
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

An Estimating Model for the Number of Node
Accesses in NN Search

Feng, Yaokai
Department of Intelligent Systems, Graduate School of Information Science and Electrical
Engineering, Kyushu University : Graduate Student

Makinouchi, Akifumi
Department of Intelligent Systems, Faculty of Information Science and Electrical Engineering,
Kyushu University

https://doi.org/10.15017/1525449

出版情報：九州大学大学院システム情報科学紀要. 7 (2), pp.87-92, 2002-09-26. 九州大学大学院シス
テム情報科学研究院
バージョン：
権利関係：

An Estimating Model for the Number of Node Accesses in NN Search

 Yaokai FENG* , Akifumi MAKINOUCHI**

 (Received June 14, 2002)

Abstract: Nearest Neighbor (NN) search has been widely used in spatial databases (e.g., find
neighbor cities) and multimedia databases (e.g., similarity search). However, the theoretical
analysis on its performance with m (the number of neighbor objects reported finally), n (the car-
dinality of database) and d (the dimensionality) as parameters has not been done yet. This paper
presents an analytical model for estimating performance of the newest NN search algorithm using
uniformly distributed objects, focusing on the number of node accesses. The theoretical analysis
is verified by experiments.

Keywords: Multidimensional index, Nearest neighbor search, Estimating model

 1. Introduction

 During the last decade, the increase in the num-
ber of computer applications that rely heavily on
spatial data and on multimedia data has caused
the database community to focus on the manage-
ment and retrieval of multidimensional data. Near-
est Neighbor (NN) search is very important in Ge-
ographic Information Systems (GIS) as well as in
Multimedia Applications. For example, in GIS ap-
plications, NN search can be used to find the neigh-
bor cities, schools or factories to a given location. In
multimedia database fields, NN search can be used
to perform similarity search, which is a very popular
kind of content-based search.

 This paper analyzes performance of the newest
NN search algorithm for uniformly distributed point
data with m (the number of neighbor objects re-
ported finally), n (the cardinality of database) and
d (the dimensionality of the space where the points
are located) as parameters. The analysis focuses on
the number of node accesses, which is a very im-
portant factor on performance of NN search. The
theoretical analysis is verified by experimental re-
sults.
 This paper is organized as follows: Related stud-

ies and the motivation of our investigation are pre-
sented in Section 2. The analytical model for esti-
mating performance of the newest NN search algo-
rithm is presented in Section 3. The model presented
in this paper is verified by experiments in Section
4. The conclusion is drawn in Section 5.

* Department of Intelligent Systems, Graduate Student

** Department of Intelligent Systems

 2. Related Work
 Before giving related work, R-tree and NN search

on it are explained briefly.

 2.1 R-trees
 R-trees are widely used in multi-dimensional

databases and they are regarded as being among
the best multi-dimensional indexes.

 An R-tree is a hierarchy of nested d-dimensional
MBRs (Minimum Bounding Rectangles). MBR is
a hyper-rectangle that minimally bounds the ob-

jects in the corresponding subtree. Each non-leaf
node of the R-tree contains an array of entries, each
of which consists of a pointer and an MBR (note
that each MBR can be indicated by two points).
The pointer refers to one child node of this node
and the MBR is the minimum bounding rectangle
of the child node referred to by the pointer. Each
leaf node of the R-tree contains an array of entries,
each of which consists of an object identifier and its
corresponding point (for point-objects) or its MBR

(for extended-objects). The capacity of each node
except the root node is usually chosen such that a
node fills up one disk page (or a small number of
pages).
 In an R-tree for point objects, since it needs

two points to indicate each MBR in non-leaf nodes,
the fanout of leaf nodes is twice as much as that of
non-leaf-root nodes. The fanout of the root node
should be greater than one. That is, 1 < fr < M,
m< f2<M and 2m< fl<2M,where fr., fi and

fi refer to the fanouts of root node, non-leaf-root
nodes and leaf nodes, respectively; m and M are
the minimum and the maximum limitation on the
fanout of its non-leaf-root nodes, respectively.

 2.2 NN search on R-trees
 The existing NN search algorithms can be classi-

fied into two different groups. One group is k-NN
search algorithms, where k, the number of neighbor

 objects to be retrieved, is known and fixed in ad-
vance. The other is Incremental NN (INN) search
algorithms, which can also be used when the num-
ber of neighbor objects to be retrieved is unknown
and is not fixed in advance. The INN search algo-
rithms find and report the neighbor objects one by
one from the nearest one until the user is satisfied
with the search result. The INN search algorithm')
has been regarded as the optimal one because of
the minimum number of node accesses6). Thus, the
INN search is analyzed in this paper.

 The key of the INN search algorithm is to use
one priority queue to contain objects and nodes of
the index. The objects and the nodes in the priority

queue are sorted in ascending order of their distance
values (for objects) or MINDISTs (for nodes) from
the given query point, where MINDIST is the
minimum distance of a node (i.e., its MBR) from
the query point. Initially, the priority queue is emp-
ty. This algorithm begins with inserting the root
node in the priority queue. The members (nodes or
objects) of the priority queue are dequeued one by
one. If the dequeued member is a non-leaf node,
then all of its child nodes are inserted in the prior-
ity queue. If the dequeued member is a leaf node,
then all of its objects are inserted. If the dequeued
member is an object, this object is reported as the
newest neighbor object. The algorithm repeats the
"dequeue-insert" process untill user is satisfied with

the search result or a wanted number of NN objects
have been reported.

 2.3 Performance Analysis of Nearest
 Neighbor Search

 Stefan Berchtold et al. present a cost model for
NN search6). However, as pointed out in the con-
clusion section of that paper, the cost model can
be used for 1-NN search only. That is, the cost
model can be used only in the case that one NN ob-

ject is reported and that model can not simply be
generalized to an arbitrary number of NN objects
reported finally. Moreover, it analyzes the number
of accessed leaf nodes only.

 There are still some performance analytic works
for some other search algorithms, including the
work2) is for k-NN algorithm when k=1 and the
work4) is for range query algorithm.

With m (the number of neighbor objects report-

ed finally), n (the cardinality of database) and d

(the dimensionality of the space where the points
are located) as parameters, this paper presents a
estimating model for the number of node accesses
in INN search. To our knowledge, this work has not
been done yet.

 3. Estimating the Number of Node Ac-
 cesses in INN Search

The number of node accesses is an important fac-
tor on search performance. For disk-resident index-
es, it is directly related to the number of disk I/O
operations; for memory-resident indexes, it is di-
rectly related to the number of cache misses. In
fact, the number of node accesses is often analyzed
in the works on the performance analyzing of search
algorithms.

For simplicity, like some other works1)'5), we as-
sume that both data objects and the query points
are uniformly distributed in the domain. Without
loss of generality, as in other analytical works2)A),
we assume that the data domain is a unit hyper-
square and we think that, in this case, it is reason-
able to assume that the R-tree nodes of the same
height have square-like MBRs roughly of the same
sizel)'45).
 Some symbols used in the analysis and their de-

scription are shown in Table 1.

Table 1 some symbols and their descriptions.

 Here the definition of search region is given as

follows.

 Definition (search region):
 We wish to analyze the situation up to m neigh-

bor objects have been reported. Let o be the m-th

neighbor object of the query point q, and dm is dis-

tance of o from q. The region within distance dm

from q is called the search region.

 Then, let us consider the appearance of the pri-

ority queue when the m-th neighbor object is de-

queued, which is shown in Fig. 1. In this figure,
the black dots are objects and the rectangles are

nodes.

dequeued, the expected number of nodes in level h

that have been inserted and that still remain in the

 priority queue, Nh,le ft, is given by

Fig.1 Priority queue when the m-th nearest neighbor is

 dequeued.

Proof:
(1) When h> 1, at the parent level of level h (i.e.,

level h-1), there are Nh_1,dequeued nodes have been
dequeued and all their fi • Nh_1,dequeued child nodes
in level h have been inserted in the priority queue.
Of these nodes in level h that have been inserted in
the queue, Nh,dequeued nodes have been dequeued.
Therefore,

Proposition 1
 At the moment when the m-th neighbor object is

dequeued, the following equation must be true.
 Nh,dequeued = Nh,inter

where h refers to the level of R-tree and 0 < h <
H —1. Nh,dequeued refers to the number of nodes in
level h that have been dequeued from the priority

queue. Nh,inter refers to the number of nodes in
level h that intersect with the search region.
Proof:
 Remember that all the members of the prior-

ity queue are sorted in ascending order of their
distances (for objects) or MINDISTs (for nodes)
from the query point. And the MINDIST value
of any child node of each node, obviously, must be

greater than or equal to the MI NDI ST value of
this node. Thus,

(1) the MI NDI ST value of any node dequeued
from the queue must be less than dm. That is, they
must intersect with or be contained in the search
region, and

 (2) on the other hand, it is impossible for the
nodes whose MINDISTs are less than dm still to
stay in the queue or to be contained in some node
that still stays in the queue. In other words, all the
nodes that intersect with or that are contained in
the search region must have been dequeued. ^

Proposition 1 means that the number of nodes in
any level that have been dequeued from the queue
must be the same as the number of nodes in this
level that intersect with the search region.
Proposition 2

 At the time when the m-th neighbor object is

(2) When h= 1, then the parent of this level is the
root node and all the fr nodes in this level have
been inserted. Of these fr nodes, Nh,inter nodes
have been dequeued. Thus, in this case, Nh,le ft is
the difference of fr. and Nh,inter ̂
Proposition 3

 For uniformly distributed query point, the prob-
ability of the query point being contained in any
node is the volume of this node.
Proof:
 Obviously, if the query point is uniformly locat-

ed in the whole data space, the probability of the
query point being contained in one node, Pnode, is
given by:

According to our assumptions given at the begin-
ning of this section, the volume of the whole space
is one. Thus, Pnode is the volume of this node. ^

 3.1 Expected Distance From Query
Point to m-th NN Object

 It is clear that the object density in the search
region is the same as that in the whole space since

the objects are distributed uniformly in the whole
space. That is,

 mn(1)
 V olregion V 0 whole

where Volwhole refers to the volume of the whole

space and V olregion is the volume of the search re-

gion, a d-dimensional hyper sphere with dm as its
radius. Volwhole is one according to our assump-

tions and, according to the knowledge of geometry,

V olregion is given by

~d
Volregion = F(d/2

+ 1) dm

r(x+1) =x•r(x)
r(1)=1
r(1/2) _ rn

 Therefore, dm can be estimated as follows:

 dm_dmr(d/2 + 1)(2)
 n 7f d

 3.2 Expected Side of Each Node
 It is clear that the expected number of nodes in

level h, nh, can be given by

nh = fr fh-1 (h > 1)(3)

Therefore, the expected number of objects in each
node of level h is n/nh. Being same as the analyzing
in Section 3.1, the following equation is true.

 V olnode1
V 01whole nh

Thus,

d 1 Volnode=Grh= n

h That is, the expected side of each node in level h,

ah, can be given by

 l l h-1

 Qh = nh= f rd•fid(4)

Considering the number of leaf nodes is R, then the
expected side of each leaf node, ai, can be given by

n -a

Ql =f
l(5)

 3.3 Estimating Model For the Number

 of Node Accesses

Proposition 4

 For uniformly distributed query point, the proba-

bility of the search region intersecting with or being

contained in any node of level h, Ph,intersect, is given

by:

d

 ~

 d(d-i) ~ai
 T=i~hr(i/2 + 1)dm

i=0

Ph,intersect = min{T, 1}
where dm is estimated by Equation (2) and 0h can
given by Equation (4).
Proof:

See Fig. 2. The rectangle is a node MBR in lev-
el h whose side length is ah. The dotted circle has
the same size as the search region and touches the
side of the node MBR. The round-corner rectangle
(called Minkowski-sum) is the trace of the center of
the dotted circle after the dotted circle makes a cir-
cuit, keeping the touching state, along the sides of
the node MBR.

Fig.2 Example of Minkowski-sum in 2-dimensional

 space.

 Obviously, if the search region intersects with the

MBR of this node, then the center of the search

region, q, is located in the Minkowski-sum of this

node and vice versa. That is,

Ph ,intersect = Pq,mink = VOlmink

where Pq ,mink refers to the the probability that q
is contained in the Minkowski-sum; Volmink is the

volume of Minkowski-sum. Thus, calculating the

volume of Minkowski-sum in d-dimensional space is

 necessary for calculating Ph,intersect •

 A calculating method the volume of Minkowski-

sum in d-dimensional space has been proposed and

mathematically proved by ChangZhou Wang and X.

Sean Wang7> as follows.

 Volmink =(d)Qd-2(6)
 i h i

=0

As mentioned in Section 3.1, Qi can be given by

 ~Zd(7) Ni

 i

 Qi =F(i/2 + 1)

 If Equation (7) are substituted into Equation

(6) and Ph,intersect = VOlmink < 1 is considered,
Proposition 4 can be proved. ^

 Lemma 1 The expected number of nodes in level
h that intersect with the search region, Nh,inter, can
be given by:

Nh,inter = nh • Ph,intersect(8)

where Ph,intersect is estimated by Proposition 4 and
nh can be given by Equation (3).

 Proof: Since f is the average number of entries
in each node, it is clear that the expected number of
nodes in level h is nh. Thus, to calculate the expect-
ed number of nodes in level h that intersect with the
search region, we have to sum the probabilities of
each node in this level. Since the probabilities of
nodes are the same each other, the number of nodes
in this level that intersect with the search region can
be given by multiplying the probability of one node
with the number of nodes in this level, nh. ^

 According to Proposition 1 and considering that
the root node must be accessed, by the moment
when the m-th neighbor object is reported, the ex-
pected number of node accesses (i.e., the number
of nodes that have been dequeued from the queue),
Accessesnode, is given by

H-1
ACCesSeSnode = 1+ E Nh,inter(9)

h=1

where H is the height of the R-tree, Nh,inter is given
by Equation (8).

Note that fr., L, ft and H will be discussed in
Section 3.4.

3.4 Discussion of fr, f2, ft and H
The estimating methods of fr., .fi, ft and H are

still not presented in the above equations.
 According to the analysis made by C. Faloutsos

and I. Kame14>,

fi=Fanoutxu (10)

where Fanout is the maximum numbers of entries
in each non-leaf node. u is the average node utiliza-
tion (typically, 70% for the R*-tree4)). Note that
(1) Fanout is given by user and it decides the size
of each node. (2) All experiments in this study is
performed with R*-tree. Thus, fi can be given by

f i = 0.7 * Fanout

As mentioned in Section 2.1,

 fl=2.fi 1<.fr<_.fi(11)

It is clear that

 n = fr • f(H-2)• ft (12)
 = 2 fr . f (H-1)

Thus,

2f(H-1) <n<2fix

That is,

log fi (n/2) < H < log fi (n/2) + 1

That means

H = [log f, (n/2)1

Considering Equation (12), then fr can be given by

fr =
2 f(H-1)

 4. Experimental Evaluation

 Using uniformly distributed points we verified our
estimation formulas as the three parameters (i.e., d,
n and m) change.

 The tested results are shown in Table 2, Table
3 and Table 4 along with the calculated results.

 From these results, we can observe that
 1. as dimensionality increases, the gap between

calculated result and test result gets large. We think

Table 2 Verification of the estimation formulas as d
 increases (n=40000, m=40).

Table 3 Verification of the estimation formulas as m

grows (d=4, n=40,000, Fanout=20).

Table 4 Verification of the estimation formulas as n
increases (d=4, m=40, Fanout=20).

this is because in high-dimensional spaces, the ob-
jects become very sparse and it seems that some
other factor(s) should be taken into account in very-
high-dimensional spaces. Anyway, according to our
experiments, the error rate can be reduced if we use
bigger databases. Note that, R*-tree can not be
used efficiently for very-high-dimensional spaces.

 2. the change of m has not much influence on the
degree of accuracy of our model when m is relatively
very small to the cardinality of the database. An-
other observation is that performance of the INN
search algorithm degrades as m increases.

 3. the gap between the calculated result and the
test result tends to become smaller as the database
becomes larger. We think this is because that larg-

er databases of uniformly distributed points tend to

meet well the assumptions in our analysis.

 From all above results, we observe that the test

results are generally close to the calculated results,

which means that the performance of the INN

search algorithm for uniformly distributed objects

is mathematically verified.

 5. Conclusion

 In this paper we proposed a model for uniform-

ly distributed point data to mathematically analyze

performance of the newest NN search algorithm
with in (the number of neighbor objects reported
finally), n (the cardinality of database) and d (the
dimensionality) as parameters. The experimental
results show that our model is efficient for the ob-
jects with the dimensionality less than 10. Although
the model is presented for uniformly distributed da-
ta, we think, as the parameters (m, n, d) change
the performance tendency of uniformly distributed
points revealed by our model is roughly similar to
that with actual databases. We believe that the an-
alyzing method can be applied to other performance
analysis, too.

 References
1) G.R. Hjaltason, H. Samet. "Distance Browsing in Spa-

 tial Database". ACM Transactions on Database Sys-
 tems, Vol. 24, No. 2, pages 265-318, June 1999.

 2) A. Papadopoulos, Y. Manolopoulos. "Performance of
 Nearest Neighbor Queries in R-trees". In Proceedings

 of International Conference on Database Theory, pages
 394-408, Delphi, Greece, January 1997.

3) Y. FENG, M. KUBO et al: A New SOM-based R*-tree:
 Building and Retrieving. Research Reports on Infor-

 mation Science and Electrical Engineering of Kyushu
 University. Vol.6, No.2, 2001: 209-214.

 4) C. Faloutsos, I. Kamel. "Beyond Uniformity and In-
 dependence: Analysis of R-trees Using the Concept

 of Fractal Dimension". In Proceedings of ACM PODS
 Symposium, pages 4-13, 1994.

 5) K. Kim, S. K. Cha, K. Kwon. "Optimizing Multidimen-
 sional Index Trees for Main Memory Access". In Pro-

 ceedings of ACM SIGMOD International Conference on
 Management of Data, pages 139-150, Santa Barbara,

 California, USA, 2001.
 6) S. Berchtold, C. Bohm, D. A. Keim, HP. Kriegel.

"A Cost Model For Nearest Neighbor Search in High-
 Dimensional Data Space". in Proceedings of PODS,

 pages 78-86, Tucson, Arizona, 1997.
 7) Changzhou Wang, Xiaoyang Sean Wang: Indexing very

 high-dimensional sparse and quasi-sparse vectors for
 similarity searches. VLDB Journal 2001(9): 344-361.

