
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

A Proposal of Introducing Clustering Technology
to R^*-tree

Feng, Yaokai
Department of Intelligent Systems, Graduate School of Information Science and Electrical
Engineering, Kyushu University : Graduate Student

Makinouchi, Akifumi
Department of Intelligent Systems, Faculty of Information Science and Electrical Engineering,
Kyushu University

https://doi.org/10.15017/1525448

出版情報：九州大学大学院システム情報科学紀要. 7 (2), pp.81-86, 2002-09-26. 九州大学大学院シス
テム情報科学研究院
バージョン：
権利関係：

 A Proposal of Introducing Clustering Technology to R*-tree

 Yaokai FENG*, Akifumi MAKINOUCHI**

 (Received June 14, 2002)

Abstract: As a famous member of R-tree family, R*-tree is widely used in multimedia databases
and spatial databases, in which NN (Nearest Neighbor) search is very popular. Based on the
observation that the objects are not well-clustered in R*-tree leaf nodes, this paper proposes an
approach to improve NN search performance of R*-tree by introducing clustering technology to
R*-tree. The experimental result indicates that our improved R*-tree has much better NN search
performance than the original R*-tree.

Keywords: Multidimensional index, Nearest neighbor search, Clustering, SOM

 1. Introduction
 Nearest neighbor (NN) search aims at finding the

nearest objects to a given query point. In GIS, it
can be used to find the nearest neighbors to a giv-
en location. In multi-media applications, it can be
used to perform similarity search (content-based re-
trieval), which is very popular and can respond to
the so-called "like this" query.

 In order to efficiently manage multi-dimensional
data, one efficient index is very necessary. At
present, R-tree family, including R*-treel), X-tree2),
SR-tree') and so on, is still regarded as being among
the most popular hierarchical structures for multidi-
mensional indexing. However, according to our in-
vestigations, the objects are often not well-clustered
in R*-tree leaf nodes, which is a very important fac-
tor on NN search performance. In this study, we
introduce the clustering technology to indexing of
multidimensional databases.

The rest of this paper is organized as follows. Sec-
tion 2. Our observations on R*-tree are introduced
in Section 2. Our approach is described in Section
4. Experimental results are presented in Section 5.
Conclusions are drawn in Section 6.

2. Our Observations on R*-tree
In this section, after R*-tree is introduced briefly,

we will explain the terms of bad clustering and good
clustering, and the effect of clustering degree on NN
search. And then, our observations on R*-tree are
presented.

* Department of Intelligent Systems, Graduate Student

** Department of Intelligent Systems

2.1 R*-tree
An R*-tree is a hierarchy of nested d-dimensional

MBRs (minimum bounding rectangles). MBR is a
hyper-rectangle that minimally bounds the objects
in the corresponding subtree. Each non-leaf node
of the R*-tree contains an array of entries, each of
which consists of a pointer and an MBR. The point-
er refers to one child node of this non-leaf node and
the MBR is the minimum bounding rectangles of
one child nodes referred to by the pointer. Each
leaf node of the R*-tree contains an array of en-
tries, each of which consists of an object identifier
and the corresponding point (for point objects) or
the MBR of the corresponding object (for extended
objects).
 Figure 1 shows an example of R-tree.

Fig.1 An example of R*-tree (a) data space (b) R-tree
 built from the data in (a).

 2.2 Bad Clustering and Good Cluster-
 ing

 The distribution of the leaf nodes in Fig.2 (a)
reflects that of the objects, whereas Fig.2 (b) is
opposite. Thus, the clustering degree of objects in
the leaf nodes in Fig.2 (a) is thought better than
that in Fig.2 (b). Certainly, the number of entries
in each leaf node should meet the limitation on the

Fig.2 Visualized clustering degree.

 fanout of R*-tree leaf nodes.

 2.3 Effect of clustering degree on NN
 search

 Generally speaking, the better the objects are
clustered in the leaf nodes, the smaller the average
size of the MBRs of the leaf nodes. This means that
the better the objects are clustered in the leaf nodes,
the farther the average distance of each leaf node
from the query point (see Fig.3). In Fig.3(a), the
low clustering degree results in a smaller MINDIST
of leaf node A than that of leaf node A' in Fig.3(b).

INN search algorithm.

2.4 Weakness of R*-tree
R*-tree is well known as a common indexing tech-

nique for multi-dimensional data. However, the ob-
jects are not well-clustered in its leaf nodes, espe-
cially, when it is used to index objects with skewed
distribution. There are the following main reasons:

1. The clustering function of R*-trees is not
strong.
 Although the objects can be regarded as that
they have been clustered in the leaf nodes after an
R*-tree has been built, R*-tree is nondeterministic
in allocating the entries onto the nodes i.e., differ-
ent sequences of insertions may build up different
trees. Data inserted during the early growth of the
structure may have introduced directory rectangles,
which is not suitable to guarantee a good search per-
formance in the current situation.

 Figure 4(a) shows an example of inserting one
new object (the white point) in R*-tree. The in-
sertion algorithm chooses one from the existing leaf
nodes to contain the new object. Note that, the dis-
tribution of the existing leaf nodes is determined by
the objects that have been inserted before and are
not always suitable to the new object distribution
after the new one is inserted. In other words, one
insertion affects only one existing leaf node. Obvi-
ously, a better clustering of the objects in leaf nodes
can be obtained if the leaf nodes are re-distributed
as Fig.4(b) after this insertion, in which several
leaf nodes are affected by this insertion.

Fig.3 Effect of clustering degree on MINDIST.

 There exist some Incremental NN (INN) search
algorithms and the INN search algorithm4) is re-
garded as the optimal NN search algorithm because
of the minimum number of node accesses'), in which
a priority queue is used to contain nodes and objects
that are still not dealt with. The members in the
priority queue are sorted by their distances from the
query point. Since a bad clustering of objects in
leaf nodes tends to result in a short average distance
of nodes from the query point, the nodes tend to
be located before the objects in the priority queue.
Thus, the nodes that have to be accessed tends to
increase as the clustering degree degrades. This
means that the clustering degree of the objects in
leaf nodes also greatly affects performance of the

Fig.4 Insertion algorithm of R*-tree does not always

 lead to a good clustering.

 2. The forced reinsertion does not always lead

to a good clustering.

Reinsertion is an important feature of R*-tree.

However, it can not guarantee a good clustering.

Figure 5(a) shows the situation of one rein-
sertion in R*-tree. The objects outside the dotted

Fig.5 Forced reinsertion does not always lead to a good

 clustering.

 circle will be reinserted in the R*-tree. Obviously, if
the reinserted objects were chosen as Fig.5(b) (the
objects in the dotted circle are reinserted), the node
after this reinsertion is smaller and a better object
clustering in the leaf nodes can be obtained.

 3. Clustering Technology
 There exist many clustering algorithms for dis-

covering the cluster distribution of an object set.
Besides statistical techniques such as CURE') and
BIRCH7 , artificial neural networks (e.g., Self-
Organizing Map) also have proven as successful
tools in cluster analysis and have better perfor-
mance (not worse at least) than the statistical
techniques8) . In this study, we use SOM (Self-
Organizing Map) neural network, an unsupervised
self-organizing neural network that is widely used
to visualize and interpret large high-dimensional
datasets9>'1o>
 As a kind of neural network, SOM provides map-

ping from a n-dimensional space where objects are
distributed onto a two-dimensional map layer where
many points (called map-points) exist (see Fig.6).
Every object is mapped onto one map-point. Each
of map-points has a n-dimensional vector (called
Codebook vector) and a pair of coordinate values
to indicate its position in the map layer. SOM is
thought as topological mapping, which means that
neighboring objects are mapped onto the same or
the neighboring map-point(s). The objects that are
mapped onto the same map-point are regarded as
being in one cluster. In this way, the cluster distri-
bution of the objects is discovered.

 The process of SOM discovering cluster distribu-
tion can be divided into two phases of learning and
clustering. In the learning phase, every Codebook
vector of the map-points is randomly initiated. The
Codebook vectors are adjusted as all the objects
are input one by one. The learning phase is re-
peated many times to find more accurate Codebook
vectors for the map-points according to the object

Fig.6 Clustering function of SOM.

distribution. In the clustering phase, each of ob-

jects is mapped onto one of the map-points whose
Codebook vector is the closest one to this object.

 The number of map-points in the map layer,
MapSize, must be decided in advance. If this num-

ber is too large, many clusters may be discovered
and there may be many very small clusters. On
the other hand, if this number is too small, some
very big clusters may occur. The issue of choosing
MapSize will be discussed in Section 5.2.

 4. Our Proposal

In the work11>, SOM is also introduced to R*-
tree. However, it is for reducing the size of R*-tree

and the query result of R*-tree is some clusters, not
objects. In order to improve the clustering degree
of the objects in leaf nodes, we have proposed an
approach in the work12> . In that approach, all the
clusters of objects discovered by some clustering al-

gorithm are packed in an array-like structure. It is
for static databases only since an array is used.

 Our proposal in this paper consists of two parts,
Part 1 and Part 2. The Part 2 is formed from the
clusters discovered by some clustering technology

and Part 2 is an R*-tree built from all MBRs of the
discovered clusters. Figure 7 shows an example of
our proposal.

 Since there exist one maximum bound and one
minimum bound on the number of entries in R*-

tree nodes, preprocessing is necessary if some clus-
ters are too small or too big after the cluster distri-
bution is discovered.

 4.1 Data Preprocessing

 1. Clustering. The cluster distribution is discov-
 ered by SOM and MBR of each cluster is cal-

 culated.
 2. Reorganizing of clusters.

Fig.7 Our proposal.

 Let m and M refer to the minimum bound and
 the maximum bound on the number of entries

 in each leaf nodes, respectively. the number
 of M determines node size and it is given by

 user. m should be about 40% of M accord-
 ing to the observation by N. Beckmann and et

al.'). The clusters whose cardinalities are less
 than m are called too-small-clusters; The clus-

 ters whose cardinalities are greater than M are
 called too-big-clusters;

 (a) Repeatedly scan all the clusters until
 no too-small-clusters exist any longer. For each
 too-small-cluster, invoke MergingAlgorithm.

 (b) Repeatedly scan all the clusters until
 no too-big-clusters exist any longer. For each
 too-big-cluster, invoke SplittingAlgorithm.

 MergingAlgorithm
 Each too-small-cluster should be merged with

some other cluster. MergingAlgorithm aims at
finding which cluster it should be merged with.

 Among all the clusters, MergingAlgorithm choos-
es the cluster whose MBR needs least volume en-
largement to include this too-small-cluster. Resolve
ties by choosing the cluster with the smallest MBR.

 Note that, after merging, the cluster distribution
should be updated and the MBR of the relevant
cluster should also be re-computed.

 SplittingAlgorithm
 Let the cardinality of the too-big-cluster be C.

Thus, this too-big-cluster should be split into [1
groups, each of which has M objects (except the last
one). SplittingAlgorithm is described as follows.
 choosing splitting axis.

 Repeatedly perform the following operations for
each axis.

 1. Sort all the objects in the too-big-cluster by
 the coordinates in this axis.

2. All the objects in the too-big-cluster are or-

 dered in [11 1 consecutive groups of M objects.
 Note that the last group may contain fewer

 than M objects.
 3. Calculate MBR for each group and calculate

 the volume sum of all the MBRs. Let S refer
 to the sum of volumes.

Choose the split axis with the smallest S.
 In the split axis, all the objects in the too-big-

cluster are divided into[c-,l1 consecutive groups of
M objects. Again, the last group may contain fewer
than M objects.

 Note that, the issue may occurs that the last
group of this splitting is too-small-cluster. That is,
t < m, where t refers the number of objects in the
last group. In this case, the last two groups will be
divided equally. That means each of the last two

groups has (M + t)/2 objects. Since t < m and
2m < M (see the work~)), M > (M + t)/2 > m
can be guaranteed. That is, the number of entries
in each of the last two groups is in the range of

[m, M] •

 4.2 Index Building
 Load all the clusters into pages, each of which

forms one leaf node of Part 2. Output the (MBR,
page-number) for each leaf level page into a tempo-
rary file, TmpFile. The page-numbers are used as
the child pointers in the nodes of the next higher
level.

 4.3 Insertion, Deletion and Search
Our proposal is an improved R*-tree and it has

the same structure as R*-tree. Thus, the insertion
algorithm, deletion algorithm and any search algo-
rithm on R*-tree can also be used in our proposal.
However, if the database is updated to a great ex-
tent after the index is built then the benefit of uti-
lizing clustering technology may become very weak.
In this case, performance of our proposal tends to
that of R*-tree and we think it is better to build
the index again. Because search performance is paid
close attention to for the relatively static databases,
so we think that rebuilding the index is not a big
problem.

 5. Experiments

 5.1 Databases and Environment
 We used the databases of 40000 12-dimensional

image data to test NN (nearest neighbor) search
performance of our proposal.

 12D-Image40000 40000 color images from
 H2so f t corporation13), including pictures of land-

scapes, animals, buildings, people and plants. The
image size is fixed at 128 x 128 pixels. In or-
der to compute their feature vectors and to de-
crease their dimensionality, Haar wavelets (a kind
of wavelet transform) are employed. Haar wavelets
are very fast and have been found to perform well
in practice14). Using a six-level two-dimensional
wavelet transform, the dimensionality of image fea-
ture vectors is decreased to 12. This means that
the 12D-Image40000 database consists of 40000 12-
dimensional feature vectors.

 All experiments were performed on an EP-
SON DIRECT PC having 128 MBytes of memo-
ry and FreeBSD 4.3 OS. We used the INN search
algorithm4), which is regarded as the optimal NN
search algorithm5> .

 The query objects are chosen randomly from the
databases. Performance comparison of each time is
repeated 100 times with different query points and
their average is presented.

 5.2 Discussion on Choosing SOM
 MapSize

 As mentioned above, the number of map-points
in the map layer, MapSize, must be decided in ad-
vance when SOM is used. If MapSize is too large,
there may be too many very-small ones among the
discovered clusters. On the other hand, if MapSize
is too small, many very-big clusters may occur.
Both these too cases can lengthen the time cost of
data preprocessing and they also weaken the clus-
tering degree of the objects in leaf nodes and then
degrade search performance.

 We performed many experiments to investigate
influence of MapSize on search performance and
we observed that the best search performance is
reached when

 MapSizetir 2n l(1)
 M+m

where n refers to the total number of objects in
database; M,m, as mentioned above, refer to the
maximum bound and the minium bound on the
number of entries in each leaf node, respectively.

In Equation (1), Fa?e = (M + m)/2 is the aver-
age number of the entries in a leaf node. According
to the work), m = 40% * M. If so, Fave will be
70% * M. It is clear that 1 M+m J is the expected
number of leaf nodes.

We call the MapSize in Equation (1) Sopt. The
experimental results with MapSize 0.5 * Sapt,
S0pt and 1.5 * Sopt are presented for comparison
in this paper. In our experiments, M=10, m=4,
Sopt=5714. Therefore, the experiment results with
MapSize=60 * 60 (=3600), 75 * 75 (=5625) and
90 * 90 (=8100) are presented in this paper.

 5.3 Experimental Results
 We cost about 1403 seconds for preprocessing (see

Section 4.1) the database. The execution time and
the number of object distance calculations (which is
regarded as a very important factor on search per-
formance) of NN search are tested and reported in
this paper.

 Figure 8 and Figure 9 is the experiment result,
where k refers to the number of neighboring objects
to be retrieved.

Fig.8 NN search performance (execution time) compar-
 ison.

Fig.9 NN search performance (number of object dis-
 tance calculations) comparison.

 From the experimental results, we can observe

that, if MapSize is chosen properly, our proposal

has the lowest execution time, the smallest number
of object distance calculations as compared to both

 R*-tree. We think this is because our proposal has
the best clustering degree of the objects in leaf n-
odes, which affects greatly NN search performance.

 6. Conclusion
In this paper, based on our observations on R*-

tree we proposed an improved index structure for
relatively static database by combining R*-tree with
clustering technology to improve the clustering de-
gree of objects in leaf nodes. Its NN search perfor-
mance is greatly improved according to our analysis
and experiments. Because the clustering technolo-
gy is for static databases, our proposal is suitable
for the applications with static or relatively static
databases. Although our description, analysis and
experiments in this study is based on R*-tree, we
believe that the main idea of our proposal can also
be used to many other members of R-tree family,
including SS-tree15), X-tree2), SR-tree') and so on.

7. Future Work

 In this paper, we used 12-dimensional image data
to test NN search performance of our proposal. In
the future, we will do the following works.

 1. using some low-dimensional databases (e.g.,
 GIS data) to test the behaviors of our proposal;

 2. test the other search (e.g., range search) per-
 formance of our proposal;

 3. compare search performance of our proposal
 with that of some other structures (e.g., packed

 R-tree)

 References
 1) N. Beckmann, H.P. Kriegel, R. Schneider, B. Seeger.

"The R*-tree: An Efficient and Robust Access Method
for Points and Rectangles." . In Proceedings of ACM

 SIGMOD International Conference on Management of
 Data, pages 322-331, May 1990.

 2) S.Berchtold, D.Keim, H.P.Kriegel. "The X-tree: An
 Index Structure for High-Dimensional Data". In Pro-

 ceedings of VLDB, 1996.
3) N. Katayama, S. Satoh. "The SR-tree: An index Struc-

 ture for High-Dimensional Nearest Neighbor Queries".
 In Proceedings of ACM SIGMOD International Con-

 ference on Management of Data, pages 369-380, May
 1997.

4) G.R. Hjaltason, H. Samet. "Distance Browsing in Spa-
 tial Database". ACM Transactions on Database Sys-
 tems, 24(2):265-318, June 1999.

5) K.S. Berchtold, C. Bohm, D. A. Keim, HP. Kriegel.
"A Cost Model For Nearest Neighbor Search in High-

 Dimensional Data Space". In Proceedings of PODS,

 pages 78-86, Tucson, Arizona, 1997.
6) S. Guha, R. Rastogi and K. Shim. "CURE: An Effi-

 cient Clustering Algorithm for Large Databases". In
 Proceedings of ACM SIGMOD International Confer-

 ence on Management of Data, 1998.
7) T. Zhang, R. Ramakrishnan and M. Livny. "BIRCH:

An Efficient Data Clustering Method for Very Large
 Databases". In Proceedings of ACM SIGMOD Inter-
 national Conference on Management of Data, 1996.

8) J. Zavrel. "Neural Information Retrieval". PhD thesis,
 University of Amsterdam, 1995.

9) A. Rauber. "LabelSOM: On the Labeling of Self-
 Organizing Maps". In Proceedings of IJCNN'99, Wash-

 ington DC, July 1999.
10) T. Kohonen. "Self-Organization of Very Large Docu-

 ment Collections: State of the Art". In Proceedings of
 ICNN98, volume 1, pages 65-74, London, UK, 1998.

11) K. Oh, Y. Feng, K. Kaneko, A. Makinouchi. "SOM-
 Based R*-Tree for Similarity Retrieval". In Proceedings

 of the Seventh International Conference on Database
 Systems for Advanced Applications (DASFAA), pages

 182-190, Hongkong, May 2001.
12) Y. FENG, M. KUBO et al. A New SOM-based R*-tree:

 Building and Retrieving. Research Reports on Infor-
 mation Science and Electrical Engineering of Kyushu

University, 6(2):209-214, 2001.
13) H2 soft, http://www.h2soft.co.jp.
14) C.E. Jacobs, A. Finkelstein, D.H. Salesin. "Fast Mul-

 tiresolution Image Querying". In Proceedings of SIG-
 GRAPH95, pages 6-11, Los Angeles, California, 1995.

15) D.A. White and R. Jain. "Similarity Indexing with
the SS-tree". In Proceedings of the 12th International

 Conference on Data Engineering, pages 516-523, New
 Orleans, USA, Feb. 1996.

