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INTRODUCTION

Mesenchymal stem cells (MSCs) have a great ability 
for tissue engineering because of their unlimited in vitro 
expansion potential, self–renewal capacity and multi–
potentiality (Kolf et al., 2007; Sacchetti et al., 2007).  
For several years, MSCs have been largely studied and 
used as a new therapeutic tool for clinical applications.  
It has been suggested that MSCs could reside in virtually 
all post–natal organs and tissues (da Silva et al., 2006).  
MSCs were first identified in the bone marrow 
(Friedenstein et al., 1976) but are now described to exist 
in connective tissues and particularly in adipose tissue 
(Zuk et al., 2002), placenta (Fukuchi et al., 2004), umbili-
cal cord (Romanov et al., 2003), dental pulp (Gronthos 
et al., 2000), tendon (Bi et al., 2007), trabecular bone 
(Nöth et al., 2002) and synovium (De Bari et al., 2001).  

Multi–potent MSCs differentiate into distinctive end–
stage cell types such as bone, cartilage, muscle, bone mar-
row stroma, tendon/ligament, fat, dermis and other con-
nective tissues.  Moreover it has been known that MSCs 
release various soluble factors which are immunoregula-
tory and support to regenerate microenvironment of tis-
sues.  In the damaged tissues, MSCs are especially 
believed to secrete a broad spectrum of paracrine factors 
that participate in the regenerative microenvironment 
and regulate immune infiltration (Fong et al., 2011).

Amniotic fluid is comprised of embryonic or fetal 
cells derived from three germ layers (In’t anker et al., 
2004; De Coppi et al., 2007).  It has been considered that 
MSCs in amniotic fluid would be similar to embryonic 
stem cells as the inherent precursors of all three germ lay-
ers.  Since the initial identification of human amniotic 
fluid derived mesenchymal stem cells (hAFS cells), amni-
otic fluid has been used as a source of stem cells for cell 
therapy and regenerative medicine (De Coppi et al., 
2007).  Amniotic fluid derived mesenchymal stem cells 
express CD90, CD105, and CD73 including Oct4 which is 
an embryonic stem cell marker (In’t Anker et al., 2004; 
De Germmis et al., 2006; De Coppi et al., 2007).  Oct4 
was expressed over 90% of AFS cells.  AFS cells have a 
self–renewal and differentiation potential toward adi-
pocytes, osteoblasts, chondrocytes (Kolambkar et al., 
2007), and neurocytes (Rehni et al., 2007) indicating 
that amniotic fluid may be a promising source of regen-
erative medicine without any ethical concerns unlike 
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embryonic stem cells (Prusa AR et al., 2003; Chung Y et 
al., 2008).

In general, cell based assay is performed in two–
dimensional (2–D) culture system.  Monolayer or sus-
pension culture systems (2–D) present a large artificial 
cellular environment that limits and alter their cellular 
potential for therapeutic application.  It seems that the 
2–D culture system provides a non–physiological envi-
ronment which affects innate cellular functions of cells 
(Friedrich et al., 2007; Pampaloni et al., 2010).  3–D sys-
tems have been used and applied to culture cells in vitro 
to overcome the limitation.  3–D culture systems mimic 
in vivo tissue environment and provide micro–networks 
of cells which allow cells to communicate each other like 
in vivo that supports them to sustain their function.  

The objective of this study was to investigate the 
efficacy of 3–D culture system using hanging drops to 
form spheroid of canine AFS (cAFS) cells.  Furthermore 
it was evaluated and compared the multi–linege differen-
tiation potential and morphological distinction of the 
cAFS cells between 3–D spheroids and 2–D monolayer.  
It demonstrated that the hanging drop method offered a 
microgravity circumstance and conserved constant con-
dition with reliable oxygen and nutrient transfer that 
allow maintaining their multi–potent differentiation capac-
ity which is involved to regenerate various tissues.

MATERIALS AND METHODS

Isolation and characterization of cAFS cells 
All animal experiments were performed by the pro-

tocols approved by the Research Ethics Committee and 
the Institutional Animal Care and Use Committee of 
Chungnam National University.  Canine amniotic fluids 
were collected from healthy pregnant beagles’ amniocen-
tesis using ultrasonographic guidance.  Isolation and cul-
ture of cAFS cells were performed by the published pro-
tocols in Choi et al. (2013).  Briefly, the cells were iso-
lated from the amniotic fluid by centrifugation at 
3,000 rpm for 10 min, and washed twice with Phosphate 
Buffered Saline (PBS, Gibco).  Isolated cells were cul-
tured in low glucose Dulbecco’s modified eagle medium 
(L–DMEM, Sigma) supplemented with 10% fetal bovine 
serum (FBS, Gibco), 5 ng of fibroblast growth factor 
(FGF, Sigma), 10 ng of epidermal growth factor (EGF, 
Sigma) and 1% penicillin–streptomycin (Sigma) at 39°C, 
5% CO2 incubator for 4–5 days.

Spheroid formation and culture in 3–D micro–envi-
ronment by hanging drop method  

cAFS cell spheroids were prepared using the hang-
ing drop method.  AFS cells grown as a monolayer were 
dissociated with trypsin, collected by centrifugation and 
resuspended in growth medium with 5%, 10% or 20% of 
fetal bovine serum (FBS, Gibco) at a density of 1×106 
cells per 1 ml.  Hanging drops were formed on the culture 
dish lid after inverting it using 20 μl of 20,000 cells in 
growth medium, and allowed to form cell aggregates at 
39°C in 5% CO2 for 3 days.  The culture dish was filled 
with 10 ml PBS to warrant high humidity (Fig. 1A and 

B).  On day 3, the hanging drops were harvested, and the 
cells were transferred to a new culture dish.  The sphe-
roids were cultured for 5 days and culture medium was 
replenished every 3 days.  cAFS cells were also cultured 
in adherent manner and used as 2–D control group.  For 
differentiation assay, cAFS cells were cultured in hang-
ing drop method for 3 days and then placed into adher-
ent culture.  Within 3 days of plating, cells initiated to 
expand from the edge of the attached spheroids.

Adipogenic differentiation 
Adipogenic differentiation was induced as described 

by Pittenger et al. (1999).  Briefly, 50,000 cells were 
seeded per well and cultured until confluence.  For 3 
days, the cells were treated with the adipogenic induc-
tion medium consisting of L–DMEM base medium, 10% 
FBS, 10 ng EGF, 5 ng bFGF, penicillin/streptomycin solu-
tion (10,000 IU/10,000 IU/ 100 ml), 1 μM dexamethasone 
(Sigma–Alorich, USA), 0.2 mM indomethacin (Sigma–
Alorich, USA), 1 mg/ml insulin (Lily, Korea) and 1 mM 
3–isobutyl–1–methylxanthin (IBMX) (Sigma–Alorich, 
USA).  Then the medium was changed every 3 days for 
21 days.  Cells were fixed with formaldehyde solution 
(Samchun chemical, Korea) (10% v/v in PBS) and 
washed with 3% (v/v) isopropanol (Amresco, USA).  
Samples were stained with 0.5% (w/v in 60% isopropanol) 
Oil Red O (Sigma–Alorich, USA) to determine the pres-
ence of oil droplet. 

Osteogenic differentiation
40,000 cells were seeded per well in a six–well–plate 

and cultured until they reach confluence.  The osteogenic 
induction medium was prepared as described by Pittenger 
et al. (1999).  The medium is consisted of L–DMEM base 
medium supplemented with 10% FBS, 10 ng EGF, 5 ng 
bFGF, penicillin/ streptomycin solution (10,000 IU/10,000 
IU/100 ml), 0.1 μM dexamethasone, 10 mM β–glycero–
phosphate (Sigma–Alorich, USA) and 50 μM ascorbate–
2–phosphate (Sigma–Alorich, USA).  Alizarin Red S 
(Sigma–Alorich, USA) staining was used to determine 
the presence of calcium deposition.  For Alizarin Red S 
staining, cells were washed with distilled water (D.W.) 
two times and fixed in a solution of ice–cold 70% ethanol 
for 1 hr.  After carefully washed 7 times with D.W., cells 
were stained for 10 min with 40 mM Alizarin Red S and 
then washed again with D.W. for 2 times in room tem-
perature. 

Chondrogenic differentiation 
50,000 cells were seeded per well in a six–well–plate 

and cultured until they reach confluence.  For 3 days, 
the cells were treated with the chondrogenic induction 
medium including L–DMEM base medium, 10 ng EGF, 
5 ng bFGF, penicillin /streptomycin solution (10,000 
IU/10,000 IU/ 100 ml) and 10 ng/ml transforming growth 
factor–β1 (TGF–β1) (Sigma–Alorich, USA).  And then 
the cells were cultured in chondrogenic maintenance 
medium consisting of L–DMEM base medium, penicillin/ 
streptomycin solution (10,000 IU/10,000 IU/100 ml), TGF–
β1 (10 ng/ml), dexamethasone (0.1 μM), ascorbate–2–
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phosphate (50 μM), sodium pyruvate (100 μg/ml) 
(Sigma–Alorich, USA), ITS (50 mg/ml) (Sigma–Alorich, 
USA), cis–3–Hydroxy–DL–Proline (20 μg/ml) (Sigma–
Aldorich, USA) and 0.1 mg/ml insulin for 21 days.  This 
cycle was repeated six times.  Alizarin Red S staining was 
used to determine the presence of calcium mineralization.  
For Alizarin Red S staining, cells were washed with D.W. 
two times and fixed in a solution of ice–cold 70% ethanol 
for 1 hr.  After carefully washed 7 times with D.W., cells 
were stained for 10 min with 40 mM Alizarin Red S and 
then washed again with D.W. for 2 times in room tem-
perature. 

Reverse–transcription polymerase chain reaction 
(RT–PCR) 

Total RNA was extracted by RNA extract kit follow-
ing the protocol of manufacturer (MACHEREY–NAGEL).  
Expression of pluripotent genes (Oct4, NANOG and 
SOX2) and adipogenic (LPL and Leptin), osteogenic 
(Runx2 and Osteocalcin), and chondrogenic (Comp and 
AGG) genes were detected from each samples.  β–II 
microglobulin was used as an internal control.  RNA sam-
ples (1 μl of total RNA) were primed with oligo dT primer 
to synthesize cDNA using iScript reverse transcriptase 
(BIO–RAD).  PCR reactions were consisted of 3 min dena-
turation at 94°C, followed by 35 cycles at 94°C for 30 sec, 
60°C or 58°C for 30 sec and 72°C for 30 sec.  A final exten-
sion for 5 min was performed at 72°C.  β–II microglobulin 
RT–PCR reactions were modified to 25 cycles with 
annealing at 60°C.  Each amplicon of targeted specific 
genes was confirmed by DNA sequencing.  RT–PCR 
results were evaluated by Image J software.  Primer 
sequences used were listed in Table 1.

RESULTS

Spheroid formation in 3–D micro–environment by 
hanging drop method  

Using hanging drop method,  cAFS cells reproduci-

bly were aggregated into 3–D spheroids.  To characterize 
and estimate the self–assembling potential, spheroids 
were grown in different culture conditions.  cAFS sphe-
roids were generated in growth medium supplemented 
with 5%, 10% or 20% of FBS concentration (Fig 1).  
There were more compacted spheroids found in the 
medium with 20% FBS compared to (Fig 1. E and H) the 
medium with 5% (Fig 1. C and F) and 10% (Fig 1. D and 
G) of FBS, and compacted structure were maintained 
tightly with 20% FBS than 5% and 10% FBS.

Under the phase contrast microscope, cAFS cells 
were aggregated in the time dependent manner in hang-
ing drops.  Initially, cAFS cells formed a loose connection 
and then several small aggregates that progressively com-
bined into a single spheroid (Fig 2. A).  Once aggregated, 
the size of spheroids was not changed, and gradually 
compacted tensely between 48h and 96h after culturing 
(Fig 2. B).

In addition, it has investigated how the impact of 
senescence onto forming spheroids of cAFS cells is.  
Within 3 days of cultivation with 5, 10, and 15 passages of 
cAFS cells, there was no change of morphology and size 
enlargement observed.  Regardless of the passages, cAFS 
cells were aggregated compactly, and most of spheroids 
were generated fairly (Fig 3. C–H).

cAFS cells differentiation 
When cultured in adipogenic induction medium for 

21 days, spheroid–derived cAFS cells (3–D spheroids in 
adherent culture) showed morphological changes and 
appeared as round shaped cells with lipid droplets in 
their cytoplasm more than those of  in 2–D culture (mon-
olayer culture) (Fig 3. A and B).  cAFS cells from 3–D 
spheroids had large number of Oil Red O positive lipid 
droplets in their cytoplasm and had higher detachment 
rate than those from 2–D culture during the adipogenic 
induction (not shown).  After induction of osteogenic dif-
ferentiation cAFS cells were changed their morphology 
from spindle shape to cuboidal shape (Fig 3. C and D).  
Deposition of extracellular calcified matrix was increased 
in cAFS cells from 3–D spheroids compared to that of 
2–D adherent culture.  Chondrogenic differentiation of 
3–D spheroid derived cAFS cells induced rapid prolifera-
tion and cAFS cells reached to 90% confluence before 
cAFS cells from 2–D culture (Fig 3. E and F).  Moreover 
3–D spheroids showed morphologically more chondro-
genic differentiated than 2–D culture .  

RT–PCR analysis of cAFS cell differentiation 
After induction of MSC differentiation, the specific 

gene expressions of adipogenic–, osteogenic– and chon-
drogenic lineages were examined by RT–PCR.  The 
expression of LPL, Leptin (specific markers of adi-
pocytes), Runx2, and Osteocalcin (specific markers of 
osteoblasts) were detected in both 2–D and 3–D cultured 
cAFS cells (Fig. 4).  Interestingly the expression of COMP 
and AGG (specific markers of chondrocytes) were barely 
detectable in 2–D culture.  However, under 3–D culture 
condition COMPp and AGG expression were significantly 
increased (Fig 4. A and B).  The 3–D spheroid derived 

Table 1.   Reverse–transcription polymerase chain reac-
tion primers for adipogenic–, osteogenic–, and 
chondrogenic–specific genes

Genes Primer sequences (5’–3’) Product size

LPL
F : AAAACCATCGTGGGCAATTA

204 bp
R : ACAATTTGGATTCCCAGCAA

Leptin
F : TTCCACCATCCTGCCACTAT 

200 bp
R : ACCATCTGGAATGCAAGGTC

Runx2
F : CCCAACTTCCTGTGCTCTGT 

197 bp
R : TCGTTGAACCTTGCTACTTGG

Osteocalcin
F : AGGGAAGTATGCGAGCTCAA

198 bp
R : GATGACAAGGACCCCACACT 

COMP
F : AGACATACTGGCAGGCGAAT 

197 bp
R : CCAGCCGTAGGATGTCTTGT

Aggrecan
F : ATCAACAGTGCTTACCAAGACA 

130 bp
R : ATAACCTCACAGCGATAGATCC
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Fig. 1.  Illustration (A) and macroscopic view (B) of hanging drop cul-
ture method.  Cell suspension drops were deposited onto the 
underside of the lid of the culture dish.  When the lid is invert-
ed, drops are held in place by surface tension and gradually 
precipitated.  Formation of cAFS spheroids with 20,000 cells/ 
20 μl with FBS concentration of 5% (C and F), 10% (D and G) 
and 20% (E and H) following 48 hr and 72 hr of hanging drop 
culture.  (Scale bar, 300 μm), Magnification : X100

Fig. 2.  Time courses of the aggregation of cAFS into a spheroid in a 
hanging drop (A).  Spheroids progressively compacted between 
48 and 96 h.  (B) Formation of spheroids with cAFS at passage 
5 (C and F), 10 (D and G), and 15 (E and H) after 48hr and 
72 hr. 
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cAFS cells expressed 200% and 600% higher levels of 
COMP and AGG than those of the 2–D cultured cells (Fig 
4. B).

DISCUSSION

Mesenchymal stem cells (MSCs; also called mesen-
chymal stromal cells) are defined as adherent cells which 
are relatively easy to isolate from donors and patients, 
and highly proliferate and differentiate into several differ-
ent cell types in vitro and in vivo (Pittenger et al., 1999; 
Kolf et al., 2007).  A study in 1996 was the first to sug-
gest the possibility of multilineage potential of non–
hematopoetic cells present in the amniotic fluid, by 
showing myogenic conversion of amniocytes (Streubel et 
al., 1996).  Human amniotic cells have been shown their 
multipotent potential that is able to differentiate at least 
into neural glial cells and hepatocyte precursors 
(Sakuragawa et al., 1996; Elwan et al., 1997; Saulnier et 
al., 2009).  The primary advantage of AFS cells is the 
easiness of harvest, isolation, and expansion in culture 
with highly advanced differentiation capacity into multi 
cell lineages that allow them to be a useful source of the 
stem cell therapy in regenerative medicine.  

Most adult stem cell base assays were applied in 
monolayer or suspension cultures which provide a non–
physiological environment to the cells that alters cell–
cell and cell–ECM interaction unlike in vivo.  For that 

reason, it has been accepted that mesenchymal stem cells 
lose their innate potentials including morphology, prolif-
eration, gene expression, and cellular function after pas-
sages in vitro.  On the other hand 3–D culture system has 
been used in several different cell types including tumor 
cells and human primary cells (Bjerkvig et al., 1997; 
Kunz–Schughart et al., 1999; Kelm et al., 2004).  These 
studies demonstrated that 3–D cell culture system is 
reproducible, and would be a definitive method for the 
formation of 3–D spheroids like the hanging drop method 
that provides in vivo–like environment with many poten-
tial advantages.  It seems that 3–D culture provides in 
vivo–like microenvironment with higher similarity to in 
vivo conditions in many aspects for tissue engineering and 
regenerative medicine.  For examples, previous studies 
reported that the spheroid formation method resulted in 
a beneficial culture environment for reconstruction of 
liver (Landry et al., 1985), pancreas (Matta et al., 1994), 
blood vessel (Korff et al., 1998) and bone tissue (Akiyama 
et al., 2006).  Spheroids have also offered as biological 
models for avascular tumor as drug delivery assays and 
toxicology.  Recently they have gained attention for their 
potential to serve as a building block for organ recon-
struction.  

In this study, cAFS cells were induced to form sphe-
roids from aggregates by hanging drop method.  After 
forming spheres, spheroids become gradually compact 
and were sustained their spheroid structure without dis-

Fig. 3.  Cytochemical differentiation assay.  cAFS differentiation into adipo-
cytes detected by Oil Red O staining (A and B), osteoblasts (C and 
D), and chondrocytes (E and F) detected by Alizarin Red staining.  
Adherent cultured (A, C and E) and haning drop cultured (B, D and 
F).
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assembly.  To identify the multi–lineage differentiation 
potential, spheroid derived cAFS cells were induced to 
differentiate into adipocytes, osteoblasts, and chondro-
cytes.  In MSC differentiation assay, the spheroid–derived 
cAFS cells acquired adipogenic, osteogenic and chon-
drogenic morphological changes with typical staining 
patterns.  The spheroid–derived cAFS cells had a higher 
ratio of positive patterns with Oil–Red–O or Alizarin Red 
S staining after each differentiation assay compared with 
2–D culture system.  The cells cultured in 3–D spheroids 
had remarkable detachment during differentiation com-
pared to cells cultured in 2–D system.

In addition, lineage specific gene expressions were 
confirmed by RT–PCR analysis.  Adipocyte (LPL and 
Leptin), Osteoblast (Runx2 and Osteocalcin), and 
chondrocytes (COMP and AGG) specific genes were 
abundantly expressed in both groups.  However, in case 
of chondrogenic differentiation, AGG was not detected 
and COMP was barely expressed in the 2–D cultured cells.  
Under 3–D culture condition COMP and AGG expression 
were significantly increased.

These results indicated that hanging drop culture 
method supports to maintain multi–lineage differentia-
tion ability of cAFS cells, and even amplified the differ-
entiation potential of cAFS cells into chondorgenic line-
age.  The beneficial effect of 3–D spheroids culture sys-
tem for chondrogenic differentiation has been reported 
(Kii et al., 2004; Arufe et al., 2009).  In the hanging drop 
culture, cadherin causes cells to adhere intensively each 
other through homophilic calcium–dependent interac-
tion through their extracellular domains.  With that, it is 
possible to form tight cadherin–mediated cell–cell inter-
actions and spherical cell aggregates.  In addition 3–D 
spheroid formation has a positive effect on cartilaginous 
matrix production of cells (Sekiya et al., 2002; Shirasawa 
et al., 2006).  

To regenerate osteochondral defects, tissue trans-
plantations were previously performed (Amiel et al., 1985; 
Yamashita et al., 1985; O’Driscoll et al., 1986; Matsusue 
et al., 1993).  Chondrocytes and mesenchymal stem cells 
have been applied for transplantations that were contrib-
uted in regeneration of hyaline–like cartilage with reduc-

Fig. 4.  RT–PCR anaylsis of linage specific gene expression for adipocytes, osteoblasts 
and chondrocytes.  Total RNA was extracted from the cells under each differentia-
tion condition.  (A) RT–PCR amplicon images and (B) statistical analysis of the 
relative gene expression.  2–D culture; monolayer culture, 3–D culture; Hanging 
drop culture, β–II Microglobulin ; the internal control.
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ing clinical symptoms.  However, the optimal resource of 
stem cells for the osteochondral repair has not yet been 
established.  Besides, transplanted single stem cells hardly 
reside and disappear in the transplanted sites due to joint 
motion and weight supporting besides the immune cell 
attack.  Studies suggested that the small amounts of sur-
vived transplanted 3–D spheroid derived cells could con-
tribute to chondrogenic and osteogenic lineage cells, and 
they encourage the reconstruction of the defects espe-
cially during the beginning of repair process (Kim et al., 
1998; No Da et al., 2012).  Therefore, 3–D spheroid would 
be a suitable cell format to transplant highly concen-
trated stem cells into damaged tissu sites with less pos-
sibility of losing cells unlike transplantation of single cells.  

In conclusion, this study demonstrated that the sim-
ple and economical hanging drop method provides 3–D 
in vivo–like culture environment that can effectively main-
tain multi–lineage differentiation potency and even 
improved chondrogenic differentiation ability of cAFS 
cells.  The results support that 3–D spheroids derived AFS 
cells would be a potential and applicable source of stem 
cell therapy in regeneration medicine especially osteo-
chondral defects.
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