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Popular Matchings with Ties and Matroid Constraints

Naoyuki Kamiyama∗†‡

Abstract

In this paper, we consider the popular matching problem with matroid constraints.
It is known that if there exists no tie in preference lists of applicants, then this
problem can be solved in polynomial time. In this paper, we prove that even if
there exist ties in preference lists, this problem can be solved in polynomial time.

1 Introduction

In this paper, we consider some variation of the popular matching problem. The pop-
ular matching problem was originally introduced by Abraham, Irving, Kavitha, and
Mehlhorn [1]. In this problem, we are give two disjoint sets of applicants and posts, and
each applicant has a preference list over posts in which there may exist ties. A matching
M between applicants and posts is said to be popular, if there exists no other matching
N such that the number of applicants that prefer N to M is larger than the number of
applicants that prefer M to N . The concept of popularity was originally proposed by
Gärdenfors [10] in the context of matching problems in which agents in both sides have
preference lists. The goal of the popular matching problem is to decide whether there
exists a popular matching, and find a popular matching if one exists. Abraham, Irving,
Kavitha, and Mehlhorn [1] presented polynomial-time algorithms for the popular match-
ing problem with/without ties. Since their seminal paper, several variations of the popular
matching problem [12, 19, 21, 24] and related problems [12, 13, 14, 15, 16, 20, 25, 26] have
been investigated.

In this paper, we consider a matroid generalization of the popular matching problem.
More precisely, in our model, capacity constraints for posts are generalized to matroid
constraints. In the study of combinatorial optimization, for example, Fleiner [6] gener-
alized capacity constraints in the stable matching problem to matroid constraints, and
Zenklusen [27] considered a matroid generalization of the minimum-cost spanning tree
problem with degree constraints. It is known [12] that if there exists no tie in preference
lists, then this problem can be solved in polynomial time. In this paper, we prove that
even if there exist ties in preference lists, we can solve this problem in polynomial time.

Our algorithm is based on the algorithm of Abraham, Irving, Kavitha, and Mehlhorn [1]
for the popular matching problem with ties. However, the algorithm of [1] decomposes
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the vertex set of an input bipartite graph by using Gallai-Edmonds decomposition [5, 8, 9]
(see also [18]) of a bipartite graph based on a maximum-size (one-to-one) matching. Thus,
we can not straightforwardly generalize the algorithm of [1] to the matroid setting. Al-
though Manlove and Sng [19] proposed an algorithm for a many-to-one variation of the
popular matching with ties, their algorithm copies posts and uses the Gallai-Edmonds
decomposition in the one-to-one setting. To overcome this difficulty, we decompose the
edge set (instead of the vertex set) of an input bipartite graph bases on a maximum-size
common independent set. This decomposition can be regarded as a matroid generaliza-
tion of the Dulmage-Mendelsohn decomposition [3, 4] of a bipartite graph (see, e.g., [22]
for the Dulmage-Mendelsohn type decomposition of the matroid intersection problem).

The rest of this paper is organized as follows. In Section 2, we give the formal definition
of our model, and basics of matroids and the matroid intersection problem. In Section 3,
we give a characterization of a popular matching in our model. In Section 4, we describe
our algorithm, and prove its correctness.

2 Preliminaries

For each set X and each element u, we define X + u := X ∪ {u} and X − u := X \ {u}.
For each sets X and Y , we define X△Y := (X \ Y )∪ (Y \X). Assume that we are given
a set X and a function ξ : X → Z, where Z is the set of integers. For each subset Y of
X, we define

ξ(Y ) :=
∑
u∈Y

ξ(u).

A pair M = (U, I) is called a matroid, if U is a finite set and I is a family of subsets
of U satisfying the following conditions.

(I0) ∅ ∈ I.

(I1) If I ∈ I and J ⊆ I, then J ∈ I.

(I2) If I, J ∈ I and |I| < |J |, then I + u ∈ I for some element u in J \ I.

We say that M is a matroid on the ground set U .
In this paper, we are given a finite simple (not necessarily complete) bipartite graph

G = (V,E). We assume that V is partitioned into two subsets A and P , and each edge
in E connects a vertex in A and a vertex in P . We call a vertex in A an applicant, and
a vertex in P a post. For each applicant a in A and each post p in P , if there exists an
edge in E connecting a and p, then we denote by (a, p) this edge. For each vertex v in V
and each subset F of E, we define F (v) as the set of edges in F incident to v.

For each applicant a in A, we are given a transitive binary relation ≿a on E(a) such
that at least one of e ≿a g and g ≿a e holds for every edges e, g in E(a). Notice that
for each applicant a in A and each edges e, g in E(a), there exists a possibility that both
e ≿a g and g ≿a e hold. For each applicant a in A and each edges e, g in E(a), we use
the notation e ≻a g, if e ≿a g and g ̸≿a e. For each applicant a in A and each edges e, g
in E(a), e ≻a g means that a preferes e to g. Furthermore, for each applicant a in A and
each edges e, g in E(a), if e ≿a g and g ≿a e hold, then a is indifferent between e and g.
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As in [1], we assume that for each applicant a in A, there exists a last resort post ℓ(a) in
P such that E(ℓ(a)) = {(a, ℓ(a))}, and e ≻a (a, ℓ(a)) for every edge e in E(a)− (a, ℓ(a)).
In addition, we assume that for every applicant a in A, there exists an edge e in E(a)
such that e ̸= (a, ℓ(a)). For each post p in P , we are given a matroid Mp = (E(p), Ip).
We assume that for every edge (a, p) in E, we have {(a, p)} ∈ Ip.

A subset M of E is called a matching in G, if

• |M(a)| = 1 for every applicant a in A, and

• M(p) ∈ Ip for every post p in P .

For each subset F of E and and each applicant a in A such that |F (a)| = 1, we denote by
µF (a) the unique edge in F (a). For each matchings M,N in G, we denote by ϕ(M ;N)
the number of applicants a in A such that µM(a) ≻a µN(a). A matching M in G is said
to be popular, if for every matching N in G, ϕ(M ;N) ≥ ϕ(N ;M). Then, the goal of the
popular matching problem with ties and matroid constraints (pmtm for short) is to decide
whether there exists a popular matching in G, and find a popular matching if one exists.

2.1 Basics of matroids

Let M = (U, I) be a matroid. A subset of U belonging to I is called an independent set
of M. A subset C of U is called a circuit of M, if C is not an independent set of M,
but every proper subset of C is an independent set of M. Assume that we are given an
independent set I of M and an element u in U \ I such that I + u /∈ I. It is known [23,
Proposition 1.1.6] that there exists a unique circuit of M that is a subset of I + u, and u
belongs to this unique circuit. This unique circuit is called the fundamental circuit of u,
and denoted by CM(u, I). It is known [23, p.20, Exercise 5] that we have

CM(u, I) = {w ∈ I + u | I + u− w ∈ I}.

Notice that if {u} ∈ I, then CM(u, I)− u ̸= ∅.
A maximal independent set of M is called a base of M. Notice that (I2) implies that

every base of M has the same size. For each subset X of U , we define I|X as the family
of subsets I of X such that I ∈ I, and M|X := (X, I|X). It is known [23, p.20] that for
every subset X of U , M|X is a matroid. For each subset X of U , we define rM(X) as the
size of a base of M|X. For each disjoint subsets X, J of U , we define

p(J ;X) := rM(J ∪X)− rM(X).

For each subset X of U , we define

I/X := {J ⊆ U \X | p(J ;X) = |J |},
M/X := (U \X, I/X).

It is known [23, Proposition 3.1.6] that for each subset X of U , M/X is a matroid.

Lemma 1 (see, e.g., [23, Proposition 3.1.7]). Assume that we are given a matroid M =
(U, I), a subset X of U , and a base B of M|X. Then, for every element u of U \X, {u}
is an independent set of M/X if and only if B + u is an independent set of M.
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Lemma 2 (See, e.g., [23, p.15, Exercise 14]). Assume that we are given a matroid M =
(U, I) and circuits C1, C2 of M such that C1 ∩ C2 ̸= ∅ and C1 \ C2 ̸= ∅. Then, for every
element u in C1 ∩C2 and every element w in C1 \C2, there exists a circuit C of M such
that w ∈ C and C is a subset of (C1 ∪ C2)− u.

Lemma 3. Assume that we are given a matroid M = (U, I), an independent set I, J of
M such that J ⊆ I, and an element u in U \ J such that I + u /∈ I and J + u /∈ I. Then,
CM(u, I) = CM(u, J).

Proof. Define C1 := CM(u, I) and C2 := CM(u, J). Assume that C1 ̸= C2. Then, Lemma 2
implies that there exists a circuit C of M such that C ⊆ (C1 ∪C2)− u. Since C1 − u ⊆ I
and C2 − u ⊆ J ⊆ I, we have C ⊆ I. This contradicts the fact that I ∈ I.

Lemma 4. Assume that we are given a matroid M = (U, I), an independent set I of M,
and a subset J of U \ I such that I ∪ J ∈ I. Furthermore, we assume that we are given
subsets X,Y of U \ J such that (I ∪X) \ Y ∈ I and I + x /∈ I for every element x in X.
Then, ((I ∪X) \ Y ) ∪ J is an independent set of M.

Proof. We prove this lemma by contradiction. Assume that ((I ∪X) \ Y ) ∪ J /∈ I. This
implies that there exists a circuit C of M such that C ⊆ ((I ∪X) \ Y )∪ J . If C ∩ J = ∅,
then this contradicts the fact that (I ∪X) \ Y is an independent set of M. Thus, there
exists an element u in J ∩C. If C ∩X = ∅, then this contradicts the fact that I ∪ J is an
independent set of M. Thus, X ∩C is not empty. Assume that X ∩C = {x1, x2, . . . , xk}.
Since u ∈ J , J ∩X = ∅, and J ∩ I = ∅, we have u /∈ CM(xi, I) for every i = 1, 2, . . . , k.

Here we consider the following procedure.

Step 1. Set i := 1 and C0 := C.

Step 2. If i ≤ k, then do the following steps.

(2-a) If xi /∈ Ci−1, then set Ci := Ci−1 and go to (2-c).

(2-b) Find a circuit Ci of M such that u ∈ Ci and Ci ⊆ (Ci−1 ∪ CM(xi, I))− xi.

(2-c) Update i := i+ 1 and go back to the beginning of Step 2.

Step 3. Output Ck.

In Step (2-b), since xi ∈ Ci−1 ∩ CM(xi, I) and u ∈ Ci−1 \ CM(xi, I), Lemma 2 implies
that there exists a circuit Ci of M such that u ∈ Ci and Ci ⊆ (Ci−1∪CM(xi, I))−xi. It is
not difficult to see that Ck is a subset of I ∪ J , which contradicts the fact that I ∪ J ∈ I.
This completes the proof.

Assume that we are given k matroidsM1 = (U1, I1),M2 = (U2, I2), . . . ,Mk = (Uk, Ik)
such that Ui ∩ Uj = ∅ for every distinct i, j = 1, 2, . . . , k. Define

k⊕
i=1

Ii :=
{
X ⊆

k∪
i=1

Ui

∣∣∣ X ∩ Ui is an independent set of Mi for every i = 1, 2, . . . , k
}
.
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Furthermore, we define
k⊕

i=1

Mi :=
( k∪

i=1

Ui,
k⊕

i=1

Ii

)
.

It is not difficult to see that
⊕k

i=1Mi is a matroid.
Let M = (U, I) and N = (U,J ) be matroids. A subset I of U is called a common

independent set of M and N, if I ∈ I ∩ J . We denote by BMN and γMN the family and
the size of maximum-size common independent sets of M and N, respectively. We can
find a maximum-size common independent set of M and N in O(|U |2.5EO) by using the
algorithm of Cunningham [2], where EO is the time required to decide whether X + u is
an independent set of L for every matroid L in {M,N}, every common independent set
X of M and N, and every element u in U \X. Furthermore, for every function ξ : U → Z,
we can find a maximum-size common independent set I of M and N such that

ξ(I) = max{ξ(J) | J ∈ BMN}

in O(|U |3EO) time by using the algorithm of Frank [7].

2.2 Auxiliary graphs and decomposition

Assume that we are given matroids M = (U, I) and N = (U,J ), and a common indepen-
dent set I of M and N. Then, we define a directed graph DMN(I) as follows. The vertex
set of DMN(I) is U . For each elements u of U \ I and v of I,

• there exists an arc from v to u in DMN(I) if and only if I+u /∈ I and v ∈ CM(u, I),

• there exists an arc from u to v in DMN(I) if and only if I+u /∈ J and v ∈ CN(u, I).

These are all arcs of DMN(I). Define

TM(I) := {u ∈ U \ I | I + u ∈ I},
TN(I) := {u ∈ U \ I | I + u ∈ J }.

Lemma 5 (see, e.g., [17, Lemma 13.30]). Assume that we are given matroids M and N
on the same ground set U and a common independent set I of M and N. Then, I is a
maximum-size common independent set of M and N if and only if there exists no directed
path in DMN(I) from a vertex in TM(I) to a vertex in TN(I).

Assume that I is a maximum-size common independent set of M and N. We denote
by Ω+

MN(I) the set of elements u in U such that there exists a directed path in DMN(I)
from a vertex in TM(I) to u. In addition, we define Ω−

MN(I) as the set of elements u in
U such that there exists a directed path in DMN(I) from u to a vertex in TN(I). Notice
that since I is a maximum-size common independent set of M and N, Lemma 5 implies
that Ω+

MN(I) and Ω−
MN(I) are disjoint. Define

ΩMN(I) := U \
(
Ω+

MN(I) ∪ Ω−
MN(I)

)
.

5



Lemma 6. Assume that we are given matroids M and N on the same ground set U and
a common independent set I of M and N. Furthermore, we assume that we are given
a vertex u in TM(I) ∪ I and a vertex v in TN(I) ∪ I, and a shortest directed path L in
DMN(I) from u to v. Then, I△K is a common independent set of M and N, where K
is the set of elements in U that L goes through (notice that since L is a shorted directed
path, L goes through each vertex at most once).

Proof. This lemma immediately follows from [17, Lemma 13.27] and Lemma 4.

Lemma 7 (see, e.g., [11, Lemma 4.2]). Assume that we are given matroids M and N on
the same ground set. Then, for every maximum-size common independent sets I, J of M
and N,

J ∩ Ω−
MN(I) is a base of M|Ω−

MN(I), (1)

J ∩ (ΩMN(I) ∪ Ω−
MN(I)) is a base of M|(ΩMN(I) ∪ Ω−

MN(I)), (2)

J ∩ Ω+
MN(I) is a base of N|Ω+

MN(I), (3)

J ∩ (Ω+
MN(I) ∪ ΩMN(I)) is a base of N|(Ω+

MN(I) ∪ ΩMN(I)). (4)

Although the following lemma is well-known, we give its proof for completeness.

Lemma 8. Assume that we are given matroids M = (U, I) and N = (U,J ). Then, for
every maximum-size common independent sets I, J of M and N, we have

Ω+
MN(I) = Ω+

MN(J),

ΩMN(I) = ΩMN(J),

Ω−
MN(I) = Ω−

MN(J).

Proof. For simplicity, we define DMN(·) := D(·), Ω+
MN(·) := Ω+(·), and Ω−

MN(·) := Ω−(·).
Let I, J be maximum-size common independent sets of M and N.

We first prove that Ω+(I) = Ω+(J). For proving this, we first prove that Ω+(J) ⊆
Ω+(I). Assume that TM(J) ̸⊆ Ω+(I), and let u be an element in TM(J) \ Ω+(I). Then,
J + u ∈ I and (I1) imply that

(J + u) ∩ (Ω(I) ∪ Ω−(I)) = (J ∩ (Ω(I) ∪ Ω−(I))) + u ∈ I,

which contradicts (2). Assume that there exists an arc in D(J) from a vertex u in Ω+(I)
to a vertex v in Ω(I) ∪ Ω−(I). If u is in I, then J + v − u ∈ I. This and (I1) imply that

(J + v − u) ∩ (Ω(I) ∪ Ω−(I)) = (J ∩ (Ω(I) ∪ Ω−(I))) + v ∈ I.

This contradicts (2). If u is not in I, then J + u− v ∈ J . This and (I1) imply that

(J + u− v) ∩ Ω+(I) = (J ∩ Ω+(I)) + u ∈ J .

This contradicts (3). By exchanging the roles of I and J , we can prove that Ω+(I) ⊆
Ω+(J), which implies that Ω+(J) = Ω+(I).
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Next we prove that Ω−(J) = Ω−(I). For proving this, we first prove that Ω−(J) ⊆
Ω−(I). Assume that TN(J) ̸⊆ Ω−(I), and let u be an element in TN(J) \ Ω−(I). Then,
J + u ∈ J and (I1) imply that

(J + u) ∩ (Ω+(I) ∪ Ω(I)) = (J ∩ (Ω+(I) ∪ Ω(I))) + u ∈ J .

This contradicts (4). Assume that there exists an arc in D(J) from u in Ω+(I) ∪ Ω(I) to
v in Ω−(I). If u is in I, then J + v − u ∈ I. This and (I1) imply that

(J + v − u) ∩ Ω−(I) = (J ∩ Ω−(I)) + v ∈ I.

This contradicts (1). If u is not in I, then J + u− v ∈ J . This and (I1) imply that

(J + u− v) ∩ (Ω+(I) ∪ Ω(I)) = (J ∩ (Ω+(I) ∪ Ω(I))) + u ∈ J .

This contradicts (4). By exchanging the roles of I and J , we can prove that Ω−(I) ⊆
Ω−(J), which implies that Ω−(J) = Ω−(I). This completes the proof.

Lemma 8 implies that for every matroids M and N on the same ground set, Ω+
MN(I),

ΩMN(I), and Ω−
MN(I) do not depend a choice of a maximum-size common independent

set I of M and N. Thus, for each matroids M and N on the same ground set and some
maximum-size common independent set I, we define

Ω+
MN := Ω+

MN(I),

ΩMN := ΩMN(I),

Ω−
MN := Ω−

MN(I),

respectively.

3 Characterization

In this section, we give a characterization of a popular matching. Define

U :=
{
F ⊆ E

∣∣∣ |F (a)| ≤ 1 for every applicant a in A
}
,

and A := (E,U). It is not difficult to see that A is a matroid. Define

P :=
⊕
p∈P

Mp.

Notice that for each subset M of E, M is a matching in G if and only if M is a common
independent set of A and P such that |M | = |A|. For each applicant a in A, we define
f(a) by

f(a) :=
{
e ∈ E(a)

∣∣∣ e ≿a g for every edge g in E(a)
}
.
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Notice that for each applicant a in A, there exists a possibility that |f(a)| > 1. Define

Γ :=
∪
a∈A

f(a),

B := A|Γ,

Q := P|Γ
(
=

⊕
p∈P

(Mp|Γ(p))
)
.

In addition, we define

T :=
{
e ∈ E \ Γ

∣∣∣ {e} is an independent set of P/(Ω+
BQ ∪ ΩBQ)

}
.

Notice that for each applicant a in A, since there exists the last resort post ℓ(a), T (a) ̸= ∅.
For each applicant a in A, we define s(a) by

s(a) :=
{
e ∈ T (a)

∣∣∣ e ≿a g for every edge g in T (a)
}
.

In addition, we define

S :=
∪
a∈A

s(a),

Π := Γ ∪ S.

The following characterization can be regarded as a generalization of [1, Lemma 3.5].

Theorem 9. For each matching M in G, M is a popular matching in G if and only if

(P1) M ∩ Γ is a maximum-size common independent set of B and Q, and

(P2) M is a subset of Π.

We first give lemmas that are necessary for proving the only if-part of Theorem 9.

Lemma 10. Assume that we are given a popular matching M in G. Then, M ∩ Γ is a
maximum-size common independent set of B and Q.

Since the proof of Lemma 10 is long, we leave it to Section 3.1.

Lemma 11. Assume that we are given a popular matching M in G. Then, there exists
no applicant a in A such that e ≻a µM(a) ≻a g for edges e in f(a) and g in s(a).

Proof. For proving this lemma by contradiction, we assume that there exists an applicant
a in A such that e ≻a µM(a) ≻a g for edges e in f(a) and g in s(a). Since M is a popular
matching in G, Lemma 10 implies that M ∩Γ is a maximum common independent set of
B and Q. This and Lemma 7 imply that M ∩ (Ω+

BQ ∪ΩBQ) is a base of Q|(Ω+
BQ ∪ΩBQ)

(= P|(Ω+
BQ ∪ ΩBQ)). Define

N := (M ∩ (Ω+
BQ ∪ ΩBQ)) + µM(a). (5)

Since N ⊆ M and M is an independent set of P, N is an independent set of P. Thus, (5)
and Lemma 1 imply that µM(a) is an independent set of P/(Ω+

BQ ∪ΩBQ). However, this
contradicts that fact that µM(a) ≻a g for an edge g in s(a). This completes the proof.
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Lemma 12. Assume that we are given a popular matching M in G. Then, there exists
no applicant a in A such that µM(a) /∈ Π.

We leave the proof of Lemma 12 to Section 3.2.
Next we give a lemma that is necessary for proving the if-part of Theorem 9. For each

matching M in G, we denote by b(M) the set of edges e = (a, p) in E such that e ≻a g
for an edge g in s(a).

Lemma 13. For every matching M in G, we have γBQ ≥ |b(M)|.
Proof. For proving this lemma by contradiction, we assume that there exists a matching
M in G such that γBQ < |b(M)|. Let N be a maximum-size common independent set in
B and Q such that

∀N ′ ∈ BBQ : |M ∩N | ≥ |M ∩N ′|. (6)

Since γBQ < |b(M)|, we have |N | < |b(M)|. In addition, since M is an independent set of
P, (I1) implies that b(M) is an independent set of P. Furthermore, N is an independent
set of P. Thus, (I2) implies that there exists an edge e = (a, p) in b(M) \ N such that
N + e is an independent set of P. Notice that since e is in b(M), e ≻a g for an edge g in
s(a).

We first consider the case where e /∈ Γ. Since N + e is an independent set of P, (I1)
implies that

(N ∩ (Ω+
BQ ∪ ΩBQ)) + e

is an independent set of P. Since it follows from Lemma 7 that N ∩(Ω+
BQ∪ΩBQ) is a base

of Q|(Ω+
BQ ∪ ΩBQ) (= P|(Ω+

BQ ∪ ΩBQ)), {e} is an independent set of P/(Ω+
BQ ∪ ΩBQ).

This contradicts the fact that e ≻a g for an edge g in s(a).
Next we consider the case where e ∈ Γ, i.e., N + e ⊆ Γ. Since N is a maximum-size

common independent set in B and Q, N + e is not an independent set of A. That is,
|N(a)| = 1. In addition, since e ∈ M and M is a matching in G, µN(a) /∈ M . Thus,

|(N + e− µN(a)) ∩M | = |M ∩N |+ 1. (7)

Since N is an independent set of B, N + e − µN(a) is an independent set of B. Since
N + e is an independent set of Q, (I1) implies that N + e − µN(a) is a maximum-size
common independent set in B and Q. These and (7) contradict (6), which completes the
proof.

We are now ready to prove Theorem 9.

Proof of Theorem 9. Since the only if-part follows from Lemmas 10 and 12, we prove the
if-part. Let M be a matching in G satisfying (P1) and (P2), and assume that we are given
a matching N in G. We denote by AM and AN be the sets of applicants a in A such that
µM(a) ≻a µN(a) and µN(a) ≻a µM(a), respectively. If we can prove that |AM | ≥ |AN |,
then the proof is done. For proving this, it is sufficient to construct an injective function
τ : AN → AM .

Lemma 13 and (P1) imply that there exists an injective function

φ : b(N) \ (M ∩ Γ) → (M ∩ Γ) \ b(N).

Let a be an applicant in AN . Since µN(a) ≻a µM(a), (P2) implies that µM(a) is in s(a).
Thus, µN(a) is in b(N) \ (M ∩ Γ). Here we consider the following procedure.
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Step 1. Set i := 1, and define e1 = (a1, p1) as φ(µN(a)).

Step 2. If we have ei ≻ai µN(ai), then we define τ(a) := ai and halt. Otherwise, define
ei+1 := (ai+1, pi+1) as φ(µN(ai)) and update i := i+ 1. Then, repeat Step 2.

For proving that this procedure is well-defined, it is sufficient to prove in Step 2, µN(ai)
is in b(N) \ (M ∩ Γ). Since ei ∈ (M ∩ Γ) \ b(N), if ei ∈ N , then ei ∈ f(ai) implies that
ei ∈ b(N). This contradicts the fact that ei ∈ (M ∩Γ) \ b(N). Thus, ei /∈ N . In addition,
since ei ∈ f(ai), if ei ̸≻ai µN(ai), then µN(ai) ∈ f(ai). Thus, µN(ai) ∈ b(N) \ (M ∩ Γ).

Since G is finite and φ is injective, this procedure halts. Thus, since φ is injective, τ
is clearly injective. This completes the proof.

3.1 Proof of Lemma 10

Here we give a proof of Lemma 10. In the sequel, for each common independent set I of
B and Q, we do not distinguish between each vertex of DBQ(I) and the edge in Γ that
it corresponds to. That is, we may call a vertex of DBQ(I) an edge. Since DBQ(I) is a
directed graph (i.e., it contains only arcs), it does not make any confusion.

Since M is a matching in G, M is a common independent set of A and P. This and
(I1) imply that M ∩Γ is a common independent set of B and Q. For proving this lemma
by contradiction, we assume that M ∩Γ is not a maximum-size common independent set
of B and Q. It follows from this and Lemma 5 that there exist an edge g = (b, q) in
TB(M ∩Γ) and an edge h = (c, r) in TQ(M ∩Γ) such that there exists a directed path in
DBQ(M ∩ Γ) from g to h. Let L be a shortest directed path in DBQ(M ∩ Γ) from g to h,
and we denote by K = {e1, e2, . . . , ek} the set of edges in Γ (i.e., vertices of DBQ(M ∩Γ))
that L goes through. Furthermore, we assume that ei := (ai, pi) for each i = 1, 2, . . . , k,
and L goes through e1, e2, . . . , ek in this order. Notice that e1 = g, ek = h, k is odd, and
ei ∈ M for every i = 2, 4, . . . , k− 1. Define N := M△K and N0 := N −µM(b). Lemma 6
implies that N ∩ Γ (= N0 ∩ Γ) is an independent set of Q.

For completing a proof of Lemma 10, we first prove necessary lemmas (Section 3.1.1),
and then complete a proof of Lemma 3.1 (Section 3.1.2).

3.1.1 Necessary lemmas

Here we prove necessary lemmas for proving Lemma 10.

Lemma 14. For every post p in P − r, we have N(p) ∈ Ip and N0(p) ∈ Ip.

Proof. Let p be a post in P − r. By using Lemma 4, we prove that N(p) ∈ Ip. If we can
prove this, then (I1) implies that N0(p) ∈ Ip.

Define I := M(p) ∩ Γ, J := M(p) \ Γ, X := K(p) \M , and Y := M(p) ∩K. Then,

(I ∪X) \ Y = N(p) ∩ Γ,

((I ∪X) \ Y ) ∪ J = N(p).

Since M is an independent set of P, the definition of P implies that I ∪ J ∈ Ir. In
addition, the definition of Q implies that (I ∪X) \ Y is an independent set of Mp|Γ(p),
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i.e., Mp. Furthermore, for every edge e in X, it follows from the definition of DBQ(M ∩Γ)
that (M ∩ Γ) + e is not an independent set of Q. Thus, since M ∩ Γ is an independent
set of Q, the definition of Q implies that I + e is not an independent set of Mp|Γ(p), i.e.,
Mp. Thus, Lemma 4 implies that N(p) ∈ Ip.

Lemma 15. For every applicant a in A− b, (i) |N(a)| = 1, and (ii) µN(a) ≿a µM(a).

Proof. For every i = 2, 4, . . . , k − 1, since there exists an arc in DBQ(M ∩ Γ) from ei to
ei+1, M + ei+1 − ei is an independent set of B. Thus, the definitions of A implies that
we have ai = ai+1 for every i = 2, 4, . . . , k − 1. This implies that for every applicant a in
A − b, since |M(a)| = 1, we have |N(a)| = 1. Furthermore, since K ⊆ Γ, µN(a) ∈ f(a)
for every applicant a in A− b, which implies (ii). This completes the proof.

Lemma 16. (i) g ≻b µM(b), and (ii) |N0(b)| = 1.

Proof. Since g ∈ TB(M ∩Γ), M(b)∩Γ = ∅. Thus, µM(b) /∈ Γ. This and g ∈ Γ imply that
g ≻b µM(b). As proved in the proof of Lemma 15, ai = ai+1 for every i = 2, 4, . . . , k − 1.
Thus, since µM(b) /∈ Γ, we have K(b) = {g}. This and M(b) = {µM(b)} imply (ii).

We denote by L′ the subpath of L from g to ek−1. Since L is a shortest directed path
in DBQ(M ∩Γ) from g to h, L′ is a shortest directed path in DBQ(M ∩Γ) from g to ek−1.
Define K ′ := K − h. Then, N − h = M△K ′. Lemma 6 implies that (N − h) ∩ Γ is an
independent set of Q.

Lemma 17. N(r)− h ∈ Ir and N0(r)− h ∈ Ir.

Proof. By using Lemma 4, we prove that N(r) − h ∈ Ir. If we can prove this, then (I1)
implies that N0(r)− h ∈ Ir.

Define I := M(r) ∩ Γ, J := M(r) \ Γ, X := K ′(r) \M , and Y := M(r) ∩K ′. Then,

(I ∪X) \ Y = (N(r)− h) ∩ Γ,

((I ∪X) \ Y ) ∪ J = N(r)− h.

Since M is an independent set of P, the definition of P implies that I ∪ J is in Ir. In
addition, the definition of Q implies that implies that (I ∪X) \Y is in Ir. For every edge
e in X, the definition of DBQ(M ∩Γ) implies that (M ∩Γ)+e is not an independent set of
Q. Thus, since M ∩Γ is an independent set of Q, this and the definition of Q imply that
I + e is not an independent set of Mr. Thus, Lemma 4 implies that N(r)− h ∈ Ir.

3.1.2 Completing a proof

We are now ready to complete a proof of Lemma 10. If N0(r) ∈ Ir, then it follows from
Lemmas 14, 15(i), and 16(ii) that N0 is a matching in G. In addition, Lemma 15(ii) and
16(i) imply that ϕ(N0;M) ≥ 1, which contradicts the fact thatM is a popular matching in
G. Thus, in the sequel, we can assume that N0(r) /∈ Ir. In this case, since N0(r) ⊆ N(r),
N(r) is not in Ir. Thus, Lemma 17 implies that CMr(h,N(r)− h) and CMr(h,N0(r)− h)
are well-defined. Define

C := CMr(h,N(r)− h),

C0 := CMr(h,N0(r)− h).

11



Notice that Lemma 3 implies that C = C0.
Since N0 ∩ Γ is an independent set of Q, it follows from the definition of Q that

N0(r) ∩ Γ is in Ir. Thus, C0 ⊆ N0(r) implies that C0 ̸⊆ Γ. Let g1 = (b1, r) be an edge in
C0 \ Γ. Since g ∈ Γ and g1 /∈ Γ, we have g ̸= g1. Thus, since g, g1 ∈ N0, we have b ̸= b1.
Define N1 := N0 − g1. Then, g1 ∈ C0 and Lemmas 14, 15(i), and 16(ii) imply that

• |N1(a)| = 1 for every applicant a in A− b1, and N1(b1) = ∅,

• N1(p) ∈ Ip for every post p in P .

Let h1 = (b1, q1) be an edge in f(b1). We first consider the case where N1(q1) + h1 ∈ Iq1 .
Define N2 := N1 + h1. In this case, N2 is a matching in G. Furthermore, since it follows
from g1 /∈ Γ, Lemmas 15(ii) and 16(i) that

µN2(b) = g ≻b µM(b),

µN2(b1) = h1 ≻b1 g1 = µN(b1) ≿b1 µM(b1),

∀a ∈ A \ {b, b1} : µN2(a) = µN(a) ≿a µM(a),

we have ϕ(N2;M) ≥ 2. These contradict the fact that M is a popular matching in G.
Next we consider the case where N1(q1) + h1 ̸∈ Iq1 . Define

C1 := CMq1
(h1, N1(q1)).

We first assume that at least one of q1 ̸= q and C1 \ {g, h1} ̸= ∅ holds. Let g2 = (b2, q1)
be an edge in C1 \ {g, h1}. Since g2 ̸= g, h1 and g, g2 ∈ N1, we have b2 ̸= b, b1. Define

N3 := N2 − g2 + ℓ(b2).

Then, N3 is a matching in G. Since Lemmas 15(ii) and 16(i) imply that

µN3(b) = g ≻b µM(b),

µN3(b1) = h1 ≻b1 g1 = µN(b1) ≿b1 µM(b1),

µM(b2) ≻b2 ℓ(b2) = µN3(b2),

∀a ∈ A \ {b, b1, b2} : µN3(a) = µN(a) ≿a µM(a),

we have ϕ(N3;M) ≥ 1. This contradicts the fact that M is a popular matching in G.
Next we consider the case where q1 = q and C1 = {g, h1}. Define

N4 := N2 − g + µM(b).

Assume that µM(b) = (b, q′). Notice that q′ ̸= q. If q′ = r, then

N4(r) = N2(r) + µM(b) = N1(r) + µM(b) = N0(r) + µM(b)− g1 = N(r)− g1.

Since g1 ∈ C0 = C, N(r)− g1 ∈ Ir and N4(r) is an independent set of Mr. If q
′ ̸= r, then

N4(q
′) = N2(q

′) + µM(b) = N1(q
′) + µM(b) = N0(q

′) + µM(b) = N(q′).
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Lemma 14 implies thatN4(q
′) is an independent set ofMr. In both cases, N4 is a matching

in G. Furthermore, since Lemma 15(ii) implies that

µN4(b) = µM(b),

µN4(b1) = h1 ≻b1 g1 = µN(b1) ≿b1 µM(b1),

∀a ∈ A \ {b, b1} : µN4(a) = µN(a) ≿a µM(a),

we have ϕ(N4;M) ≥ 1. This contradicts the fact that M is a popular matching in G, and
completes the proof.

3.2 Proof of Lemma 12

In this subsection, we give a proof of Lemma 12.
For proving this lemma by contradiction, we assume that there exists an applicant b

in A such that µM(b) /∈ Π. Then, Lemma 11 implies that e ≻b µM(b) for an edge e in s(b).
Let g = (b, q) be an edge in s(b). Define N := M + g− µM(b). Since N(q) = M(q) + g, if
M(q) + g ∈ Iq, then (I1) implies that N is a matching in G. Furthermore, ϕ(N ;M) = 1.
This contradicts the fact that M is a popular matching in G. Thus, in the sequel, we can
assume that M(q) + g /∈ Iq.

We first consider the case where

CMq(g,M(q))− g ̸⊆ Γ.

Let e1 = (a1, q) be an edge in

(CMq(g,M(q))− g) \ Γ.

Since g ̸= e1 holds, we have a1 ̸= b. Let e2 = (a1, q1) be an edge in f(a1). Since e1 /∈ Γ and
e2 ∈ Γ (i.e., e1 ̸= e2), we have q1 ̸= q. Define N ′ := N + e2 − e1. If N(q1) + e2 ∈ Iq1 , then
N ′ is a matching in G. Furthermore, we have ϕ(N ′;M) = 2, which contradicts the fact
that M is a popular matching in G. Assume that N(q1)+e2 /∈ Iq1 . Let e3 = (a2, q1) be an
edge in CMq1

(e2, N(q1))− e2. Since q1 ̸= q, we have e3 ̸= g. Define N ′′ := N ′ − e3 + ℓ(a2).
Then, N ′′ is a matching in G and we have ϕ(N ′′;M) = 1. This contradicts the fact that
M is a popular matching in G.

Next we consider the case where

CMq(g,M(q))− g ⊆ Γ. (8)

Since g is in s(a), Lemmas 1, 7, and 10 imply

(M ∩ (Ω+
BQ ∪ ΩBQ)) + g

is an independent set of P. This and the definition of P imply that

(M(q) ∩ (Ω+
BQ ∪ ΩBQ)) + g ∈ Iq.

Thus,
CMq(g,M(q))− g ̸⊆ (M(q) ∩ (Ω+

BQ ∪ ΩBQ)).
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This implies that there exists an edge in CMq(g,M(q)) ∩ Ω−
BQ.

Since (8) implies that

CMq(g,M(q)) ⊆ (M(q) ∩ Γ) + g,

we have (M(q) ∩ Γ) + g /∈ Iq. Since (I1) and M(q) ∈ Iq imply that M(q) ∩ Γ ∈ Iq, this
and Lemma 3 imply that

CMq(g,M(q) ∩ Γ) = CMq(g,M(q)).

Thus,
CMq(g,M(q) ∩ Γ) ∩ Ω−

BQ ̸= ∅. (9)

Define C := A|(Γ+ g) and R := P|(Γ+ g). It is not difficult to see that DCR(M ∩Γ)
is obtained from DBQ(M ∩ Γ) as follows.

Step 1. Add g to the vertex set of DBQ(M ∩ Γ).

Step 2. Add an arc from g to every edge in CMq(g,M(q) ∩ Γ).

Furthermore, since µM(b) /∈ f(b), we have

TC(M ∩ Γ) = TB(M ∩ Γ) + g,

TR(M ∩ Γ) = TQ(M ∩ Γ).

It follows from (9) that there exists an edge h in TR(M ∩ Γ) such that there a directed
path in DCR(M ∩Γ) from g to h. Let L be a shortest directed path in DCR(M ∩Γ) from
g to h. We denote by K = {e1, e2, . . . , ek} the set of edges in Γ + g that L goes through.
Assume that ei := (ai, pi) for each i = 1, 2, . . . , k, and L goes through e1, e2, . . . , ek in this
order. Notice that e1 = g, ek = h, k is odd, and ei ∈ M for every i = 2, 4, . . . , k−1. Define
N := M△K and N0 := N − µM(b). Lemma 6 implies that N ∩ (Γ + g) (= N0 ∩ (Γ + g))
is an independent set of R.

For completing a proof of Lemma 12, we first necessary lemmas (Section 3.2.1), and
complete a proof of Lemma 12 (Section 3.2.2).

3.2.1 Necessary lemmas

Here we give necessary lemmas for completing the proof of Lemma 12.

Lemma 18. For every post p in P − r, we have N(p) ∈ Ip and N0(p) ∈ Ip.

Proof. Let p be a post in P − r. By using Lemma 4, we prove that N(p) ∈ Ip. If we can
prove this, then (I1) implies that N0(p) ∈ Ip.

Define I := M(p) ∩ Γ, J := M(p) \ Γ, X := K(p) \M , and Y := M(p) ∩K. Then,

(I ∪X) \ Y = N(p) ∩ (Γ + g),

((I ∪X) \ Y ) ∪ J = N(p).

Since M is an independent set of P, the definition of P implies that I ∪ J is in Ip. In
addition, the definition of R implies that implies that (I ∪X) \Y is in Ip. For every edge
e in X, the definition of DCR(M ∩ Γ) implies that (M ∩ Γ) + e is not an independent set
of R. Thus, since M ∩ Γ is an independent set of R, this and the definition of R imply
that I + e is not an independent set of Mp. Thus, Lemma 4 implies that N(p) ∈ Ip.

14



Lemma 19. For every applicant a in A− b, (i) |N(a)| = 1, and (ii) µN(a) ≿a µM(a).

Proof. For every i = 2, 4, . . . , k − 1, since there exists an arc in DCR(M ∩ Γ) from ei to
ei+1, M + ei+1 − ei is an independent set of C. Thus, the definitions of A implies that
ai = ai+1 for every i = 2, 4, . . . , k − 1. This implies that for every applicant a in A − b,
since |M(a)| = 1, we have |N(a)| = 1. Furthermore, since K − g ⊆ Γ, µN(a) ∈ f(a) for
every applicant a in A− b, which implies (ii). This completes the proof.

Lemma 20. (i) g ≻b µM(b), and (ii) |N0(b)| = 1.

Proof. Since g ∈ s(b) and e ≻b µM(b) for an edge e in s(b), we have g ≻b µM(b). Further-
more, as proved in Lemma 19, we have ai = ai+1 for every i = 1, 3, . . . , k− 1. Thus, since
µM(b) /∈ Γ, we have K(b) = {g}. This and M(b) = {µM(b)} imply (ii).

We denote by L′ the subpath of L from g to ek−1. Since L is a shortest directed path
in DCR(M ∩Γ) from g to h, L′ is a shortest directed path in DCR(M ∩Γ) from g to ek−1.
Define K ′ := K − h. Then, N − h = M△K ′. Lemma 6 implies that (N − h) ∩ (Γ + g) is
an independent set of R.

Lemma 21. N(r)− h ∈ Ir and N0(r)− h ∈ Ir.

Proof. By using Lemma 4, we prove that N(r) − h ∈ Ir. If we can prove this, then (I1)
implies that N0(r)− h ∈ Ir.

Define I := M(r) ∩ Γ, J := M(r) \ Γ, X := K ′(r) \M , and Y := M(r) ∩K ′. Then,

(I ∪X) \ Y = (N(r)− h) ∩ (Γ + g),

((I ∪X) \ Y ) ∪ J = N(r)− h.

Since M is an independent set of P, the definition of P implies that I ∪ J is in Ir. In
addition, the definition of R implies that (I ∪X) \ Y is in Ir. For every edge e in X, the
definition of DCR(M ∩Γ) implies that (M ∩Γ)+ e is not an independent set of R. Thus,
since M ∩ Γ is an independent set of R, this and the definition of R imply that I + e is
not an independent set of Mr. Thus, Lemma 4 implies that N(r)− h ∈ Ir.

3.2.2 Completing a proof

We are now ready to complete a proof of Lemma 12. If N0(r) ∈ Ir, then it follows from
Lemmas 18, 19(i), and 20(ii) that N0 is a matching in G. Furthermore, Lemma 19(ii) and
20(i) imply that ϕ(N0;M) ≥ 1, which contradicts the fact thatM is a popular matching in
G. Thus, in the sequel, we can assume that N0(r) /∈ Ir. In this case, since N0(r) ⊆ N(r),
N(r) is not in Ir. Lemma 21 implies that CMr(h,N(r) − h) and CMr(h,N0(r) − h) are
well-defined. Define

C := CMr(h,N(r)− h),

C0 := CMr(h,N0(r)− h).

Lemma 3 implies that C = C0.
Since N0∩ (Γ+ g) is an independent set of R, the definition of R implies that N0(r)∩

(Γ + g) is in Ir. Thus, if C0 ⊆ Γ+ g, then C0 ⊆ N0(r) implies that C0 ⊆ N0(r)∩ (Γ + g).
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This contradicts the fact that N0(r)∩ (Γ+ g) ∈ Ir. Thus, C0 ̸⊆ Γ+ g. Let g1 = (b1, r) be
an edge in C0 \ (Γ + g). Notice that since g ̸= g1 and g, g1 ∈ N0, we have b ̸= b1. Define
N1 := N0 − g1. Then, g1 ∈ C0 and Lemmas 18, 19(i), and 20(ii) imply that

• |N1(a)| = 1 for every applicant a in A− b1, and N1(b1) = ∅,

• N1(p) ∈ Ip for every post p in P .

Let h1 = (b1, q1) be an edge in f(b1). We first consider the case where N1(q1) + h1 ∈ Iq1 .
Define N2 := N1 + h1. In this case, N2 is a matching in G. Furthermore, since it follows
from g1 /∈ Γ, Lemmas 19(ii) and 20(i) that

µN2(b) = g ≻b µM(b),

µN2(b1) = h1 ≻b1 g1 = µN(b1) ≿b1 µM(b1),

∀a ∈ A \ {b, b1} : µN2(a) = µN(a) ≿a µM(a),

we have ϕ(N2;M) ≥ 2. These contradict the fact that M is a popular matching in G.
Next we consider the case where N1(q1) + h1 ̸∈ Iq1 . Define

C1 := CMq1
(h1, N1(q1)).

We first assume that at least one of q1 ̸= q and C1 \ {g, h1} ̸= ∅ holds. Let g2 = (b2, q1)
be an edge in C1 \ {g, h1}. Since g2 ̸= g, h1 and g, g2 ∈ N1, we have b2 ̸= b, b1. Define

N3 := N2 − g2 + ℓ(b2).

Then, N3 is a matching in G. Since Lemmas 19(ii) and 20(i) imply that

µN3(b) = g ≻b µM(b),

µN3(b1) = h1 ≻b1 g1 = µN(b1) ≿b1 µM(b1),

µM(b2) ≻b2 ℓ(b2) = µN3(b2),

∀a ∈ A \ {b, b1, b2} : µN3(a) = µN(a) ≿a µM(a),

we have ϕ(N3;M) ≥ 1. This contradicts the fact that M is a popular matching in G.
Next we consider the case where q1 = q and C1 = {g, h1}. Define

N4 := N2 − g + µM(b).

Assume that µM(b) = (b, q′). Notice that q′ ̸= q. If q′ = r, then

N4(r) = N2(r) + µM(b) = N1(r) + µM(b) = N0(r) + µM(b)− g1 = N(r)− g1.

Since g1 ∈ C0 = C, N(r)− g1 ∈ Ir and N4(r) is an independent set of Mr. If q
′ ̸= r, then

N4(q
′) = N2(q

′) + µM(b) = N1(q
′) + µM(b) = N0(q

′) + µM(b) = N(q′).

Lemma 18 implies thatN4(q
′) is an independent set ofMr. In both cases, N4 is a matching

in G. Furthermore, since Lemma 19(ii) implies that

µN4(b) = µM(b),

µN4(b1) = h1 ≻b1 g1 = µN(b1) ≿b1 µM(b1),

∀a ∈ A \ {b, b1} : µN4(a) = µN(a) ≿a µM(a),

we have ϕ(N4;M) ≥ 1, which contradicts the fact that M is a popular matching in G.
This completes the proof.
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4 Algorithm

In this section, we propose our algorithm for pmtm. Define a function ξ : Π → {0, 1} by

ξ(e) :=

{
1 if e ∈ Γ

0 if e ∈ Π \ Γ.

Our algorithm PMTM is described as follows.

Algorithm PMTM

Step 1. Compute Π, and define A′ := A|Π and P′ := P|Π.

Step 2. Find a maximum-size common independent set M of A′ and P′ such that

ξ(M) = max{ξ(N) | N ∈ BA′P′}.

Step 3. If ξ(M) = γBQ and |M | = |A| hold, then output M and halt (in this case, M
is a popular matching in G). Otherwise, output null and halt (in this case, there
exists no popular matching in G).

End of Algorithm

For proving the correctness of the algorithm PMTM, we need the following lemma.

Lemma 22. Assume that we are given a popular matching M in G. Then, M is a
common independent set of A′ and P′ such that ξ(M) = γBQ and |M | = |A|.

Proof. Since M is a matching in G, M is a common independent set of A and P such
that |M | = |A|. In addition, (P2) of Theorem 9 implies that M is a subset of Π. Thus, M
is a common independent set of A′ and P′. Since (P1) of Theorem 9 implies that M ∩ Γ
is a maximum-size common independent set of B and Q, we have |M ∩ Γ| = γBQ, i.e.,
ξ(M) = γBQ. This completes the proof.

We are now ready to prove the correctness of the algorithm PMTM.

Theorem 23. The algorithm PMTM can correctly solve pmtm.

Proof. Let M be a common independent set of A′ and P′ that is found in Step 2 of the
algorithm PMTM. If the algorithm PMTM outputs M , then M is a matching and Theorem 9
implies that M is a popular matching in G.

Assume that the algorithm PMTM outputs null. Since M is a common independent set
of A and P, (I1) implies that M ∩ Γ is a common independent set of B and Q. Thus,
|M ∩Γ| ≤ γBQ, which implies that ξ(M) ≤ γBQ. Furthermore, since |M(a)| ≤ 1 for every
applicant a in A, we have |M | ≤ |A|. Thus, ξ(M) < γBQ and/or |M | < |A|. We prove
that in this case, there exists no popular matching in G by contradiction. Assume that
there exists a popular matching N in G. Then, Lemma 22 implies that N is a common
independent set of A′ and P′ such that ξ(N) = γBQ and |N | = |A|. If |M | < |A|, then
the existence of N contradicts the fact that M is a maximum-size common independent
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set of A′ and P′. If ξ(M) < γBQ and |M | = |A|, then the existence of N contradicts the
fact that

ξ(M) = max{ξ(N ′) | N ′ ∈ BA′P′}.

Thus, there exists no popular matching in G. This completes the proof.

Here we consider the time complexity of the algorithm PMTM. We denote by EO the
time required to decide whether I + e ∈ Ip for every post p in P , every independent set
I of Mp, and every edge e in E(p) \ I. Define m := |E|. For simplicity, we assume that
E(p) ̸= ∅ for every post p in P and EO = Ω(m). Furthermore, we assume that for every
applicant a in A and every edges e, g in E(a), we can decide in O(1) time whether e ≿a g
holds.

We first consider the time complexity of Step 1. It is not difficult to see that we can
compute f(a) for all applicants a in O(m) time. For computing s(a) for all applicants a in
A, we first compute Ω+

BQ, ΩBQ, and Ω−
BQ in O(m2.5EO) time by finding a maximum-size

common independent set of B and Q via the algorithm of Cunningham [2]. Then, we find
a base B of P|(Ω+

BQ∪ΩBQ) in O(mEO) time. Lemma 1 implies that by using the base B,
we can compute s(a) for all applicants a in A in O(mEO) time. Thus, we can compute Π
in O(m2.5EO) time.

Next we consider the time complexity of Step 2. It is not difficult to see that we can
decide in O(m) time whether M + e is an independent set of A′ for every independent
set M of A′ and every edge e in Π \M . Furthermore, it is not difficult to see that we can
decide in O(EO) time whether M + e is an independent set of P′ for every independent
set M of P′ and every edge e in Π\M . Thus, in Step 2, we can find a desired maximum-
size common independent set of A′ and P′ in O(m3EO) time by using the algorithm of
Frank [7]. Thus, the time complexity of the algorithm PMTM is O(m3EO).
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(1)
8

MI2009-13 Hidenao IWANE, Hitoshi YANAMI, Hirokazu ANAI & Kazuhiro YOKOYAMA
A Practical Implementation of a Symbolic-Numeric Cylindrical Algebraic Decompo-
sition for Quantifier Elimination

MI2009-14 Yasunori MAEKAWA
On Gaussian decay estimates of solutions to some linear elliptic equations and its
applications



MI2009-15 Yuya ISHIHARA & Yoshiyuki KAGEI
Large time behavior of the semigroup on Lp spaces associated with the linearized
compressible Navier-Stokes equation in a cylindrical domain

MI2009-16 Chikashi ARITA, Atsuo KUNIBA, Kazumitsu SAKAI & Tsuyoshi SAWABE
Spectrum in multi-species asymmetric simple exclusion process on a ring

MI2009-17 Masato WAKAYAMA & Keitaro YAMAMOTO
Non-linear algebraic differential equations satisfied by certain family of elliptic func-
tions

MI2009-18 Me Me NAING & Yasuhide FUKUMOTO
Local Instability of an Elliptical Flow Subjected to a Coriolis Force

MI2009-19 Mitsunori KAYANO & Sadanori KONISHI
Sparse functional principal component analysis via regularized basis expansions and
its application

MI2009-20 Shuichi KAWANO & Sadanori KONISHI
Semi-supervised logistic discrimination via regularized Gaussian basis expansions

MI2009-21 Hiroshi YOSHIDA, Yoshihiro MIWA & Masanobu KANEKO
Elliptic curves and Fibonacci numbers arising from Lindenmayer system with sym-
bolic computations

MI2009-22 Eiji ONODERA
A remark on the global existence of a third order dispersive flow into locally Hermi-
tian symmetric spaces

MI2009-23 Stjepan LUGOMER & Yasuhide FUKUMOTO
Generation of ribbons, helicoids and complex scherk surface in laser-matter Interac-
tions

MI2009-24 Yu KAWAKAMI
Recent progress in value distribution of the hyperbolic Gauss map

MI2009-25 Takehiko KINOSHITA & Mitsuhiro T. NAKAO
On very accurate enclosure of the optimal constant in the a priori error estimates
for H2

0 -projection

MI2009-26 Manabu YOSHIDA
Ramification of local fields and Fontaine’s property (Pm)

MI2009-27 Yu KAWAKAMI
Value distribution of the hyperbolic Gauss maps for flat fronts in hyperbolic three-
space

MI2009-28 Masahisa TABATA
Numerical simulation of fluid movement in an hourglass by an energy-stable finite
element scheme

MI2009-29 Yoshiyuki KAGEI & Yasunori MAEKAWA
Asymptotic behaviors of solutions to evolution equations in the presence of transla-
tion and scaling invariance



MI2009-30 Yoshiyuki KAGEI & Yasunori MAEKAWA
On asymptotic behaviors of solutions to parabolic systems modelling chemotaxis

MI2009-31 Masato WAKAYAMA & Yoshinori YAMASAKI
Hecke’s zeros and higher depth determinants

MI2009-32 Olivier PIRONNEAU & Masahisa TABATA
Stability and convergence of a Galerkin-characteristics finite element scheme of
lumped mass type

MI2009-33 Chikashi ARITA
Queueing process with excluded-volume effect

MI2009-34 Kenji KAJIWARA, Nobutaka NAKAZONO & Teruhisa TSUDA
Projective reduction of the discrete Painlevé system of type(A2 +A1)
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Semi-discrete finite difference multiscale scheme for a concrete corrosion model: ap-
proximation estimates and convergence

MI2011-14 Jun-ichi INOGUCHI, Kenji KAJIWARA, Nozomu MATSUURA & Yasuhiro OHTA
Explicit solutions to the semi-discrete modified KdV equation and motion of discrete
plane curves

MI2011-15 Hiroshi INOUE
A generalization of restricted isometry property and applications to compressed sens-
ing

MI2011-16 Yu KAWAKAMI
A ramification theorem for the ratio of canonical forms of flat surfaces in hyperbolic
three-space

MI2011-17 Naoyuki KAMIYAMA
Matroid intersection with priority constraints

MI2012-1 Kazufumi KIMOTO & Masato WAKAYAMA
Spectrum of non-commutative harmonic oscillators and residual modular forms

MI2012-2 Hiroki MASUDA
Mighty convergence of the Gaussian quasi-likelihood random fields for ergodic Levy
driven SDE observed at high frequency



MI2012-3 Hiroshi INOUE
A Weak RIP of theory of compressed sensing and LASSO

MI2012-4 Yasuhide FUKUMOTO & Youich MIE
Hamiltonian bifurcation theory for a rotating flow subject to elliptic straining field

MI2012-5 Yu KAWAKAMI
On the maximal number of exceptional values of Gauss maps for various classes of
surfaces

MI2012-6 Marcio GAMEIRO, Yasuaki HIRAOKA, Shunsuke IZUMI, Miroslav KRAMAR,
Konstantin MISCHAIKOW & Vidit NANDA
Topological Measurement of Protein Compressibility via Persistence Diagrams

MI2012-7 Nobutaka NAKAZONO & Seiji NISHIOKA

Solutions to a q-analog of Painlevé III equation of type D
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