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INTRODUCTION

Up to 64% of the Korean territory is covered by for-
est.  There are many steep slope areas with 30–60° tilt 
angles, and 90% of the mountainous areas consist of 
granite and metamorphic rocks.  Many landslides occur 
in Korea each year due to climatic, geographical, geolog-
ical, and human–induced reasons.  In Gangwondo, 81% 
of the area consists of mountains and most of the moun-
tain sides have steep slopes.  As a result, this area suffers 
annually from many landslides.  For example, heavy rains 
and Typhoon Ewiniar in July, 2006 caused many land-
slides throughout Gangwondo.  In Injegun (the mountain-
ous area accounting for 90% of the total area), heavy 
rains, which fell over a short period of time, caused seri-
ous damage to small– and medium–sized streams that 
had narrow drainage areas.  During this flash flood, 29 
residents were killed or went missing, and many proper-
ties were damaged (Yoo and Choi, 2011).  In July, 2011, 
the Mt. Umyeon landslide occurred in the center of Seoul 
Metropolitan City (Jun and Oh, 2011).  Furthermore, a 
landslide from a mountain near the residential area of 
the Chuncheon holiday destination caused loss of life 

and damage to properties.  Considering this recent trend, 
it is clear that many landslides are regularly generated 
by typhoons or heavy rain and, accordingly, the damage 
caused is increasing.  Therefore, it is necessary to scien-
tifically analyze and systematically manage high landslide 
risk areas to effectively respond to the incidents.  In 
addition, it is also necessary to investigate the causes of 
landslides and perform integrated analysis of high risk 
areas with historical evidence of past natural disasters.  
Recently, much research has been performed using GIS 
and remote sensing methods, together with spatial infor-
mation databases integrating geography, hydrology, geol-
ogy, and forestry to identify characteristics and causes 
of landslides.  The Korea Forest Research Institute and 
the Korea Forest Service have developed and imple-
mented the ‘Landslide Risk Areas Management System’ 
to prevent and manage landslides in a scientific way.  The 
Korea Institute of Geoscience and Mineral Resources has 
also prepared a landslide prediction map (Chae and Cho, 
2008).  At present, there is a need for practical research 
based on this map to predict landslides more precisely 
and reduce the number of casualties of landslides.  

The infinite slope stability model has been the most 
common method to evaluate slope stability and landslide 
risk using GIS technology, where the level of slope sta-
bility is defined based on slope angles and the catchment 
basin (Montgomery and Dietrich, 1994).  A more sophis-
ticated model integrating the infinite slope stability model 
with the dynamic modeling of hydrology has also been 
proposed (Wu and Sidle, 1995).  A further method is 
SINMAP, used to analyze slope stability, which was devel-
oped by combining the infinite slope stability model and 
numerical modeling (Pack et al., 1998).
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have been established using GIS and RS methods (Kim 
et al., 2005).  For example, a study on highway avalanches 
was performed to estimate the locations and number of 
avalanches using SINMAP (Jang et al., 2008).  The Korea 
Forest Research Institute conducted a research to develop 
a method that can predict occurrence characteristics of 
avalanches and scale of damage (Oh et al., 2006).  The 
institute carried out a landslide case study using the 
SINMAP method and showed that it could be an effec-
tive tool in preliminary estimates of landslide risk in 
mountainous areas with steep slopes and thin soil layers.  
Furthermore, it is expected that this method can be 
applied effectively to identify high risk landslide areas 
with a hydrological interpretation of SINMAP, which was 
used to analyze the Mt. Umyeon landslide that occurred 
in 2011.  In addition, the institute conducted risk analy-
sis of basins affected by avalanches using GIS and to do 
this, it applied a statistical method consisting of SINMAP 
and seven parameters (angle of slope, country rock, con-
dition of forest, length of slope, position of slope, shape 
of slope, and depth of soil) (Jun et al., 2011).

Many landslide susceptibility analyses using GIS 
include probabilistic, statistical and artificial neural net-
work analyses.  The Likelihood Ratio based on Bayesian 
analysis can quantitatively emphasize an area vulnerable 
to landslides by calculating the likelihood ratio between 
landslide affected and other areas (Chung and Fabbri, 
1998).  To test the validity of the results, several probabil-
istic methods are usually compared using landslide occur-
rence positions of two groups that are temporally sepa-
rated from each other (Chung and Fabbri, 1999).  A 
study modeled landslide susceptibility of Colorado, USA 
using the weight of evidence technique (Regmi et al., 
2010).  Another study conducted research on landslide 
susceptibility using the entropy of the latest GIS 
(Pourghasemi et al., 2012), while in the conditional 
probabilistic model index is used to compare and evalu-
ate landslide maps using three methods: frequency ratio, 
weights of evidence and logistic regression (Ozdemir and 
Altural, 2013).

In this study, we construct a database of different 
geographic–spatial information in the GIS environment 
to evaluate landslide susceptibility and to find potential 
risk areas by applying the GIS based SINMAP and 
Likelihood Ratio methods.  We also carried out slope sta-
bility analysis using SINMAP (the deterministic method) 
to identify its correlation to occurrence of landslides, ana-
lyzed the relationship between landslide and other geo-
graphical spatial features by applying the Likelihood Ratio 
(the probabilistic method), and drew cartography of the 
disaster to reflect landslide susceptibility.  The method-
ology is shown in (Figure 1).

METHODS

1. The SINMAP method
The SINMAP methodology is based on the infinite–

slope stability model (Hammond et al., 1992) that bal-
ances (with edge effects neglected) destabilizing compo-
nents of gravity against stabilizing components of friction 
and cohesion on a failure plane parallel to the ground sur-
face.  Based on the infinite–slope form of the Mohr–
Coulomb failure law, as expressed by the ratio of stabiliz-
ing forces (shear strength) to destabilizing forces (shear 
stress) on a failure plane parallel to the surface, the 
safety factor calculation in SINMAP is

FS = 

..........equation 1

where, Cr is the root cohesion (N/m2), Cs is the soil 
cohesion (N/m2), θis the slope angle (°), ρs is wet soil 
density (kg/m3), ρw is the density of water (kg/m3), g is 
gravitational acceleration (9.81 m/s2), D the vertical soil 
depth (m), Dw the vertical height of the water table with-
in the soil layer (m), and φ the internal friction angle of 
the soil (°).  The slope angle, θ, is the arc tangent of the 
slope, S, expressed as a decimal drop per unit horizontal 
distance.  Figure 2 illustrates the geometry assumed in 
equation (1).  Soil thickness, h (m), and depth, D, are 
related by h = Dcosθ.  With this change FS reduces to 

FS =                                           .....................equation 2

C, w, and r denote the dimensionless cohesion, wetness 

Cr+Cs+cos2θ[ρsg(D–Dw)+(ρsg–ρwg)Dw]tanφ

Dρsgsinθcosθ

Fig. 1.  Flow chart of the work methodology.

Fig. 2. The geometry of the assumed infinite slope 
stability model and parameters involved in the 
safety factor.

C+cosθ[1–wr]tanφ

sinθ
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index, and density ratio, respectively, and are defined in 
the context of SINMAP as shown below

C =                       .............................................equation 3

w =           = Min (                 , 1 )  ...............equation 4

r =             .........................................................equation 5

The term R which appears in the wetness index equa-
tion, equation (3), is the effective recharge, Term a which 
also appears in the same equation stands for the specific 
catchment area defined as the upslope area per unit con-
tour length with units m2/m.  As shown in Figure 2 h is 
the depth to the plane of failure measured in a direction 
perpendicular to the ground surface, and r, as defined by 
equation (5), is water to saturated soil density ratio.  The 
complete description of SINMAP model for a particular 
region of interest requires 2 variables and 3 parameters, 
as follows:

Variables: θ and α
Parameters: C, φ, and the ration R/T

The variables are implicitly inputted in the form of a 
digital elevation model, DEM, for the model to calculate 
them from inbuilt modules for each and every pixel.  An 
inventory of landslide initiation points is utilized for vali-
dating the model output (Fowze et al., 2012).  SINMAP 
holds the soil density ratio constant and allows variabil-
ity in the soil cohesion, internal friction angle, and R/T 
using a uniform probability distribution given a specified 
lower and upper limit.  SINMAP expresses the terrain 
stability by six broad classes with subjective breakpoints 
(Table 1).

2. The Likelihood Ratio method
The Likelihood Ratio is a data–driven method that is 

basically the Bayesian approach in a log–linear form using 
the prior and posterior probability, and is applied where 
sufficient data are available to estimate the relative impor-
tance of evidential themes by probability means.

In the Bayesian approach, sureness measures obey 
the basic axioms of probability theory and the basic 
expressions are statements about the prior, likelihood and 
posterior probabilities.

One of main concepts for applications is that the prior 
probability is successively updated with the addition of 
new evidence, so that the posterior probability from add-
ing one piece of evidence can be treated as the prior prob-
ability for adding a new piece of evidence.

For a given number of units cells, N{D}, containing 
an occurrence, D, and the total number of unit cell in the 
study area, N{T}, the prior probability of an occurrence 
is expressed by

P{D} =              .................................................equation 6 

Supposing that a binary predictor pattern, B, occu-
pying N{F} unit cells, occurs in the region, and that a 
number of known landslides occurs preferentially within 
the pattern, i.e., N{D|F}, then the favorability of locating 
an occurrence, given the presence of a predictor and the 
absence of a pattern, can be expressed by the condi-
tional probabilities. 

P{D|F} =                   = P{D}                    .....equation 7

P{D|F−} =                   = P{D}                    .....equation 8

The posterior probability of an occurrence given the 
presence and absence of the predictor pattern are 

P{D∩F}

P{F}

P{D∩F
−

}

P{F−}

P{F|D}

P{F}

P{F−|D}

P{F−}

Table 1.   Classes of slope stability based on values of the Stability Index (SI)

Condition Class Predicted state Parameter range
Passible influence of factors not 

modeled

SI>1.5 1 Stable slope zone Range cannot model instability
Significant destabilizing factors are 
required for instability

1.5>SI>1.25 2 Moderately stable slope zone Range cannot model instability
Moderate destabilizing factors are 
required for instability

1.25>SI>1.0 3 Quasi–stable slope zone Range cannot model instability
Minor destabilizing factors could 
lead to instability

1.0>SI>0.5 4 Lower threshold slope 
Pessimistic half of range required 
for instability

Destabilizing factors are not 
required for instability

0.5>SI>0.0 5 Upper threshold slope
Optimistic half of range required 
for stability

Stabilizing factors may be 
responsible for stability

0.0>SI 6 Defended slope zone Range cannot model instability
Stabilizing factors are required for 
stability

N{D}

N{T}

(Cr+Cs)

(hρsg)

Dw

D

ρw

ρs

Ra

Tsinθ
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denoted by P{D|F} and P{D|F−}, respectively; P{D|F} and 
P{F−|D} are the posterior probabilities of being inside and 
outside the predictor pattern, F, respectively, given the 
presence of an occurrence, D. Furthermore, P{F} and 
P{F−} are the prior probabilities of being inside and out-
side the predictor pattern, respectively.  The same 
model can be expressed in an odds–type formulation, 
where the odds, O, are defined as O=P/(1−P).  Expressed 
as odds, equation (7) and (8), respectively, become

O{D|F} = O{D} ·                    .........................equation 9 

O{D|F−} = O{D} ·                  .........................equation 10 

where O{D|F} and O{D|F−} are the posterior odds of 
an occurrence given the presence and absence of a binary 
predictor pattern, respectively, and O{D} is the prior 
odds of an occurrence. 

THE STUDY AREA 

We selected Injegun and the surrounding area of 
Gangwondo as the study area for landslide analysis 
(Figure 3).  Landslide occurrence points were drawn from 
overlay analysis of airborne pictures taken before and 
after landslides in 2005 and 2006, and from site monitor-
ing activities.  In 2006, many landslides occurred in this 
area due to Typhoon Ewiniar and heavy rains.  The total 
rainfall for this region for July 12–16, 2006 was 569.6mm.  
The highest recorded amount of rainfall during this period 
was 192 mm on July 15, and 65.5 mm was recorded as 
the highest hourly rainfall.  As landslides have different 
patterns and occurrence frequencies, it is difficult to 

select a standard quantitative value for each landslide 
factor.  Therefore, it is necessary to analyze the spatial 
correlation between landslide occurrence positions and 
each landslide factor using GIS once the landslide fac-
tors have been selected. 

RESULTS AND DISCUSSION 

1. Application of the SINMAP model
This study identifies the levels of slope stability for 

landslide occurrence in the target area using SINMAP.  
This method is used to evaluate the moment of stability 
by applying inducing factors (such as geographical fea-
tures, quality of soil, and climate) to a hydrological or a 
slope stability model including geography, and using a 
deterministic method that is based on physics and dynam-
ics.  Based on our findings (Figure 4), the area of SI<0.5 
and 1.0<SI<0.5 was 17.5 km2 and 109 km2, respectively.  
In other words, 44% of the total forest area (285 km2) can 
be classified as landslide risk area.  Conversely, approxi-
mately 25% (72 km2) of the total study area can be 
regarded as stable area (SI>1.5).  The final landslide risk 
area was estimated with overlay analysis using records 
of historical landslide occurrence, casualties, and prop-
erty damage in the area.  Table 2 shows the results of 
SINMAP for the selected basins.  Approximately 12 km2, 
which equals 36% of the total basin area (33.64 km2), can 
be included in the risk area. 

2. Application of the Likelihood Ratio model
The likelihood ratio, which is obtained on the basis 

of conditional probabilities, is equal to the ratio of the 
landslide area by the level of each factor.  If the likeli-
hood ratio is 1, the probability of landslide occurrence is 
the average compared with other landslide inducing fac-
tors.  If the ratio is greater than 1, the probability of land-
slide occurrence is relatively high.  If the ratio is less 

P{F|D}

P{F|D−}

P{F−|D}

P{F−|D}

Fig. 3.  Study area and an aerial image map of landslides (2006).
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than 1, the probability of landslide occurrence is relatively 
low.  To identify the characteristics of landslide occur-
rence locations, the factors are classified into appropri-
ate groups to ensure that the attributes of each factor 
reflect its original value well.  Using this process, the 
number of landslides that occurred in each class can be 
statistically identified. 

We produced a database to perform likelihood ratio 
analysis on basin areas selected in the SINMAP analysis.  

This method also configures points, lines, faces, and coor-
dinates, which are attributes of each factor required to 
prepare prediction, and builds 16 types of spatial data-
bases, including geography, hydrology, geology, forestry, 
and geology (Figure 5).

For the relationship between landslide and geo-
graphical factors, the likelihood ratio of a slope of greater 
than 25° (Figure 6(a)) is more than 1, which shows that 
the probability of landslide occurrence is significantly 
increased.  For the slope aspect (Figure 6(b)), the prob-
ability of landslide occurrence was high in the East and 
Southeast, and very high in the South with a probability 
of 3.11.  For altitude (Figure 6(c)), the highest probability 
of landslide occurrence was found between 500–600 m, 
measuring 1.49.  Landform (Figure 6(d)) was divided 
into 10 levels from flat ground, and ridge to the top of a 
mountain.  According to the results, the likelihood ratio 
of a deep and a flat valley were 1.61 and 1.37, respec-
tively.  For curvature (Figure 6(e)), the negative value 
means that the slope plane is concave, while a positive 
value indicates that the slope plane is convex.  Zero (0) 
shows that the slope plane is flat.  The value of curvature 
is correlated to the convex area with 1.26.

Hydrological factors were analyzed using a buffer 

Fig. 4.  Stability index map.

Fig. 5.  Maps in the spatial database used for landslide susceptibility analysis.

Table 2.   Classes of slope stability based on value of the Stability Index (SI)

Stable
(S)

Moderately
Stable
(MS)

Quasi–
Stable
(QS)

Lower
Threshold 

(LT)

Upper
Threshold 

(UT)

Defended
(D)

Total

Area
(km2)

10.0 4.7 7.0 11.0 0.9 0.04 33.64

% of 
Region

30 14 21 33 3 0 100
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zone, which was 100 m in length along a river, to meas-
ure correlation between basin areas and landslide occur-
rence positions, as shown in Figure 6(f).  According to 
the results of the likelihood ratio, the values for 200 m 
and 300 m were 1.23 and 1.28, respectively.  In fact, 90% 
of the landslide occurrence positions in the target area 
were located within 300 m of the river.  Values for the 
TWI (Topographic Wetness Index) factor from 0 to 23.7 
are divided into nine levels, which are in inverse propor-
tion to the values of the slope.  According to the results, 
level 4 had the highest probability value with 1.28.  As 
seen in Figure 6(g), it has a negative relationship with 
landslide occurrence, unlike the slope.  SPI (Stream 
power Index) (Figure 6(h)), a factor indicating the area 
of sloped basin, was analyzed with nine subgroups 
between 4.12 and –4.37.  Classes 8 and 9, which have a 
high SPI value, had probabilities of 1.48 and 1.73, respec-
tively. 

Soil was analyzed by a code (Figure 6(i)) using a 
detailed soil map.  The highest likelihood ratio was found 
in the Soil Code Mob with 2.21.  Soil depth (Figure 6(j)) 
consists of categories of ‘Very Deep’, ‘Deep’, ‘Moderate’, 
'Thin’, ‘Very Thin’, and ‘Rock Exposed’.  The highest like-
lihood ratio, of 1.25, was found in the ‘Thin’ area.  For the 
soil types, clay loam or silt clay loam has a probability of 
1.21. 

The relationship between forestry factors, including 
Timber type, Timber density, Timber age, and Timber 
diameter, was identified.  For Timber type (Figure 6(l)), 
the non–forest area (R) had the highest value (2.31).  
Deciduous and Pinus koraiensis forests also had a high 

probability (1.44 and 1.60, respectively).  For Timber 
density (Figure 6(m)), the low density area had higher 
probability of landslides occurrence than the high den-
sity area.  Timber had high correlation at age four and six 
years of 1.35 and 1.75, respectively (Figure 6(n)).  For 
Timber diameter (Figure 6(o)), the timber with a small 
diameter had a 1.30 probability.  For the geological fea-
tures, a 1.19 probability value was found for Two–Mica 
Granite (Figure 6(p)).

Landslides Susceptibility Index by likelihood ratio 
(LR) was calculated from an overlay analysis, as shown 
in equation (11), which was calculated by allocating a 
likelihood ratio to a class of each factor.  Figure 7 shows 
the predictions of landslide risk areas that are con-
structed by overlapping areas with high correlation.  The 
Landslides Susceptibility Index areas are classified into 
5%, 10%, 15%, and 70% to indicate risk levels of Very 
high, High, Medium, and Low.

LSILR = LR1 + LR2 + LR3 + ... + LRn  ......equation 11

where LRn is the likelihood ratio of each factor type 
or range.

The prediction rate curve (Figure 8) illustrates how 
well the estimators perform with respect to the landslides 
used in constructing the estimators [20].  The range was 
classified by area, which was equal to approximately 5%.  
The prediction rate measures how well the model pre-
dicts the distribution of future landslides.  To calculate 
the prediction rate, we first counted the number of pix-
els of validated landslides in the landslide hazard level 

Fig. 6.  Likelihood ratio between Mountainous disaster and related Factor.
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whose value is greater than (100 minus a specific value) 
%.  The percentage was then divided by the total number 
of pixels of validated landslides to obtain a normalized 
prediction rate.  The prediction rate curve is the cumula-
tive version of the prediction rate.  It has the form 
y=function (x).  Here, x, ranging from 0 to 100%, is the 
percentage of relative landslide hazard, and corresponds 
to the legend in the prediction map (Figure 7).  The 
value y is the percentage of occurrences predicted within 
the most favorable x of the study area.  For example, in 
the most hazardous top 30% of areas, the prediction 
powers of the likelihood ratio were approximately 73%. 

CONCLUSIONS

We applied a GIS based SINMAP model and the 
Likelihood Ratio to predict landslide risk areas, which 
can be caused by heavy rains or typhoons in a mountain-
ous area. 

We produced maps of landslide occurrence points 
using the GIS method and airborne images, and con-
structed a spatial database using geographical, soil, hydro-
logical, and geological factors.  We also obtained a slope 
stable index by applying the SINMAP model to the target 
area affected by many landslides caused by heavy rains 

and Typhoon Ewiniar in 2006, and applied the likelihood 
ratio model to the basin that had sustained extensive 
damage in its residential areas.  We predicted landslide 
risk areas and prepared a susceptibility map after con-
ducting overlay analysis of areas with high correlation, 
which were found using correlation analysis between 
each factor and landslide occurrence.  The Landslides 
Susceptibility Index is classified into 5%, 10%, and 15%, 
70%.  We show that 73% of the total points are located 
in a relatively high risk section (areas classified between 
Very high and medium, which equal 30% of the total sec-
tion).  This indicates a relatively high correlation with 
actual landslide occurrences.  We expect that these find-
ings can be effective tools in preparing a risk map of 
mountain regions or locations close to residential areas. 
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