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Abstract: As a famous member of R-tree family, R*-tree is widely used in multimedia databases 
and spatial databases, in which NN (Nearest Neighbor) search is very popular. Based on the 
observation that the objects are not well-clustered in R*-tree leaf nodes, this paper proposes an 
approach to improve NN search performance of R*-tree by introducing clustering technology to 
R*-tree. The experimental result indicates that our improved R*-tree has much better NN search 
performance than the original R*-tree. 
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 1. Introduction 
 Nearest neighbor (NN) search aims at finding the 

nearest objects to a given query point. In GIS, it 
can be used to find the nearest neighbors to a giv-
en location. In multi-media applications, it can be 
used to perform similarity search (content-based re-
trieval), which is very popular and can respond to 
the so-called "like this" query. 

 In order to efficiently manage multi-dimensional 
data, one efficient index is very necessary. At 
present, R-tree family, including R*-treel), X-tree2), 
SR-tree') and so on, is still regarded as being among 
the most popular hierarchical structures for multidi-
mensional indexing. However, according to our in-
vestigations, the objects are often not well-clustered 
in R*-tree leaf nodes, which is a very important fac-
tor on NN search performance. In this study, we 
introduce the clustering technology to indexing of 
multidimensional databases. 

The rest of this paper is organized as follows. Sec-
tion 2. Our observations on R*-tree are introduced 
in Section 2. Our approach is described in Section 
4. Experimental results are presented in Section 5. 
Conclusions are drawn in Section 6. 

2. Our Observations on R*-tree 
In this section, after R*-tree is introduced briefly, 

we will explain the terms of bad clustering and good 
clustering, and the effect of clustering degree on NN 
search. And then, our observations on R*-tree are 
presented.
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2.1 R*-tree 
An R*-tree is a hierarchy of nested d-dimensional 

MBRs (minimum bounding rectangles). MBR is a 
hyper-rectangle that minimally bounds the objects 
in the corresponding subtree. Each non-leaf node 
of the R*-tree contains an array of entries, each of 
which consists of a pointer and an MBR. The point-
er refers to one child node of this non-leaf node and 
the MBR is the minimum bounding rectangles of 
one child nodes referred to by the pointer. Each 
leaf node of the R*-tree contains an array of en-
tries, each of which consists of an object identifier 
and the corresponding point (for point objects) or 
the MBR of the corresponding object (for extended 
objects). 
 Figure 1 shows an example of R-tree.

Fig.1 An example of R*-tree (a) data space (b) R-tree 
      built from the data in (a).

 2.2 Bad Clustering and Good Cluster-
     ing 

 The distribution of the leaf nodes in Fig.2 (a) 
reflects that of the objects, whereas Fig.2 (b) is 
opposite. Thus, the clustering degree of objects in 
the leaf nodes in Fig.2 (a) is thought better than 
that in Fig.2 (b). Certainly, the number of entries 
in each leaf node should meet the limitation on the



Fig.2 Visualized clustering degree.

 fanout of R*-tree leaf nodes. 

 2.3 Effect of clustering degree on NN 
      search 

 Generally speaking, the better the objects are 
clustered in the leaf nodes, the smaller the average 
size of the MBRs of the leaf nodes. This means that 
the better the objects are clustered in the leaf nodes, 
the farther the average distance of each leaf node 
from the query point (see Fig.3). In Fig.3(a), the 
low clustering degree results in a smaller MINDIST 
of leaf node A than that of leaf node A' in Fig.3(b).

INN search algorithm. 

2.4 Weakness of R*-tree 
R*-tree is well known as a common indexing tech-

nique for multi-dimensional data. However, the ob-
jects are not well-clustered in its leaf nodes, espe-
cially, when it is used to index objects with skewed 
distribution. There are the following main reasons: 

1. The clustering function of R*-trees is not 
strong. 
   Although the objects can be regarded as that 
they have been clustered in the leaf nodes after an 
R*-tree has been built, R*-tree is nondeterministic 
in allocating the entries onto the nodes i.e., differ-
ent sequences of insertions may build up different 
trees. Data inserted during the early growth of the 
structure may have introduced directory rectangles, 
which is not suitable to guarantee a good search per-
formance in the current situation. 

   Figure 4(a) shows an example of inserting one 
new object (the white point) in R*-tree. The in-
sertion algorithm chooses one from the existing leaf 
nodes to contain the new object. Note that, the dis-
tribution of the existing leaf nodes is determined by 
the objects that have been inserted before and are 
not always suitable to the new object distribution 
after the new one is inserted. In other words, one 
insertion affects only one existing leaf node. Obvi-
ously, a better clustering of the objects in leaf nodes 
can be obtained if the leaf nodes are re-distributed 
as Fig.4(b) after this insertion, in which several 
leaf nodes are affected by this insertion.

Fig.3 Effect of clustering degree on MINDIST.

 There exist some Incremental NN (INN) search 
algorithms and the INN search algorithm4) is re-
garded as the optimal NN search algorithm because 
of the minimum number of node accesses'), in which 
a priority queue is used to contain nodes and objects 
that are still not dealt with. The members in the 
priority queue are sorted by their distances from the 
query point. Since a bad clustering of objects in 
leaf nodes tends to result in a short average distance 
of nodes from the query point, the nodes tend to 
be located before the objects in the priority queue. 
Thus, the nodes that have to be accessed tends to 
increase as the clustering degree degrades. This 
means that the clustering degree of the objects in 
leaf nodes also greatly affects performance of the

Fig.4 Insertion algorithm of R*-tree does not always 

      lead to a good clustering.

 2. The forced reinsertion does not always lead 

to a good clustering. 

Reinsertion is an important feature of R*-tree. 

However, it can not guarantee a good clustering. 

Figure 5(a) shows the situation of one rein-
sertion in R*-tree. The objects outside the dotted



Fig.5 Forced reinsertion does not always lead to a good 

       clustering.

 circle will be reinserted in the R*-tree. Obviously, if 
the reinserted objects were chosen as Fig.5(b) (the 
objects in the dotted circle are reinserted), the node 
after this reinsertion is smaller and a better object 
clustering in the leaf nodes can be obtained. 

 3. Clustering Technology 
  There exist many clustering algorithms for dis-

covering the cluster distribution of an object set. 
Besides statistical techniques such as CURE') and 
BIRCH7 , artificial neural networks (e.g., Self-
Organizing Map) also have proven as successful 
tools in cluster analysis and have better perfor-
mance (not worse at least) than the statistical 
techniques8) . In this study, we use SOM (Self-
Organizing Map) neural network, an unsupervised 
self-organizing neural network that is widely used 
to visualize and interpret large high-dimensional 
datasets9>'1o> 
  As a kind of neural network, SOM provides map-

ping from a n-dimensional space where objects are 
distributed onto a two-dimensional map layer where 
many points (called map-points) exist (see Fig.6). 
Every object is mapped onto one map-point. Each 
of map-points has a n-dimensional vector (called 
Codebook vector) and a pair of coordinate values 
to indicate its position in the map layer. SOM is 
thought as topological mapping, which means that 
neighboring objects are mapped onto the same or 
the neighboring map-point(s). The objects that are 
mapped onto the same map-point are regarded as 
being in one cluster. In this way, the cluster distri-
bution of the objects is discovered. 

 The process of SOM discovering cluster distribu-
tion can be divided into two phases of learning and 
clustering. In the learning phase, every Codebook 
vector of the map-points is randomly initiated. The 
Codebook vectors are adjusted as all the objects 
are input one by one. The learning phase is re-
peated many times to find more accurate Codebook 
vectors for the map-points according to the object

Fig.6 Clustering function of SOM.

distribution. In the clustering phase, each of ob-

jects is mapped onto one of the map-points whose 
Codebook vector is the closest one to this object. 

  The number of map-points in the map layer, 
MapSize, must be decided in advance. If this num-

ber is too large, many clusters may be discovered 
and there may be many very small clusters. On 
the other hand, if this number is too small, some 
very big clusters may occur. The issue of choosing 
MapSize will be discussed in Section 5.2. 

 4. Our Proposal 

In the work11>, SOM is also introduced to R*- 
tree. However, it is for reducing the size of R*-tree 

and the query result of R*-tree is some clusters, not 
objects. In order to improve the clustering degree 
of the objects in leaf nodes, we have proposed an 
approach in the work12> . In that approach, all the 
clusters of objects discovered by some clustering al-

gorithm are packed in an array-like structure. It is 
for static databases only since an array is used. 

 Our proposal in this paper consists of two parts, 
Part 1 and Part 2. The Part 2 is formed from the 
clusters discovered by some clustering technology 

and Part 2 is an R*-tree built from all MBRs of the 
discovered clusters. Figure 7 shows an example of 
our proposal. 

 Since there exist one maximum bound and one 
minimum bound on the number of entries in R*- 

tree nodes, preprocessing is necessary if some clus-
ters are too small or too big after the cluster distri-
bution is discovered. 

 4.1 Data Preprocessing 

 1. Clustering. The cluster distribution is discov-
   ered by SOM and MBR of each cluster is cal-

   culated. 
 2. Reorganizing of clusters.



Fig.7 Our proposal.

   Let m and M refer to the minimum bound and 
   the maximum bound on the number of entries 

 in each leaf nodes, respectively. the number 
   of M determines node size and it is given by 

   user. m should be about 40% of M accord-
   ing to the observation by N. Beckmann and et 

al.'). The clusters whose cardinalities are less 
   than m are called too-small-clusters; The clus-

   ters whose cardinalities are greater than M are 
   called too-big-clusters; 

      (a) Repeatedly scan all the clusters until 
   no too-small-clusters exist any longer. For each 
   too-small-cluster, invoke MergingAlgorithm. 

      (b) Repeatedly scan all the clusters until 
   no too-big-clusters exist any longer. For each 
   too-big-cluster, invoke SplittingAlgorithm. 

 MergingAlgorithm 
 Each too-small-cluster should be merged with 

some other cluster. MergingAlgorithm aims at 
finding which cluster it should be merged with. 

 Among all the clusters, MergingAlgorithm choos-
es the cluster whose MBR needs least volume en-
largement to include this too-small-cluster. Resolve 
ties by choosing the cluster with the smallest MBR. 

 Note that, after merging, the cluster distribution 
should be updated and the MBR of the relevant 
cluster should also be re-computed. 

 SplittingAlgorithm 
 Let the cardinality of the too-big-cluster be C. 

Thus, this too-big-cluster should be split into [1 
groups, each of which has M objects (except the last 
one). SplittingAlgorithm is described as follows. 
   choosing splitting axis. 

   Repeatedly perform the following operations for 
each axis. 

 1. Sort all the objects in the too-big-cluster by 
   the coordinates in this axis. 

2. All the objects in the too-big-cluster are or-

   dered in [11 1 consecutive groups of M objects. 
   Note that the last group may contain fewer 

   than M objects. 
 3. Calculate MBR for each group and calculate 

   the volume sum of all the MBRs. Let S refer 
   to the sum of volumes. 

Choose the split axis with the smallest S. 
  In the split axis, all the objects in the too-big- 

cluster are divided into[ c-,l1 consecutive groups of 
M objects. Again, the last group may contain fewer 
than M objects. 

 Note that, the issue may occurs that the last 
group of this splitting is too-small-cluster. That is, 
t < m, where t refers the number of objects in the 
last group. In this case, the last two groups will be 
divided equally. That means each of the last two 

groups has (M + t)/2 objects. Since t < m and 
2m < M (see the work~)), M > (M + t)/2 > m 
can be guaranteed. That is, the number of entries 
in each of the last two groups is in the range of 

[m, M] • 

 4.2 Index Building 
 Load all the clusters into pages, each of which 

forms one leaf node of Part 2. Output the (MBR, 
page-number) for each leaf level page into a tempo-
rary file, TmpFile. The page-numbers are used as 
the child pointers in the nodes of the next higher 
level. 

 4.3 Insertion, Deletion and Search 
Our proposal is an improved R*-tree and it has 

the same structure as R*-tree. Thus, the insertion 
algorithm, deletion algorithm and any search algo-
rithm on R*-tree can also be used in our proposal. 
However, if the database is updated to a great ex-
tent after the index is built then the benefit of uti-
lizing clustering technology may become very weak. 
In this case, performance of our proposal tends to 
that of R*-tree and we think it is better to build 
the index again. Because search performance is paid 
close attention to for the relatively static databases, 
so we think that rebuilding the index is not a big 
problem. 

 5. Experiments 

 5.1 Databases and Environment 
 We used the databases of 40000 12-dimensional 

image data to test NN (nearest neighbor) search 
performance of our proposal.



  12D-Image40000 40000 color images from 
 H2so f t corporation13), including pictures of land-

scapes, animals, buildings, people and plants. The 
image size is fixed at 128 x 128 pixels. In or-
der to compute their feature vectors and to de-
crease their dimensionality, Haar wavelets (a kind 
of wavelet transform) are employed. Haar wavelets 
are very fast and have been found to perform well 
in practice14). Using a six-level two-dimensional 
wavelet transform, the dimensionality of image fea-
ture vectors is decreased to 12. This means that 
the 12D-Image40000 database consists of 40000 12-
dimensional feature vectors. 

  All experiments were performed on an EP-
SON DIRECT PC having 128 MBytes of memo-
ry and FreeBSD 4.3 OS. We used the INN search 
algorithm4), which is regarded as the optimal NN 
search algorithm5> . 

  The query objects are chosen randomly from the 
databases. Performance comparison of each time is 
repeated 100 times with different query points and 
their average is presented. 

 5.2 Discussion on Choosing SOM 
     MapSize 

  As mentioned above, the number of map-points 
in the map layer, MapSize, must be decided in ad-
vance when SOM is used. If MapSize is too large, 
there may be too many very-small ones among the 
discovered clusters. On the other hand, if MapSize 
is too small, many very-big clusters may occur. 
Both these too cases can lengthen the time cost of 
data preprocessing and they also weaken the clus-
tering degree of the objects in leaf nodes and then 
degrade search performance. 

  We performed many experiments to investigate 
influence of MapSize on search performance and 
we observed that the best search performance is 
reached when 

 MapSizetir 2n l(1) 
        M+m 

where n refers to the total number of objects in 
database; M,m, as mentioned above, refer to the 
maximum bound and the minium bound on the 
number of entries in each leaf node, respectively. 

In Equation (1), Fa?e = (M + m)/2 is the aver-
age number of the entries in a leaf node. According 
to the work), m = 40% * M. If so, Fave will be 
70% * M. It is clear that 1 M+m J is the expected 
number of leaf nodes.

We call the MapSize in Equation (1) Sopt. The 
experimental results with MapSize 0.5 * Sapt, 
S0pt and 1.5 * Sopt are presented for comparison 
in this paper. In our experiments, M=10, m=4, 
Sopt=5714. Therefore, the experiment results with 
MapSize=60 * 60 (=3600), 75 * 75 (=5625) and 
90 * 90 (=8100) are presented in this paper. 

 5.3 Experimental Results 
 We cost about 1403 seconds for preprocessing (see 

Section 4.1) the database. The execution time and 
the number of object distance calculations (which is 
regarded as a very important factor on search per-
formance) of NN search are tested and reported in 
this paper. 

 Figure 8 and Figure 9 is the experiment result, 
where k refers to the number of neighboring objects 
to be retrieved.

Fig.8 NN search performance (execution time) compar-
        ison.

Fig.9 NN search performance (number of object dis-
       tance calculations) comparison.

 From the experimental results, we can observe 

that, if MapSize is chosen properly, our proposal



has the lowest execution time, the smallest number 
of object distance calculations as compared to both 

 R*-tree.  We  think  this  is  because  our  proposal  has 
the best clustering degree of the objects in leaf n-
odes, which affects greatly NN search performance. 

 6. Conclusion 
In this paper, based on our observations on R*- 

tree we proposed an improved index structure for 
relatively static database by combining R*-tree with 
clustering technology to improve the clustering de-
gree of objects in leaf nodes. Its NN search perfor-
mance is greatly improved according to our analysis 
and experiments. Because the clustering technolo-
gy is for static databases, our proposal is suitable 
for the applications with static or relatively static 
databases. Although our description, analysis and 
experiments in this study is based on R*-tree, we 
believe that the main idea of our proposal can also 
be used to many other members of R-tree family, 
including SS-tree15), X-tree2), SR-tree') and so on. 

7. Future Work 

 In this paper, we used 12-dimensional image data 
to test NN search performance of our proposal. In 
the future, we will do the following works. 

  1. using some low-dimensional databases (e.g., 
   GIS data) to test the behaviors of our proposal; 

  2. test the other search (e.g., range search) per-
   formance of our proposal; 

  3. compare search performance of our proposal 
   with that of some other structures (e.g., packed 

   R-tree) 

              References 
 1) N. Beckmann, H.P. Kriegel, R. Schneider, B. Seeger. 

"The R*-tree: An Efficient and Robust Access Method 
for Points and Rectangles." . In Proceedings of ACM 

    SIGMOD International Conference on Management of 
     Data, pages 322-331, May 1990. 

 2) S.Berchtold, D.Keim, H.P.Kriegel. "The X-tree: An 
    Index Structure for High-Dimensional Data". In Pro-

   ceedings of VLDB, 1996. 
3) N. Katayama, S. Satoh. "The SR-tree: An index Struc-

   ture for High-Dimensional Nearest Neighbor Queries". 
    In Proceedings of ACM SIGMOD International Con-

   ference on Management of Data, pages 369-380, May 
   1997. 

4) G.R. Hjaltason, H. Samet. "Distance Browsing in Spa-
   tial Database". ACM Transactions on Database Sys-
   tems, 24(2):265-318, June 1999. 

5) K.S. Berchtold, C. Bohm, D. A. Keim, HP. Kriegel. 
"A Cost Model For Nearest Neighbor Search in High-

    Dimensional Data Space". In Proceedings of PODS, 

    pages 78-86, Tucson, Arizona, 1997. 
6) S. Guha, R. Rastogi and K. Shim. "CURE: An Effi-

    cient Clustering Algorithm for Large Databases". In 
   Proceedings of ACM SIGMOD International Confer-

    ence on Management of Data, 1998. 
7) T. Zhang, R. Ramakrishnan and M. Livny. "BIRCH: 

An Efficient Data Clustering Method for Very Large 
   Databases". In Proceedings of ACM SIGMOD Inter-
    national Conference on Management of Data, 1996. 

8) J. Zavrel. "Neural Information Retrieval". PhD thesis, 
    University of Amsterdam, 1995. 

9) A. Rauber. "LabelSOM: On the Labeling of Self-
    Organizing Maps". In Proceedings of IJCNN'99, Wash-

   ington DC, July 1999. 
10) T. Kohonen. "Self-Organization of Very Large Docu-

    ment Collections: State of the Art". In Proceedings of 
    ICNN98, volume 1, pages 65-74, London, UK, 1998. 

11) K. Oh, Y. Feng, K. Kaneko, A. Makinouchi. "SOM-
    Based R*-Tree for Similarity Retrieval". In Proceedings 

    of the Seventh International Conference on Database 
   Systems for Advanced Applications (DASFAA), pages 

    182-190, Hongkong, May 2001. 
12) Y. FENG, M. KUBO et al. A New SOM-based R*-tree: 

    Building and Retrieving. Research Reports on Infor-
    mation Science and Electrical Engineering of Kyushu 

University, 6(2):209-214, 2001. 
13) H2 soft, http://www.h2soft.co.jp. 
14) C.E. Jacobs, A. Finkelstein, D.H. Salesin. "Fast Mul-

    tiresolution Image Querying". In Proceedings of SIG-
    GRAPH95, pages 6-11, Los Angeles, California, 1995. 

15) D.A. White and R. Jain. "Similarity Indexing with 
the SS-tree". In Proceedings of the 12th International 

    Conference on Data Engineering, pages 516-523, New 
    Orleans, USA, Feb. 1996.


