =

1

2
− r0 + r0 sin θ, θ ∈ [0,

1

2
π]

}
.
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The domain is symmetric with respect to x1 = 0. We set

χ0(s) =
(
r1 cos 2πs, d+ r1 sin 2πs

)
, r1 = 0.3, d = 1.65.

The initial domains Ω0
1 and Ω0

2 are shown in Fig. 1. The initial velocity and
the gravity,

u0 = (0, 0)T , f = (0,−1)T

are given. We divide the domain Ω into the union of triangles to obtain a
mesh shown in Fig. 2. The total element number Ne and the total degree of
freedom N(of the velocity and the pressure) are

Ne = 3, 974, N = 18, 476.

In solving the problem by scheme (9), we practice the following two ad-
ditional technical procedures between (9b) and (9c).

(i) We impose the condition that the interface curve should not touch the
boundary Γ. When a vertex of the interface curve enters into an ϵ-
neighborhood of Γ, we expel it outside the neighborhood. The distance
ϵ was chosen as

ϵ = 10−6.

(ii) Subject to either non-slip or slip boundary conditions the vertical ve-
locity component u2 vanishes on the bottom A1A2 and no particles
cross the boundary. In the real computation, however, some part of
the interface curve may exceed the bottom A1A2 in (9a). When ∆t is
large, or even medium, it often occurs. In such a case we compute the
area of the fluid part outside of Ω and expand horizontally the interior
part of fluid 2 just to recover the area. This is a practical procedure
not to lose the mass of fluid 2 with a resonable size of ∆t.

In the following we show streamlines of velocity u, which is obtained as
contours of the stream function ψ ∈ H1

0 (Ω) satisfying

−∆ψ =
∂u2

∂x1

− ∂u1

∂x2

. (16)

The Poisson equation (16) is solved by the finite element method with P1
element on the same mesh Fig. 2. The degree of freedom N is

N = 2, 106.
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In all figures with streamlines the interval of contours is fixed to be 0.1. In
the place where the contours are dense, the velocity is large.

The last term of the right-hand side of (15) is important for the energy
stability. We use a simple notation K(Ch) defined by

K(Ch) = ||χh||ℓ2(H2
0,h(Ch)),

and the average M(Ch)

M(Ch) =
1

T
||χh||ℓ1(H2

0,h(Ch))

is also used.

5.2 The case of the non-slip boundary conditions

The non-slip boundary conditions (4) are imposed. We take the following
values,

(ρ1, µ1) = (1, 1), (ρ2, µ2) = (100, 2), σ0 = 0.1.

The final time T , the time increment ∆t, and the total time step NT are

T = 300, ∆t =
1

4
, NT = 1, 200.

In Fig. 3 the movement of the fluids is shown from t = 0 until t = 240 at
time intervals 16. In Fig. 4 the details of the movement are shown from
t = 48 until t = 63 at time intervals 1. In this computation the quantities
K(Ch) and M(Ch) are

K(Ch) = 343, M(Ch) = 19.8.

Time history of energy norms ||√ρn
hu

n
h||0 is shown in Fig. 7 in thin line. A

stable computation has been done. The minimum, maximum, and average
of particle numbers Nn

x on the interfaces are

minNx = 182, maxNx = 690, averNx = 467.
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5.3 The case of the slip boundary conditions

The slip boundary conditions (5) are imposed. We take the following values,

(ρ1, µ1) = (1, 1), (ρ2, µ2) = (100, 2), σ0 = 1.0.

The surface tension coefficient σ0 is 10 times larger than that of the non-slip
case. The final time T , the time increment ∆t, and the total time step NT

are

T = 200, ∆t =
1

16
, NT = 3, 200.

Since the speed of the falling fluid 2 is faster than that of the previous case,
we take a smaller time increment ∆t. In Fig. 5 the movement of the fluids is
shown from t = 0 until t = 187.5 at time intervals 12.5. In Fig. 6 the details
of the movement are shown from t = 87.5 until t = 98.75 at time intervals
0.75. In this computation the quantities K(Ch) and M(Ch) are

K(Ch) = 240, M(Ch) = 16.9.

Time history of energy norms ||√ρn
hu

n
h||0 is shown in Fig. 7 in thick line. A

stable computation has been done. The minimum, maximum, and average
of particle numbers Nn

x on the interfaces are

minNx = 182, maxNx = 565, averNx = 350.

5.4 Comparison of two cases

Fig. 7 shows the time histories of energy norms of solutions subject to the
non-slip and slip boundary conditions. The speed of falling down of the latter
is faster than that of the former, which is also recognized from the densities
of the streamlines of Figs. 4 and 6. In both cases at the beginning fluid 2 falls
rapidly to reach the narrow part of the hourglass, which produces initial large
energy. In the case of non-slip boundary conditions fluid particles (of fluid 1)
on the boundary do not move and stay at the same position. A neighborhood
of the boundary is occupied by fluid 1, which makes the stream of fluid 2
narrow in the narrow part. Fluid 1 goes up from both sides in the narrow
part, and the phenomenon is rather stable. On the other hand, in the slip
case fluid 2 can approach the boundary, and it almost stops in the narrow
part caused by a large surface tension. After changing the shape gradually,
it passes the narrow part as a rather wide stream. In this computation fluid

14



1 begins to go up through the right in the narrow part aymmetrically, but
the phenomenon is unstable. An oscillation of energy norm caused by this
instability can be observed in Fig. 7 in thick line. In both cases there are
two peaks at the time just after the falling starts from the narrow part and
at the time just before the falling finishes. Those times t1 and t2, when the
local maximums attain, were

t1 = 56.75, t2 = 229.75

in the non-slip case, and

t1 = 93.5625, t2 = 158.5625

in the slip case. Figs. 8 and 9 show the time histories of x1- and x2-coordinate
of the centroid of fluid 2. In Fig. 8 we recognize again the movement of fluids
in the slip case is unstable. In Fig. 9 we can see that fluid 2 passes quickly
from the narrow part to the bottom in the slip case. Fig. 10 shows the
time histories of the lengths of Cn

h . Since the surface tension coefficient is
larger in the slip case, the length stays shorter. Fig. 11 shows elevations
of the pressure at t = 80 in the non-slip case (left) and at t = 100 in the
slip case (right). To see the elevations better the figures are rotated by 180
degrees; the coordinate of the left bottom corner is (0.5, 2). In the latter a
large surface tension coefficient causes a high pressure in fluid 2.

6 Concluding remarks

We have simulated numerically the movement of fluids in an hourglass by an
energy-stable finite element scheme. Two boundary conditions, non-slip and
slip conditions, are treated. The surface tension coefficients differs in both
cases. We have calculated the numerical criterion for the scheme to be stable
in the energy norm, and confirmed that the computations have been done
stably. We have revealed the difference of movement of fluids between the
non-slip and slip boundary conditions. The effect of the difference of surface
tension coefficients is also discussed.
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t=0 t=16 t=32 t=48

t=64 t=80 t=96 t=112

t=128 t=144 t=160 t=176

t=192 t=208 t=224 t=240

Figure 3: Interfaces and streamlines at t = 0, 16, · · · , 240 subject to the
non-slip boundary conditions.

18
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t=52 t=53. t=54 t=55.

t=56 t=57. t=58 t=59.
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Figure 4: Interfaces and streamlines at t = 48, 49, · · · , 63 subject to the
non-slip boundary conditions.
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t=0 t=12.5 t=25. t=37.5

t=50. t=62.5 t=75. t=87.5

t=100. t=112.5 t=125. t=137.5

t=150. t=162.5 t=175. t=187.5

Figure 5: Interfaces and streamlines at t = 0, 12.5, · · · , 187.5 subject to the
slip boundary conditions.
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t=87.5 t=88.25 t=89. t=89.75

t=90.5 t=91.25 t=92. t=92.75

t=93.5 t=94.25 t=95. t=95.75

t=96.5 t=97.25 t=98. t=98.75

Figure 6: Interfaces and streamlines at t = 87.5, 88.25, · · · , 98.75 subject to
the slip boundary conditions.
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Figure 7: Time histories of energy norms in non-slip (thin) and slip (thick)
boundary conditions.
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Figure 8: Time histories of x1-coordinate of the centroid of fluide 2 in non-slip
(thin) and slip (thick) cases.
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Figure 9: Time histories of x2-coordinate of the centroid of fluide 2 in non-slip
(thin) and slip (thick) cases.
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Figure 10: Time histories of the length of the interface curve in non-slip
(thin) and slip (thick) cases.
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Figure 11: Elevations of the pressure at t = 80 in non-slip (left) and at
t = 100 slip (right) cases .
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