Herbicidal Selectivity and Mode of Action of EK-2612 in Rice and Barnyardgrass

Oh, Taek-Keun
Department of Bio-Environmental Chemistry, Chungnam National University

Uddin, Md. Romij
Department of Agronomy, Bangladesh Agricultural University

Lee, Jeung Ju
Department of Agricultural Biology, Gyeongsang National University

Shinogi, Yoshiyuki
Science for Bioproduction Environment, Faculty of Agriculture, Kyushu University

http://hdl.handle.net/2324/1526338
Herbicidal Selectivity and Mode of Action of EK–2612 in Rice and Barnyardgrass

Taek–Keun OH1, Md. Romij UDDIN2, Jeung Ju LEE3, Yoshiyuki SHINOGI1 and Kee Woong PARK5*

Science for Bioproduction Environment, Faculty of Agriculture, Kyushu University, Hakozaki 6–10–1, Higashiku, Fukuoka city 812–8581, Japan

(Received April 9, 2015 and accepted May 19, 2015)

INTRODUCTION

Weeds have always been recognized as one of the major constraints on yield and quality of rice and have been proved a significant pest problem in temperate rice culture (Ioannis and Kico, 2005). The barnyardgrass (Echinochloa crus–galli L.) is a highly prolific annual grass weed that is widely distributed in the tropics as well in most of the rice growing regions in the world believed to control it for maximizing rice production.

EK–2612, a new synthesized herbicide commonly known as grass killers has been developed for the selective post emergence control of a wide range of grass weeds including barnyardgrass. This compound belongs to cyclohexanediones (CHDs) family, which was developed in the late 1970’s and has been used to control grass species in dicotyledonous crops (Iwataki and Hirono 1978; Swisher and Corbin 1982). Two classes of grass killer herbicide i.e., the aryloxyphenoxy propionates (AOPPs) and the CHDs have been reported as acetyl–CoA carboxylase (ACCase) inhibitors. In plants, two forms of ACCCase have been identified those are located in the plastid and cytosol (Sasaki et al., 1995; Konishi et al., 1996). Chloroplastic ACCCase is a vital point of plant metabolism (Ohlrogge and Jaworski 1997). The CHD herbicides act on the plastidic enzyme ACCCase. ACCCase is a key enzyme involved in the biosynthesis of fatty acids, particularly is active in meristematic tissues, and its inhibition results in cessation of growth followed by the chlorosis of the young leaves and the eventual necrosis of the whole plant (Harwood 1989; Gronwald 1991). This enzyme acts by catalyzing the formation of malonyl–CoA from the ATP–dependent carboxylation of acetyl–CoA (Powles & Yu, 2010).

The objective of this study was to determine the herbicidal activity of the compound EK–2612 to determine the mechanism of selectivity between rice and barnyardgrass.

MATERIALS AND METHODS

Herbicidal activity of EK–2612

EK–2612, [5–(2–3 dihydro–2,2,4,6,7–pentamethyl benzofuran–5–yl)–2–[1–(allyoxyimino) butyryl]–3 hydroxy cyclohex–2–en–1–one] was synthesized by Korea Research Institute of Chemical Technology, Daejeon, Korea. Rice cv. Chuchung (Oryza sativa L.) and barnyardgrass (Echinochloa crus–galli Beauv.) were grown in an environmental control room (light; 12 hr, 30C, dark; 12 hr, 25C). Ten pre–germinated rice seeds and 20 barnyardgrass seeds (dormancy was broken by 30 days submerging in cold water) were sown in 6 cm diameter round shape pot including a commercial potting mix. Rice and barnyardgrass seedlings at 2–2.5 leaf were treated with EK–2612 at 15, 30, 60 and 120 g a.i. ha−1 using a hand sprayer. Plant height and dry weight of aboveground biomass were measured at 12 days after herbicide treat-
Rice and barnyardgrass were grown as mentioned above. To evaluate the effects of EK–2612 on chlorophyll contents of rice and barnyardgrass, EK–2612 was treated at 3rd leaf stage of plants and new coming 4th leaf was harvested five days after herbicide treatment. The leaf sample (0.2–0.4 g fresh weight) was homogenized with 10 ml 95% methanol and centrifuged at 10,000 g for 10 min. The supernatant was analyzed by spectrophotometer at 470.0, 652.4, 665.2 nm wavelength. Total chlorophyll contents were calculated as μg chlorophyll per g fresh weight following the procedure of Lichtenthaler (1987).

To examine the peroxidation of cell membrane, cellular leakage was determined in rice and barnyardgrass. Eighty leaf tissue discs (4 mm diameter) were placed in a 6–cm diameter Petri dishes containing 7 ml of 1% sucrose, 1 mM 2–(N–morpholino) ethanesulfonic acid pH 6.5 with or without EK–2612 compound dissolved in acetone. The tissues were incubated in a growth chamber at 25˚C in darkness for 5 days. Electrolyte leakage into the bathing medium was detected by the conductivity meter daily.

Acetate incorporation
To investigate the influence of EK–2612 on lipid synthesis in rice and barnyardgrass leaves, 30 leaf discs (4 mm diameter) taken from 10–day–old rice and barnyardgrass were added to 10 ml 14C–acetate (0.1 µCi/ml) + 0.1 M potassium phosphate buffer pH 7.5 solution and 0–200 µM EK–2612 were added to the medium and incubated for 24 hours in growth chamber (25°C). After being rinsed with distilled water, the leaf discs were boiled with water–saturated butanol containing 0.005% butylated hydroxytoluene and then homogenized and centrifuged at 15,000 g for 10 minutes. The supernatant was dried under nitrogen at 40C water bath. This fraction was then dissolved in 0.5 ml of chloroform–methanol–water (86:14:10 v/v). A 0.2 ml aliquot of the fraction was transferred to a scintillation vial and radioactivity was determined using a scintillation spectrometer.

RESULTS AND DISCUSSION
EK–2612 showed excellent herbicidal activity on barnyardgrass showing almost no inhibition in rice plant in this study. Growth of barnyardgrass was significantly inhibited by the application of EK–2612 in all the concentration used in this study (Table 1). The level of inhibition was 84 and 100%, when EK–2612 was applied at 60 and 120 g a.i./ha, respectively. Even at the lowest concentration (15 g a.i./ha) of this compound inhibited growth of barnyard grass more than 50%. Whereas, no significant inhibition was observed in case of rice even at the highest rate, 120 g a.i./ha of EK–2612 based on plant height and aboveground dry weight (Table 1). From this
study we can easily say that rice is quite safe to EK–2612 even at the highest doses where barnyardgrass was completely inhibited. Similar type of finding was observed by Kim et al., 2004 where they reported that the compound EK–2612 demonstrated a strong post-emergent herbicidal activity on grass weeds under upland conditions in a greenhouse keeping rice plant in safe.

Like growth inhibition in barnyardgrass, chlorophyll content was also reduced greatly with the increase of EK–2612 concentrations in barnyardgrass, whereas chlorophyll content in rice was not affected using EK–2612 (Fig. 2). The reason of reduced chlorophyll by the application of EK–2612 could be the damage of chloroplast and photo-oxidation. Our findings are agreed with the findings of Gealy and Slife (1983) where they reported that chlorophyll contents in corn were significantly reduced by BAS 9052, a cyclohexanedione herbicide and that this effect was due to the damage of chloroplast and photo-oxidation. Cellular leakage did not occur until three days of incubation both in rice and barnyardgrass

Fig. 1. Effect of EK–2612 on chlorophyll content in rice and barnyardgrass leaves 5 days after treatment.

Fig. 2. Effect of EK–2612 on electrolyte leakage from rice and barnyardgrass.

Fig. 3. Effect of EK–2612 on 14C-acetate incorporation into lipid in rice and barnyardgrass leaf.

Fig. 4. Effect of EK–2612 on acetyl-CoA carboxylase activity in rice and barnyardgrass.
treated with EK–2612 (Fig. 3). However, cellular leakage started from both species three days after incubation showing more rapid changes in barnyardgrass than in rice. Total lipid synthesis, as measured by incorporation of 14C-acetate, was reduced by 70% in barnyardgrass and 50% in rice with 200 μM EK–2612 treatment (Fig. 4).

Similar findings were observed from the results of haloxefop and diclofop–methyl effects on lipid synthesis in corn (Cho et al., 1986; Hoppe, 1981).

Detail studies about Acetyl–coenzyme A carboxylase have been reported as the target for cyclohexane–1,3–di–one herbicides (Herbert et al., 1997; Rendina and Felts, 1988; Secor and Cseke, 1988). It has also been reported that selectivity and resistance mechanisms of grass killers are mainly attributable to the differential susceptibility of this enzyme (Burton et al., 1989; Martinez–Ghersa et al., 1997; Matthews, 2000). Here in this study, acetyl–CoA carboxylase activity on rice and barnyardgrass was inhibited by EK–2612 and the response to inhibition was linear with increasing EK–2612 concentration (Fig. 4).

However, acetyl–CoA carboxylase was more sensitive to EK–2612 in barnyard grass than in rice.

These results indicate that EK–2612 showed selectivity between rice and barnyardgrass and mode of action of EK–2612 may be primarily attributed to the inhibition of acetyl–CoA carboxylase and lipid synthesis, and also the damage of membrane by peroxidation. EK–2612 is targeting ACCase enzyme both in rice and barnyardgrass. However, the selectivity of rice and barnyardgrass was not based on sensitivity of the enzyme but probably metabolism or translocation of EK–2612. Finally it may be concluded that the compound EK–2612 is a potential herbicide candidate for rice cultivation having a good barnyardgrass control efficacy.

ACKNOWLEDGMENTS

This study was financially supported by research fund of Chungnam National University in 2014.

REFERENCES

Konishi, T., K. Shinohara, K. Yamada and Y. Sasaki 1996 Acetyl–CoA carboxylase in higher plants: most plants other than graminae have both the prokaryotic and the eukaryotic forms of this enzyme. Plant Cell Physiol., 37: 117–122

