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VALUE DISTRIBUTION OF THE HYPERBOLIC GAUSS MAPS FOR
FLAT FRONTS IN HYPERBOLIC THREE-SPACE

YU KAWAKAMI

Abstract. We give an effective estimate for the totally ramified value number of the
hyperbolic Gauss maps of complete flat fronts in the hyperbolic three-space. As a corol-
lary, we give the upper bound of the number of exceptional values of them for some
topological cases. Moreover, we obtain some new examples for this class.

Introduction

The study of flat surfaces in the hyperbolic 3-space H3 has made a great advance in

the last decade. Indeed, Gálvez, Mart́ınez and Milán [GMM] established a Weierstrass-

type representation formula for such surfaces. Moreover, Kokubu, Umehara and Yamada

([KUY1], [KUY2]) investigated global properties of flat surfaces in H3 with certain kind

of singularities, called flat fronts (For precise definition, see Section 1 of this paper).

In particular, they gave a representation formula constructing a flat front from a given

pair of hyperbolic Gauss maps and an Osserman-type inequality for complete (in the

sense of [KUY2], see also Section 1 of this paper) flat fronts. More recently, Kokubu,

Rossman, Saji, Umehara and Yamada [KRSUY] gave criteria for a singular point on a

flat front in H3 be a cuspidal edge or swallowtail and proved the generically flat fronts

in H3 admit only cuspidal edges and swallowtails. Moreover, Roitman [Ro] and Kokubu,

Rossman, Umehara and Yamada [KRUY1] obtained interesting results on flat surfaces

or (p-)fronts in H3 and their caustics. Furthermore, Kokubu, Rossman, Umehara and

Yamada [KRUY2] also investigate the asymptotic behavior of ends of flat fronts in H3.

However, we have not seen the study of value distribution of the hyperbolic Gauss maps

for complete flat fronts in H3 before.

On the other hand, we have recently obtained some results on value distribution of

the Gauss map of complete minimal surfaces in Euclidean 3-space R3 and the hyperbolic

Gauss map of complete constant mean curvature one (CMC-1, for short) surfaces in

H3. For instance, we [Ka1] found algebraic minimal surfaces in R3 with totally ramified

value number of the Gauss map equals 2.5 (By an algebraic minimal surface, we mean a

2000 Mathematics Subject Classification. Primary 53A10; Secondary 30D35, 53A35, 53C42.
Key words and phrases. hyperbolic Gauss map, flat fronts, totally ramified value number.
Partly supported by Global COE program (Kyushu university) “Education and Research Hub for

Mathematics-for-Industry” and the Grants-in-Aid for Young Scientists (B) No. 21740053, Japan Society
for the Promotion of Science.

1



2 Y. KAWAKAMI

complete minimal surface with finite total curvature). Moreover, the author, Kobayashi

and Miyaoka [KKM] gave an effective estimate for the number of exceptional values and

the totally ramified value number of the Gauss map for a wider class of complete minimal

surfaces that includes algebraic minimal surfaces (this class is called “pseudo-algebraic”).

It also provided new proofs of the Fujimoto [Fu] and the Osserman theorems ([Os1], [Os2])

for this class and revealed the geometric meaning behind it. Furthermore, we [Ka3] gave

the definition of “pseudo-algebraic” and “algebraic” CMC-1 surfaces in H3 and such an

estimate for the hyperbolic Gauss map of these surfaces. These estimates correspond to

the defect relation in the Nevanlinna theory ([Ko], [NO]).

The purpose of this paper is to study value distribution of the hyperbolic Gauss maps

of flat fronts in H3. In Section 1, we recall the definition and some fundamental properties

of flat fronts in H3. In particular, we review a construction of complete flat fronts via a

given pair of hyperbolic Gauss maps and an Osserman-type inequality for this class. In

Section 2, we give an estimate for the totally ramified value number of the hyperbolic

Gauss maps of complete flat fronts in H3 (Theorem 2.2). This estimate is effective in the

sense that the lower bound which we obtain is described in terms of geometric invariants.

We remark that this estimate is similar to the ramification estimate for the Gauss maps of

complete minimal surfaces in Euclidean 4-space R4 ([Fu], [HO], and [Ka2]). Moreover, as

a corollary of this estimate, we give the upper bounds of the number of exceptional values

of them for some topological cases. Furthermore, we consider the Fujimoto-Hoffman-

Osserman problem for this class, that is, the problem of finding the “common” maximal

number of the exceptional values of the hyperbolic Gauss maps for complete flat fronts

in H3. In Section 3, we investigate examples of complete flat fronts in H3 from the view

point of value distribution of the hyperbolic Gauss maps and give some new examples of

complete flat fronts in H3.

The author thanks Professors Ryoichi Kobayashi, Masatoshi Kokubu, Pablo Mira,

Reiko Miyaoka, Wayne Rossman, Masaaki Umehara and Kotaro Yamada for their useful

advice.

1. Preliminaries

In this section, we briefly recall the definition and some basic facts on flat fronts in H3.

For details, we refer the reader to [GMM], [KRUY1], [KRUY2], [KUY1] and [KUY2].

Let R4
1 be the Lorentz-Minkowski 4-space with the Lorentz metric

(1.1) 〈(x0, x1, x2, x3), (y0, y1, y2, y3)〉 = −x0y0 + x1y1 + x2y2 + x3y3 .

Then the hyperbolic 3-space is

(1.2) H3 = {(x0, x1, x2, x3) ∈ R4
1 | − (x0)

2 + (x1)
2 + (x2)

2 + (x3)
2 = −1, x0 > 0}
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with the induced metric from R4
1, which is a simply connected Riemannian 3-manifold

with constant sectional curvature −1. We identify R4
1 with the set of 2 × 2 Hermitian

matrices Herm(2)= {X∗ = X} (X∗ :=
t
X ) by

(1.3) (x0, x1, x2, x3) ←→
(

x0 + x3 x1 + ix2

x1 − ix2 x0 − x3

)
,

where i =
√−1 . In this identification, H3 is represented as

(1.4) H3 = {aa∗ | a ∈ SL(2,C)}

with the metric

〈X,Y 〉 = −1

2
trace (XỸ ), 〈X,X〉 = − det(X) ,

where Ỹ is the cofactor matrix of Y . The complex Lie group PSL(2,C) := SL(2,C)/{±id}
acts isometrically on H3 by

(1.5) H3 3 X 7−→ aXa∗ ,

where a ∈ PSL(2,C).

Let M be an oriented 2-manifold. A smooth map f : M → H3 is called a front if there

exists a Legendrian immersion

Lf : M → T ∗
1H3

into the unit cotangent bundle of H3 whose projection is f . Identifying T ∗
1H3 with the

unit tangent bundle T1H3, we can write Lf = (f, ν), where ν(p) is a unit vector in Tf(p)H3

such that 〈df(p), ν(p)〉 = 0 for each p ∈ M . We call ν a unit normal vector field of the

front f . By the definition, a front may have singular points (i.e., points of rank (df) < 2).

A point which is not singular is said to be regular, where the first fundamental form is

positive definite.

The parallel front ft of a front f at distance t is given by ft(p) = Expf(p)(tν(p)), where

“Exp” denotes the exponential map of H3. In the model for H3 as in (1.2), we can write

(1.6) ft = (cosh t)f + (sinh t)ν, νt = (cosh t)ν + (sinh t)f ,

where νt is the unit normal vector field of ft.

Based on the fact that any parallel surface of a flat surface is also flat at regular points,

we define flat fronts as follows; A front f : M → H3 is called a flat front if, for each p ∈ M ,

there exists a real number t ∈ R such that the parallel front ft is a flat immersion at p.

By definition, {ft} forms a family of flat fronts. We remark that an equivalent definition

of a flat front is that the Gaussian curvature of f vanishes at all regular points. However,

there exists the case where this definition is not suitable. For detail, see [KUY2, Remark

2.2].
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We assume that f is flat. Then there exists a (unique) complex structure on M and a

holomorphic Legendrian immersion

(1.7) Ef : M̃ → SL(2,C)

such that f and Lf are projections of Ef , where M̃ is the universal covering of M . Here,

holomorphic Legendrian map means that E−1
f dEf is off-diagonal (see [GMM], [KUY1],

[KUY2]). We call Ef the holomorphic Legendrian lift of f . The map f and its unit

normal vector field ν are

(1.8) f = EfE∗f , ν = Efe3E∗f , e3 =

(
1 0

0 −1

)
.

If we set

(1.9) E−1
f dEf =

(
0 θ

ω 0

)
,

the first and second fundamental forms ds2 = 〈df, df〉 and dh2 = −〈df, dν〉 are given by

ds2 = |ω + θ̄|2 = Q + Q̄ + (|ω|2 + |θ|2), Q = ωθ

dh2 = |θ|2 − |ω|2(1.10)

for holomorphic 1-forms ω and θ on M̃ , with |ω|2 and |θ|2 on M itself. We call ω and θ

the canonical forms of f . The holomorphic 2-differential Q appearing in the (2, 0)-part

of ds2 is defined on M , and is called the Hopf differential of f . By definition, the umbilic

points of f equal the zeros of Q. Defining a meromorphic function on M̃ by

(1.11) ρ =
θ

ω
,

then |ρ| : M → [0, +∞] is well-defined on M , and p ∈ M is a singular point if and only if

|ρ(p)| = 1.

Note that the (1, 1)-part of the first fundamental form

(1.12) ds2
1,1 = |ω|2 + |θ|2

is positive definite on M because it is the pull-back of the canonical Hermitian metric of

SL(2,C). Moreover, 2ds2
1,1 coincides with the pull-back of the Sasakian metric on T ∗

1H3

by the Legendrian lift Lf of f (which is the sum of the first and third fundamental forms

in this case, see [KUY2, Section 2] for detail). The complex structure on M is compatible

with the conformal metric ds2
1,1. Note that any flat front is orientable ([KRUY1, Theorem

B]). In this paper, for each flat front f : M → H3, we always regard M as a Riemann

surface with this complex structure.

The two hyperbolic Gauss maps are defined by

(1.13) G =
E11

E21

, G∗ =
E12

E22

, where Ef = (Eij) .
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By identifying the ideal boundary S2
∞ of H3 with the Riemann sphere C ∪ {∞}, the

geometric meaning of G and G∗ is given as follows ([KRUY2, Appendix A], [Ro]): The

hyperbolic Gauss maps G and G∗ send each point p ∈ M to the points G(p) and G∗(p) in

S2
∞ reached by the two oppositely-oriented normal geodesics of H3 that start at f(p). In

particular, G and G∗ are meromorphic functions on M and parallel fronts have the same

hyperbolic Gauss maps. The transformation Ef 7→ aEf by a = (aij)i,j=1,2 ∈ SL(2,C)

induces the rigid motion f 7→ afa∗ as in (1.5) and the hyperbolic Gauss maps G and G∗
change by the Möbius transformation:

(1.14) G 7→ a ? G =
a11G + a12

a21G + a22

, G∗ 7→ a ? G∗ =
a11G∗ + a12

a21G∗ + a22

.

Here, we remark the interchangeability of the canonical forms and the hyperbolic Gauss

maps. The canonical forms (ω, θ) have the U(1)-ambiguity (ω, θ) 7→ (eisω, e−isθ) (s ∈ R)

which corresponds to

(1.15) Ef 7−→ Ef

(
eis/2 0

0 e−is/2

)

For a second ambiguity, defining the dual E \
f of Ef by

E \
f = Ef

(
0 i

i 0

)
,

then E \
f is also Legendrian with f = E \

fE \
f

∗
. The hyperbolic Gauss maps G\, G\

∗ and

canonical forms ω\, θ\ of E \
f satisfy

G\ = G∗, G\
∗ = G, ω\ = θ, θ\ = ω .

Namely, the operation \ interchanges the roles of ω and θ and also G and G∗.
Kokubu, Umehara and Yamada gave a representation formula of flat fronts in H3 for a

given pair of hyperbolic Gauss maps (G,G∗).

Theorem 1.1 ([KUY1], [KUY2]). Let G and G∗ be nonconstant meromorphic functions

on a Riemann surface M such that G(p) 6= G∗(p) for all p ∈ M . Assume that

(1.16)

∫

γ

dG

G−G∗
∈ iR

for every cycle γ ∈ H1(M,Z). Set

(1.17) ξ(z) = c · exp

∫ z

z0

dG

G−G∗

where z0 ∈ M is a reference point and c ∈ C\{0} is an arbitrary constant. Then

(1.18) E =

(
G/ξ ξG∗/(G−G∗)
1/ξ ξ/(G−G∗)

)
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is a nonconstant meromorphic Legendrian curve defined on M̃ in PSL(2,C) whose hy-

perbolic Gauss maps are G and G∗, and the projection f = EE∗ is single-valued on M .

Moreover, f is a front if and only if G and G∗ have no common branch points. Conversely,

any non-totally-umbilic flat front can be constructed this way.

Throughout this paper, we call the condition (1.16) the period condition. The canonical

forms ω, θ and the Hopf differential Q of f in Theorem 1.1 are given by

(1.19) ω = − 1

ξ2
dG, θ =

ξ2

(G−G∗)2
dG∗, Q = − dGdG∗

(G−G∗)2
.

Note that we can obviously show that there does not exist a flat front in H3 whose both

hyperbolic Gauss maps are constant.

Remark 1.2. Kokubu, Umehara and Yamada obtained another construction of mero-

morphic Legendrian curves in PSL(2,C). For detail, see [KUY1].

A front f : M → H3 is said to be complete if there exists a symmetric 2-tensor T such

that T = 0 outside a compact set C ⊂ M and ds2 + T is a complete metric of M . In

other words, the set of singular points of f is compact and each divergent path has infinite

length.

Theorem 1.3 ([GMM], [KUY2]). Let M be an oriented 2-manifold and f : M → H3 a

complete flat front. Then M is biholomorphic to Mγ\{p1, . . . , pk}, where Mγ is a closed

Riemann surface of genus γ and pj ∈ Mγ (j = 1, . . . , k). Moreover, the Hopf differential

Q of f can be extended meromorphically to Mγ.

Each puncture point pj (j = 1, · · · , k) is called an end of f . Gálvez, Mart́ınez and

Milán study complete ends of flat surfaces in H3. The following fact is essentially proved

in [GMM].

Lemma 1.4 ([GMM], [KUY2]). Let p be an end of complete flat front. The following

three conditions are equivalent;

(1) The Hopf differential Q has at most a pole of order 2 at p.

(2) One hyperbolic Gauss map G has at most a pole at p.

(3) The other hyperbolic Gauss map G∗ has at most a pole at p.

If an end of a flat front satisfies one of the three conditions above, it is called a regular

end. An end that is not regular is called an irregular end. An end p is said to be embedded

if there exists a neighborhood U of p ∈ Mγ such that the restriction of the front to U\{p}
is an embedding.

Lemma 1.5 ([KUY2]). The two hyperbolic Gauss maps take the same value at a regular

end of a complete flat front, that is, G(p) = G∗(p) if p is a regular end.
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By the lemma above and investigation of embedded regular ends of complete flat fronts,

Kokubu, Umehara and Yamada showed the following global properties of complete flat

fronts.

Theorem 1.6 ([KUY2], Theorem 3.13). Let f : Mγ\{p1, . . . , pk} → H3 be a complete

flat front whose ends are all regular. Then

d + d∗ ≥ k

where d is the degree of G considered as a map on Mγ (if G has essential singularities, then

we define d = ∞) and d∗ is the degree of G∗ considered as the same way. Furthermore,

equality holds if and only if all ends are embedded.

We remark that this inequality is analogue of the Osserman inequality for algebraic

minimal surfaces in R3 ([Os1], [Os2]).

2. An effective estimate for the totally ramified value number of

hyperbolic Gauss maps

We first recall the definition of the totally ramified value number of a meromorphic

function on a Riemann surface.

Definition 2.1 (Nevanlinna [Ne]). Let M be a Riemann surface and h a meromorphic

function on M . We call b ∈ C ∪ {∞} a totally ramified value of h when at all the inverse

image points of b, h branches. We regard exceptional values also as totally ramified values.

Let {a1, . . . , ar0 , b1, . . . , bl0} ∈ C∪{∞} be the set of all totally ramified values of h, where

aj (j = 1, . . . , r0) are exceptional values. For each aj, put νj = ∞, and for each bj, define

νj to be the minimum of the multiplicities of h at points h−1(bj). Then we have νj ≥ 2.

We call

νh =
∑

aj ,bj

(
1− 1

νj

)
= r0 +

l0∑
j=1

(
1− 1

νj

)

the totally ramified value number of h.

We next give an effective estimate for the totally ramified value number of the hyperbolic

Gauss maps of complete flat fronts in H3.

Theorem 2.2. Let f : Mγ\{p1, . . . , pk} → H3 be a complete flat front. If two hyperbolic

Gauss maps G and G∗ are nonconstant and νG > 2 and νG∗ > 2, then we have

(2.1)
1

νG − 2
+

1

νG∗ − 2
≥ k

2γ − 2 + k
.

Note that the right side of the inequality (2.1) describes in terms of only topological

data of M = Mγ\{p1, . . . , pk}, that is, no data of the degrees of the hyperbolic Gauss

maps.
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Proof. If f has an irregular end, then G or G∗ has an essential singularity there. By

the big Picard theorem, we get νG ≤ 2 or νG∗ ≤ 2. Thus we only consider the case where

all ends are regular. Assume that G is nonconstant and omits r0 values. Let d be the

degree of G considered as a map on Mγ and n0 be the sum of branching orders at the

inverse image of these exceptional values of G. Then we have

(2.2) k ≥ dr0 − n0 .

Let b1, . . . , bl0 be the totally ramified values which are not exceptional values. Let nr be

the sum of branching order at the inverse image of bi (i = 1, . . . , l0) of G. For each bi, we

denote

νi = minG−1(bi){multiplicity of G(z) = bi},
then the number of points in the inverse image G−1(bi) is less than or equal to d/νi. Thus

we have

(2.3) dl0 − nr ≤
l0∑

i=1

d

νi

.

This implies

(2.4) l0 −
l0∑

i=1

1

νi

≤ nr

d
.

Let nG be the total branching order of G on Mγ. Then applying the Riemann-Hurwitz

theorem to the meromorphic function G on Mγ, we obtain

(2.5) nG = 2(d + γ − 1) .

Thus we get

(2.6) νG = r0 +

l0∑
i=1

(
1− 1

νi

)
≤ n0 + k

d
+

nr

d
≤ nG + k

d
≤ 2 +

2γ − 2 + k

d
.

Similarly, we get

(2.7) νG∗ ≤ 2 +
2γ − 2 + k

d∗
.

Here we assume that νG > 2 and νG∗ > 2 . Then we have

(2.8)
1

νG − 2
≥ d

2γ − 2 + k
,

1

νG∗ − 2
≥ d∗

2γ − 2 + k
.

Combining these inequalities and Theorem 1.6, we deduce

(2.9)
1

νG − 2
+

1

νG∗ − 2
≥ d + d∗

2γ − 2 + k
≥ k

2γ − 2 + k
.

¤



THE HYPERBOLIC GAUSS MAPS 9

As a corollary, we can get the upper bounds of the number of exceptional values of the

hyperbolic Gauss maps of complete flat fronts in H3 for some topological cases. Here, we

denote by DG and DG∗ the number of exceptional values of G and G∗, respectively.

Corollary 2.3. For complete flat fronts in H3, we have the following:

(i) If γ = 0, DG ≥ 4 and DG∗ ≥ 4, then there does not exist such a front.

(ii) If γ = 1, DG ≥ 5 and DG∗ ≥ 5, then there does not exist such a front.

Proof. When γ = 0, DG > 2 and DG∗ > 2, from the inequality (2.1), we have

1

DG − 2
+

1

DG∗ − 2
≥ k

k − 2
> 1 .

On the other hand, if γ = 0, DG ≥ 4 and DG∗ ≥ 4, then it holds that

1

DG − 2
+

1

DG∗ − 2
≤ 1 .

Therefore, if γ = 0, DG ≥ 4 and DG∗ ≥ 4, then both G and G∗ are constant. However

there does not exist such a front. Hence we obtain (i). In the same way, when γ = 1,

DG > 2 and DG∗ > 2, we have

1

DG − 2
+

1

DG∗ − 2
≥ 1 .

On the other hand, if γ = 1, DG ≥ 5 and DG∗ ≥ 5, then we get

1

DG − 2
+

1

DG∗ − 2
< 1 .

Therefore we obtain (ii). ¤

Finally, we consider the Fujimoro-Hoffman-Osserman problem, that is, the problem of

finding the common maximal number of the exceptional values of two hyperbolic Gauss

maps of complete flat fronts in H3. We remark that the common maximal number of the

exceptional values of the Gauss maps g1 and g2 of nonflat complete minimal surfaces in

R4 is “4”, that is, Dg1 = Dg2 = 4 ([Fu], [HO] and [Ka2]). By Corollary 2.3, if γ = 0,

then the common maximal number of exceptional values of two hyperbolic Gauss maps

is “3”, that is, DG = DG∗ = 3. Moreover, if γ = 1, then the common maximal number

of exceptional values of two hyperbolic Gauss maps is “4”, that is, DG = DG∗ = 4. Then

we get the necessary conditions for the existence of complete flat fronts whose hyperbolic

Gauss maps have the common maximal number of exceptional values.

Corollary 2.4. Let f : Mγ\{p1, . . . , pk} → H3 be a complete flat front.

(i) If γ = 0 and DG = DG∗ = 3, then k ≥ 4 .

(ii) If γ = 1 and DG = DG∗ = 4, then all ends are regular and embedded.
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Proof. When γ = 0, by the inequality (2.1), we have

1

DG − 2
+

1

DG∗ − 2
≥ k

k − 2
.

Moreover, if DG = 3 and DG∗ = 3, then we have

1

DG − 2
+

1

DG∗ − 2
= 2 .

Therefore, for this case, we get the following inequality.

k

k − 2
≤ 2 .

Thus we obtain (i). Next we prove (ii). When γ = 1, by (2.9), then we get

1

DG − 2
+

1

DG∗ − 2
≥ d + d∗

k
≥ 1 .

Moreover, if DG = 4 and DG∗ = 4, then we have

1

DG − 2
+

1

DG∗ − 2
= 1 .

Therefore, we can get the following equality.

d + d∗ = k

By the virtue of Theorem 1.6, all ends are regular and embedded for this case. ¤

3. Examples of complete flat fronts from the view point of value

distribution of the hyperbolic Gauss maps

In the first half of this section, we investigate examples of complete flat fronts in H3

from the view point of value distribution of the hyperbolic Gauss maps.

Example 3.1 (Example 4.1 of [KUY2]). We set M0 = C ∪ {∞} and consider a pair

(G,G∗) of meromorphic functions on M0 given by G(z) = z and G∗(z) = αz, for some

constant α ∈ R\{1}. We define M by M = M0\{0} for the case where α = 0 and

M = M0\{0,∞} for the case where α 6= 0, respectively. By Theorem 1.1, we can

construct a flat front f : M → H3 whose hyperbolic Gauss maps are G and G∗. Indeed

we can easily see that M and (G,G∗) satisfy the period condition and these data give a

Legendrian immersion Ef of f

(3.1) Ef =




z−α/(1−α)

c

cαz1/(1−α)

1− α
z−1/(1−α)

c

czα/(1−α)

1− α


 for some constant c .

Moreover, the canonical forms ω and θ and the Hopf differential Q of f is given by

ω = − 1

c2
z−2/(1−α)dz, θ =

c2α

(1− α)2
z2α/(1−α)dz, Q = − α

(1− α)2
z−2dz2 .
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Thus f is complete. For the case where α 6= 0, the hyperbolic Gauss maps G and G∗ of

f have the same exceptional values 0 and ∞, that is, DG = DG∗ = 2. For the case where

α = 0, G has one exceptional value 0 and G∗ is constant. Note that f is a horosphere if

α = 0.

We remark that horospheres can be characterized by the hyperbolic Gauss maps as

follows:

Theorem 3.2 (Proposition 4.2 of [KUY2]). If one of two hyperbolic Gauss maps of a

complete flat front in H3 is constant, then it is a horosphere.

To our regret, we do not find a complete flat front whose two hyperbolic Gauss maps

have the common maximal number of exceptional values for both γ = 0 and γ = 1.

However, there exists a complete flat front of genus 0 with (DG, DG∗) = (3, 2).

Example 3.3 (Theorem 4.4 (iii) of [KUY2]). There exists a complete flat front f : M =

C\{0, 1} → H3 whose hyperbolic Gauss maps are

(3.2) (G,G∗) = (z, z2).

In particular, DG = 3 and DG∗ = 2 and all ends are regular and embedded.

In the latter half of this section, we give some new examples of complete flat fronts inH3.

We first give an example of genus 0 with 4 regular embedded ends and (νG, νG∗) = (3, 2).

Proposition 3.4. There exists a complete flat front f : M = C\{0,±1} → H3 whose

hyperbolic Gauss maps are

(3.3) (G,G∗) =

(
z2,

z(z + a)

az + 1

)
(a ∈ R\{0,±1}) .

In particular, νG = 3 and νG∗ = 2 and all ends are regular and embedded.

Proof. By straightforward computation, we see that

dG

G−G∗
=

2(az + 1)

a(z + 1)(z − 1)
dz ,

and it is holomorphic at z = 0 and has poles only at z = ±1,∞. All of them are simple

poles, with residues (1 + a)/a, (a − 1)/a, −2, respectively. By the condition of a, these

residues are real. Thus these data satisfy the period condition. Moreover, we can clearly

see that G and G∗ take the same values at z = 0,±1,∞ and have no common branch

points. By Theorem 1.1, we can construct a flat front f : M → H3 whose hyperbolic

Gauss maps are (3.3).

On the other hand, the canonical forms ω and θ of f are given by

ω = − 2

c2
z(z+1)−2(a−1)/a(z−1)−2(a+1)/adz, θ =

c2

a2
z−2(z+1)−2/a(z−1)2/a(az2+2z+a)dz .
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Furthermore, the Hopf differential of f is given by

Q = − 2(az2 + 2z + a)

a2z(z + 1)2(z − 1)2
dz2 .

Thus Q has poles only at z = 0,±1,∞ with

(ord0Q, ord1Q, ord−1Q, ord∞Q) = (−1,−2,−2,−1).

Hence f is complete.

All ends of f are regular and embedded because f satisfies the equality of Theorem 1.6.

One hyperbolic Gauss map G has three exceptional values 0, 1, ∞. The other hyperbolic

Gauss map G∗ has one exceptional value 0 and two totally ramified values. Therefore, we

show that νG = 1 + 1 + 1 = 3 and νG∗ = 1 + (1/2) + (1/2) = 2. ¤

Remark 3.5. By virtue of Theorem 1.6, if a complete flat front has 4 embedded regular

ends, then (d, d∗) = (1, 3), (2, 2) or (3, 1). By Example 4.5 of [KUY2] and Proposition

3.4, we see that there exists one example at the least for all cases of d + d∗ = 4.

We next give an example of complete flat front of genus 0 with (d, d∗) = (3, 2) and 5

regular embedded ends.

Proposition 3.6. There exists a complete flat front f : M = C\{0, 1,−2,−3/2} → H3

whose hyperbolic Gauss maps are

(3.4) (G,G∗) =

(
z3,

z(z + 6)

2z + 5

)
.

In particular, νG = 3 and νG∗ = 1 and all ends are regular and embedded.

Proof. By straightforward computation, we see that

dG

G−G∗
=

3z(2z + 5)

(z − 1)(z + 2)(2z + 3)
dz ,

and it is holomorphic at z = 0 and has poles only at z = 1,−2,−3/2,∞. All of them

are simple poles, with residues 7/5, −2, 18/5, −3, respectively. Thus these data satisfy

the period condition. Moreover, we can easily see that G and G∗ take the same values

at z = 0, 1,−2,−3/2,∞ and have no common branch points. By Theorem 1.1, we can

construct a flat front f : M → H3 whose hyperbolic Gauss maps are (3.4).

On the other hand, the canonical forms ω and θ of f are given by

ω = − 3

c2
z2(z − 1)−14/5(z + 2)4(2z + 3)−36/5dz ,

θ = 2c2z−2(z − 1)4/5(z + 2)−6(2z + 3)26/5(z2 + 6z + 15)dz .

Furthermore, the Hopf differential of f is given by

Q = − 6(z2 + 6z + 15)

(z − 1)2(z + 2)2(2z + 3)2
dz2 .
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Thus Q has poles only at z = 1,−2,−3/2 with

(ord1Q, ord−2Q, ord−3/2Q) = (−2,−2,−2).

Hence f is complete.

All ends of f are regular and embedded because f satisfies the equality of Theorem

1.6. One hyperbolic Gauss map G has two exceptional values 0, ∞. The other hyperbolic

Gauss map G∗ has two totally ramified value. Therefore, we show that νG = 2 and

νG∗ = (1/2) + (1/2) = 1. ¤

Finally, we give an example of complete flat front in H3 of genus 1 with 5 regular ends.

Let M1 be the square torus on which the Weierstrass ℘ function satisfies

(℘′)2 = 4℘(℘2 − a2), a = ℘(1/2) .

Proposition 3.7. There exists a complete flat front f : M1\{z; ℘(z)(℘(z)2 + a2) =

0} → H3 whose hyperbolic Gauss maps are

(3.5) (G,G∗) =

(
℘′

℘
,
2(℘2 − 3a2)

℘′

)

and 5 regular ends.

Proof. For this data, a computation gives

dG

G−G∗
= d log ℘ .

This implies that these data satisfy the period condition. Moreover, G and G∗ take

the same values on {z; ℘(z)(℘(z)2 + a2) = 0} and have no common branch points. By

Theorem 1.1, we can construct a flat front f : M → H3 whose hyperbolic Gauss maps are

(3.5).

The canonical forms ω, θ and the Hopf differential Q of f are given by

ω = −2(℘2 + a2)

c2℘3
dz, θ =

c2℘2(℘4 + 6a2℘2 − 3a4)

(℘2 + a2)2
dz, Q =

2(℘4 + 6a2℘2 − 3a4)

℘(℘2 + a2)
dz2

from which the completeness of the ends {z; ℘(z)(℘(z)2 + a2) = 0} follows. Obviously all

ends are regular but not embedded because f does not satisfy the equality of Theorem

1.6. Indeed, we clearly see that d = 2 and d∗ = 4 and 6 = d + d∗ > k = 5. ¤

Remark 3.8. There exists a complete flat front of genus 1 with (d, d∗) = (3, 2) and 5

regular embedded ends [KUY2, Example 4.6].
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