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An Estimating Model for the Number of Node Accesses in NN Search 
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Abstract: Nearest Neighbor (NN) search has been widely used in spatial databases (e.g., find 
neighbor cities) and multimedia databases (e.g., similarity search). However, the theoretical 
analysis on its performance with m (the number of neighbor objects reported finally), n (the car-
dinality of database) and d (the dimensionality) as parameters has not been done yet. This paper 
presents an analytical model for estimating performance of the newest NN search algorithm using 
uniformly distributed objects, focusing on the number of node accesses. The theoretical analysis 
is verified by experiments. 
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 1. Introduction 

 During the last decade, the increase in the num-
ber of computer applications that rely heavily on 
spatial data and on multimedia data has caused 
the database community to focus on the manage-
ment and retrieval of multidimensional data. Near-
est Neighbor (NN) search is very important in Ge-
ographic Information Systems (GIS) as well as in 
Multimedia Applications. For example, in GIS ap-
plications, NN search can be used to find the neigh-
bor cities, schools or factories to a given location. In 
multimedia database fields, NN search can be used 
to perform similarity search, which is a very popular 
kind of content-based search. 

 This paper analyzes performance of the newest 
NN search algorithm for uniformly distributed point 
data with m (the number of neighbor objects re-
ported finally), n (the cardinality of database) and 
d (the dimensionality of the space where the points 
are located) as parameters. The analysis focuses on 
the number of node accesses, which is a very im-
portant factor on performance of NN search. The 
theoretical analysis is verified by experimental re-
sults. 
 This paper is organized as follows: Related stud-

ies and the motivation of our investigation are pre-
sented in Section 2. The analytical model for esti-
mating performance of the newest NN search algo-
rithm is presented in Section 3. The model presented 
in this paper is verified by experiments in Section 
4. The conclusion is drawn in Section 5.
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 2. Related Work 
 Before giving related work, R-tree and NN search 

on it are explained briefly. 

 2.1 R-trees 
 R-trees are widely used in multi-dimensional 

databases and they are regarded as being among 
the best multi-dimensional indexes. 

 An R-tree is a hierarchy of nested d-dimensional 
MBRs (Minimum Bounding Rectangles). MBR is 
a hyper-rectangle that minimally bounds the ob-

jects in the corresponding subtree. Each non-leaf 
node of the R-tree contains an array of entries, each 
of which consists of a pointer and an MBR (note 
that each MBR can be indicated by two points). 
The pointer refers to one child node of this node 
and the MBR is the minimum bounding rectangle 
of the child node referred to by the pointer. Each 
leaf node of the R-tree contains an array of entries, 
each of which consists of an object identifier and its 
corresponding point (for point-objects) or its MBR 

(for extended-objects). The capacity of each node 
except the root node is usually chosen such that a 
node fills up one disk page (or a small number of 
pages). 
  In an R-tree for point objects, since it needs 

two points to indicate each MBR in non-leaf nodes, 
the fanout of leaf nodes is twice as much as that of 
non-leaf-root nodes. The fanout of the root node 
should be greater than one. That is, 1 < fr < M, 
m< f2<M and 2m< fl<2M,where fr., fi and 

fi refer to the fanouts of root node, non-leaf-root 
nodes and leaf nodes, respectively; m and M are 
the minimum and the maximum limitation on the 
fanout of its non-leaf-root nodes, respectively.



 2.2 NN search on R-trees 
 The existing NN search algorithms can be classi-

fied into two different groups. One group is k-NN 
search algorithms, where k, the number of neighbor 

 objects  to  be  retrieved,  is  known  and  fixed  in  ad-
vance. The other is Incremental NN (INN) search 
algorithms, which can also be used when the num-
ber of neighbor objects to be retrieved is unknown 
and is not fixed in advance. The INN search algo-
rithms find and report the neighbor objects one by 
one from the nearest one until the user is satisfied 
with the search result. The INN search algorithm') 
has been regarded as the optimal one because of 
the minimum number of node accesses6). Thus, the 
INN search is analyzed in this paper. 

 The key of the INN search algorithm is to use 
one priority queue to contain objects and nodes of 
the index. The objects and the nodes in the priority 

queue are sorted in ascending order of their distance 
values (for objects) or MINDISTs (for nodes) from 
the given query point, where MINDIST is the 
minimum distance of a node (i.e., its MBR) from 
the query point. Initially, the priority queue is emp-
ty. This algorithm begins with inserting the root 
node in the priority queue. The members (nodes or 
objects) of the priority queue are dequeued one by 
one. If the dequeued member is a non-leaf node, 
then all of its child nodes are inserted in the prior-
ity queue. If the dequeued member is a leaf node, 
then all of its objects are inserted. If the dequeued 
member is an object, this object is reported as the 
newest neighbor object. The algorithm repeats the 
"dequeue-insert" process untill user is satisfied with 

the search result or a wanted number of NN objects 
have been reported. 

 2.3 Performance Analysis of Nearest 
     Neighbor Search 

  Stefan Berchtold et al. present a cost model for 
NN search6). However, as pointed out in the con-
clusion section of that paper, the cost model can 
be used for 1-NN search only. That is, the cost 
model can be used only in the case that one NN ob-

ject is reported and that model can not simply be 
generalized to an arbitrary number of NN objects 
reported finally. Moreover, it analyzes the number 
of accessed leaf nodes only. 

  There are still some performance analytic works 
for some other search algorithms, including the 
work2) is for k-NN algorithm when k=1 and the 
work4) is for range query algorithm. 

With m (the number of neighbor objects report-

ed finally), n (the cardinality of database) and d 

(the dimensionality of the space where the points 
are located) as parameters, this paper presents a 
estimating model for the number of node accesses 
in INN search. To our knowledge, this work has not 
been done yet. 

 3. Estimating the Number of Node Ac-
    cesses in INN Search 

The number of node accesses is an important fac-
tor on search performance. For disk-resident index-
es, it is directly related to the number of disk I/O 
operations; for memory-resident indexes, it is di-
rectly related to the number of cache misses. In 
fact, the number of node accesses is often analyzed 
in the works on the performance analyzing of search 
algorithms. 

For simplicity, like some other works1)'5), we as-
sume that both data objects and the query points 
are uniformly distributed in the domain. Without 
loss of generality, as in other analytical works2)A), 
we assume that the data domain is a unit hyper-
square and we think that, in this case, it is reason-
able to assume that the R-tree nodes of the same 
height have square-like MBRs roughly of the same 
sizel)'45). 
 Some symbols used in the analysis and their de-

scription are shown in Table 1.

Table 1 some symbols and their descriptions.

 Here the definition of search region is given as 

follows. 

 Definition (search region): 
 We wish to analyze the situation up to m neigh-

bor objects have been reported. Let o be the m-th



neighbor object of the query point q, and dm is dis-

tance of o from q. The region within distance dm 

from q is called the search region. 

 Then, let us consider the appearance of the pri-

ority queue when the m-th neighbor object is de-

queued, which is shown in Fig. 1. In this figure, 
the black dots are objects and the rectangles are 

nodes.

dequeued, the expected number of nodes in level h 

that have been inserted and that still remain in the 

 priority queue, Nh,le ft, is given by

Fig.1 Priority queue when the m-th nearest neighbor is 

       dequeued.

Proof: 
(1) When h> 1, at the parent level of level h (i.e., 

level h-1), there are Nh_1,dequeued nodes have been 
dequeued and all their fi • Nh_1,dequeued child nodes 
in level h have been inserted in the priority queue. 
Of these nodes in level h that have been inserted in 
the queue, Nh,dequeued nodes have been dequeued. 
Therefore,

Proposition 1 
 At the moment when the m-th neighbor object is 

dequeued, the following equation must be true. 
                Nh,dequeued = Nh,inter 

where h refers to the level of R-tree and 0 < h < 
H —1. Nh,dequeued refers to the number of nodes in 
level h that have been dequeued from the priority 

queue. Nh,inter refers to the number of nodes in 
level h that intersect with the search region. 
Proof: 
 Remember that all the members of the prior-

ity queue are sorted in ascending order of their 
distances (for objects) or MINDISTs (for nodes) 
from the query point. And the MINDIST value 
of any child node of each node, obviously, must be 

greater than or equal to the MI NDI ST value of 
this node. Thus, 

(1) the MI NDI ST value of any node dequeued 
from the queue must be less than dm. That is, they 
must intersect with or be contained in the search 
region, and 

 (2) on the other hand, it is impossible for the 
nodes whose MINDISTs are less than dm still to 
stay in the queue or to be contained in some node 
that still stays in the queue. In other words, all the 
nodes that intersect with or that are contained in 
the search region must have been dequeued. ^ 

Proposition 1 means that the number of nodes in 
any level that have been dequeued from the queue 
must be the same as the number of nodes in this 
level that intersect with the search region. 
Proposition 2 

 At the time when the m-th neighbor object is

(2) When h= 1, then the parent of this level is the 
root node and all the fr nodes in this level have 
been inserted. Of these fr nodes, Nh,inter nodes 
have been dequeued. Thus, in this case, Nh,le ft is 
the difference of fr. and Nh,inter ̂  
Proposition 3 

 For uniformly distributed query point, the prob-
ability of the query point being contained in any 
node is the volume of this node. 
Proof: 
 Obviously, if the query point is uniformly locat-

ed in the whole data space, the probability of the 
query point being contained in one node, Pnode, is 
given by:

According to our assumptions given at the begin-
ning of this section, the volume of the whole space 
is one. Thus, Pnode is the volume of this node. ^ 

 3.1 Expected Distance From Query 
Point to m-th NN Object 

 It is clear that the object density in the search 
region is the same as that in the whole space since 

the objects are distributed uniformly in the whole 
space. That is,



 mn(1) 
  V olregion V 0 whole 

where Volwhole refers to the volume of the whole 

space and V olregion is the volume of the search re-

gion, a d-dimensional hyper sphere with dm as its 
radius. Volwhole is one according to our assump-

tions and, according to the knowledge of geometry, 

V olregion is given by 

~d  
Volregion = F(d/2 

+ 1) dm 

r(x+1) =x•r(x) 
r(1)=1 
r(1/2) _ rn 

  Therefore, dm can be estimated as follows: 

 dm_dmr(d/2 + 1)(2) 
      n 7f d 

 3.2 Expected Side of Each Node 
  It is clear that the expected number of nodes in 

level h, nh, can be given by 

nh = fr fh-1 (h > 1)(3) 

Therefore, the expected number of objects in each 
node of level h is n/nh. Being same as the analyzing 
in Section 3.1, the following equation is true. 

  V olnode1 
V 01whole nh 

Thus, 

d 1 Volnode=Grh= n 

h That is, the expected side of each node in level h, 

ah, can be given by 

     l l h-1 

 Qh = nh= f rd•fid(4) 

Considering the number of leaf nodes is R, then the 
expected side of each leaf node, ai, can be given by

n -a 

Ql =f
l(5)

 3.3 Estimating Model For the Number 

     of Node Accesses 

Proposition 4 

 For uniformly distributed query point, the proba-

bility of the search region intersecting with or being 

contained in any node of level h, Ph,intersect, is given 

by: 

d 

  ~ 

      d(d-i) ~ai 
 T=i~hr(i/2 + 1)dm 

i=0 

Ph,intersect = min{T, 1} 
where dm is estimated by Equation (2) and 0h can 
given by Equation (4). 
Proof: 

See Fig. 2. The rectangle is a node MBR in lev-
el h whose side length is ah. The dotted circle has 
the same size as the search region and touches the 
side of the node MBR. The round-corner rectangle 
(called Minkowski-sum) is the trace of the center of 
the dotted circle after the dotted circle makes a cir-
cuit, keeping the touching state, along the sides of 
the node MBR.

Fig.2 Example of Minkowski-sum in 2-dimensional 

        space.

 Obviously, if the search region intersects with the 

MBR of this node, then the center of the search 

region, q, is located in the Minkowski-sum of this 

node and vice versa. That is, 

Ph ,intersect = Pq,mink = VOlmink 

where Pq ,mink refers to the the probability that q 
is contained in the Minkowski-sum; Volmink is the 

volume of Minkowski-sum. Thus, calculating the



volume of Minkowski-sum in d-dimensional space is 

 necessary for calculating Ph,intersect • 

 A calculating method the volume of Minkowski-

sum in d-dimensional space has been proposed and 

mathematically proved by ChangZhou Wang and X. 

Sean Wang7> as follows. 

 Volmink =(d)Qd-2(6) 
           i h                i

=0 

As mentioned in Section 3.1, Qi can be given by 

  ~Zd(7)     Ni  

                   i 

 Qi =F(i/2 + 1) 

 If Equation (7) are substituted into Equation 

(6) and Ph,intersect = VOlmink < 1 is considered, 
Proposition 4 can be proved. ^ 

 Lemma 1 The expected number of nodes in level 
h that intersect with the search region, Nh,inter, can 
be given by: 

Nh,inter = nh • Ph,intersect(8) 

where Ph,intersect is estimated by Proposition 4 and 
nh can be given by Equation (3). 

 Proof: Since f is the average number of entries 
in each node, it is clear that the expected number of 
nodes in level h is nh. Thus, to calculate the expect-
ed number of nodes in level h that intersect with the 
search region, we have to sum the probabilities of 
each node in this level. Since the probabilities of 
nodes are the same each other, the number of nodes 
in this level that intersect with the search region can 
be given by multiplying the probability of one node 
with the number of nodes in this level, nh. ^ 

 According to Proposition 1 and considering that 
the root node must be accessed, by the moment 
when the m-th neighbor object is reported, the ex-
pected number of node accesses (i.e., the number 
of nodes that have been dequeued from the queue), 
Accessesnode, is given by 

H-1 
ACCesSeSnode = 1+ E Nh,inter(9) 

h=1 

where H is the height of the R-tree, Nh,inter is given 
by Equation (8). 

Note that fr., L, ft and H will be discussed in 
Section 3.4.

3.4 Discussion of fr, f2, ft and H 
The estimating methods of fr., .fi, ft and H are 

still not presented in the above equations. 
 According to the analysis made by C. Faloutsos 

and I. Kame14>, 

fi=Fanoutxu (10) 

where Fanout is the maximum numbers of entries 
in each non-leaf node. u is the average node utiliza-
tion (typically, 70% for the R*-tree4)). Note that 
(1) Fanout is given by user and it decides the size 
of each node. (2) All experiments in this study is 
performed with R*-tree. Thus, fi can be given by 

f i = 0.7 * Fanout 

As mentioned in Section 2.1, 

 fl=2.fi 1<.fr<_.fi(11) 

It is clear that 

 n = fr • f(H-2)• ft (12) 
    = 2 fr . f (H-1) 

Thus, 

2f(H-1) <n<2fix 

That is, 

log fi (n/2) < H < log fi (n/2) + 1 

That means 

H = [log f, (n/2)1 

Considering Equation (12), then fr can be given by 

fr = 
2 f(H-1) 

 4. Experimental Evaluation 

 Using uniformly distributed points we verified our 
estimation formulas as the three parameters (i.e., d, 
n and m) change. 

 The tested results are shown in Table 2, Table 
3 and Table 4 along with the calculated results. 

 From these results, we can observe that 
 1. as dimensionality increases, the gap between 

calculated result and test result gets large. We think



Table 2 Verification of the estimation formulas as d 
 increases  (n=40000,  m=40).

Table 3 Verification of the estimation formulas as m 

grows (d=4, n=40,000, Fanout=20).

Table 4 Verification of the estimation formulas as n 
increases (d=4, m=40, Fanout=20).

this is because in high-dimensional spaces, the ob-
jects become very sparse and it seems that some 
other factor(s) should be taken into account in very-
high-dimensional spaces. Anyway, according to our 
experiments, the error rate can be reduced if we use 
bigger databases. Note that, R*-tree can not be 
used efficiently for very-high-dimensional spaces. 

 2. the change of m has not much influence on the 
degree of accuracy of our model when m is relatively 
very small to the cardinality of the database. An-
other observation is that performance of the INN 
search algorithm degrades as m increases. 

 3. the gap between the calculated result and the 
test result tends to become smaller as the database 
becomes larger. We think this is because that larg-

er databases of uniformly distributed points tend to 

meet well the assumptions in our analysis. 

 From all above results, we observe that the test 

results are generally close to the calculated results, 

which means that the performance of the INN 

search algorithm for uniformly distributed objects 

is mathematically verified. 

 5. Conclusion 

 In this paper we proposed a model for uniform-

ly distributed point data to mathematically analyze 

performance of the newest NN search algorithm 
with in (the number of neighbor objects reported 
finally), n (the cardinality of database) and d (the 
dimensionality) as parameters. The experimental 
results show that our model is efficient for the ob-
jects with the dimensionality less than 10. Although 
the model is presented for uniformly distributed da-
ta, we think, as the parameters (m, n, d) change 
the performance tendency of uniformly distributed 
points revealed by our model is roughly similar to 
that with actual databases. We believe that the an-
alyzing method can be applied to other performance 
analysis, too. 
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