九州大学学術情報リポジトリ Kyushu University Institutional Repository

Croissance relative sur quelques Espèces des Desmoceratidae

Obata, Ikuwo Faculty of Sciences, Kyushu University

https://doi.org/10.5109/1524327

出版情報:九州大學理學部紀要: Series D, Geology. 9(1), pp.33-45, 1959-12-20. Faculty of Science, Kyushu University バージョン: 権利関係: Mem. Fac. Sci., Kyushu Univ., Ser.D, Geology, Vol.IX, No.1, pp.33-45, pls.4-5, December 1959

Croissance relative sur quelques Espèces

des Desmoceratidae*

Par

Ikuwo Obata

Introduction

En général, le caractère qui décide la différence d'une espèce à l'autre est souvent relatif ou proportionnel, comme THOMPSON (1917) l'a déjà mentionné.

A propos de la philogénèse des espèces ci-dessus, il faut naturellement que l'on en discute en détail dans une étude paléontologique, mais, dans ce traité, je fais attention à deux points que voici: 1°, la dimension de la forme et le changement du tour se réduisent à la relation quantitative; 2°, cette sorte de caractère est importante quand on analyse le procédé évolutif à l'égard des milieux géologiques, puisqu'il représente vivement un stade phylogénique.

Au point de vue susmentionné, ayant eu l'intention de connaître la manière de croissance des Ammonites, j'ai examiné, d'abord, la croissance relative, *allometry***, des caractères des espèces qui appartiennent aux Desmoceratidae, qui sont profus au Crétacé supérieur du Japon.

Je suis heureux de présenter ici une gratitude la plus sincère à M. le Professeur Tatsuro MATSUMOTO, mon maître, qui m'a surveillé pendant mon étude et donné beaucoup de critiques. Je rends grâce à M. le Professeur Teiichi KOBAYASHI; c'est par sa permission, que j'ai pu étudier les spécimens de l'Université de Tokio. Je remercie MM. Hideo URATA, Tadao ARITA et YUKIO OTSUKA qui ont corrigé mon manuscrit, et aussi M^{elle} Chizuko OKAMURA qui m'a aidé dans la préparation du manuscrit.

Prévision mathématique

Pour la description des Ammonites, on mesurait jusqu'ici, usuellement, diamètre total, hauteur et épaisseur (largeur) du dernier tour, et diamètre de l'ombilic. Maintenant je m'essaie de prévoir la relation entre les dimensions de ces éléments par des matériaux publiés (cf. MATSUMOTO et OBATA, 1955, texte figs. 2, 4, 11, 12).

Si l'on montre les dimensions de deux de ces éléments comme x et y, le temps comme t, et que l'on emploie α et b comme deux constantes, on obtient l'équa-

^{*} Received July 9, 1959

^{**} voir la note au bas de la page prochaine.

tion suivante :

$$\frac{dy}{dt} / \frac{dx}{dt} = a \frac{y}{x}$$
$$\log y = a \log x + \log b$$
$$y = bx^{a}$$

Pourvu que la relation entre x et y soit montrée par l'équation susdite, celle entre les deux logarithmes est linéaire. Ici, α est un exposant, equilibrium constant**. En cas que $\alpha = 1$, isometry**, le taux d'accroissement de x est aussi grand que celui de y, et l'angle entre la ligne droite et les axes est 45 degrés sur le graphique logarithmique. En cas que $\alpha < 1$, negative allometry**, celui de y étant moins que celui de x, l'angle de x à l'axe est moins de 45 degrés, et y croît négativement pour x. En cas que $\alpha > 1$, positive allometry**, au contraire, l'angle est plus grand que 45 degrés, et y croît positivement pour x.

Matériaux

J'ai examiné les matériaux selon les descriptions de MATSUMOTO (1954, pp. 248-272), celles de MATSUMOTO et d'OBATA (1955, pp. 119-146), MATSUMOTO (1959a, pp. 58-59), MATSUMOTO (1959b, pp. 14-15), et le manuscrit de MATSUMOTO (le 16 mars 1954). Je corrige, dans ce traité, des fautes d'impression des descriptions cidessus. Les abréviations suivantes sont employées dans les institutions auxquelles les spécimens appartiennent:

GT. L'Institut de Géologie, Université de Tokio

GK. L'Institut de Géologie, Université de Kyushu

BM. British Museum (Natural History), London

USNM. United States National Museum, Washington, D. C.

On peut savoir les gisements au Japon et à la région voisine selon les descriptions stratigraphiques de MATSUMOTO (1942-1943).

Desmoceras kossmati MATSUMOTO

GT.I-2551, lectotype, loc. N507p, couche Kx ou Ky; GT.I-2552, syntype, loc. N503b, couche Ky; tous les deux dans le Groupe de Kawakita, la vallée de Naibuchi, Saghaline du Sud (Coll. T. MATSUMOTO). GK. H1001a, b, c, f, loc. Y260b, couche IId; GK. H1002a, b, loc. Y260b, couche IId; GK. H1004, loc. Y260b, couche IId; GK. H1005a, b, c, loc. Y261b, couche IIc; GK. H1024a, b, et GK. H1025a, loc. Y661, couche IIe; syntypes, tous dans le Groupe de Yezo Moyen, la vallée de Shiyubari, Province d'Ishikari, Hokkaido (Coll. T. MATSUMOTO).

Desmoceras (Pseudouhligella) japonicum YABE

GT. I-260, holotype, loc. 10 milles l'est de l'houillère d'Ikushumbetsu, au grès contenant trés communément *Thetironia affinis* WHITEAVES var. *japonica* YABE

^{**} En ce qui concerne la terminologie, j'ai adopté la proposition de HUXLEY et TEISSIER (1936).

et NAGAO, Province d'Ishikari, Hokkaido (Coll. H. YABE). GT. I-3023, loc. T591c, couche IIb, dans le Groupe de Yezo Moyen, la vallée d'Abeshinai, Province de Teshio, Hokkaido (Coll. T. MATSUMOTO).

Desmoceras (Pseudouhligella) japonicum mediocompressa MATSUMOTO

GT.I-3020a, holotype, loc. T608, Saku-gawa, tributaire de la vallée moyenne de Teshio, couche IIb; paratypes: GT.I-3021, loc. T591d, couche IIb; GT. I-3020b, loc. T608, couche IIb; tous dans le Groupe de Yezo Moyen, Abeshinai et la région adjacente, Province de Teshio, Hokkaido (Coll. T. MATSUMOTO).
Desmoceras (Pseudouhligella) japonicum compressior MATSUMOTO

GT.I-3026, holotype, loc. T225c, couche IIb dans le Groupe de Yezo Moyen, la vallée d'Abeshinai, Province de Teshio, Hokkaido (Coll. T. MATSUMOTO). GT.I-2558, loc.I-55b, zone Mho, la vallée d'Aikawa, Saghaline du Sud (Coll. T. MATSUMOTO).

Desmoceras (Pseudouhligella) japonicum YABE d'Alaska

USNM. 129263, USNM. 129264, USNM. 129265, tous de USGS Mes. loc. 25443 (Coll. J. E. Heppert).

USNM. 129266 et USNM. 129267, tous les deux de USGS Mes. loc. 25445 (Coll. J. E. HEPPERT).

USNM. 129291a, b, c, d. Tous de la vallée de Chitina, Alaska.

Desmoceras (Pseudouhligella) poronaicum YABE

GT. I-261, holotype, caillou près de la source du Poronai, Sorachi-gun, Province d'Ishikari, Hokkaido (Coll. H. YABE). GT. I-3027a, b, loc. T654, couche IIc (β) de la vallée d'Abeshinai, Province de Teshio, Hokkaido (Coll. T. MATSUMOTO).

Desmoceras (Pseudouhligella) ezoanum MATSUMOTO

GT. I-3030, lectotype, loc. T843 (Chirashinai), couche IIb-c (β); syntypes: GT. I-3032a, b, et GT. I-3034, loc. T27dp, couche IIc (β); GT. I-3035a, b, c, d, loc. T32-33p, couche IIb; GT. I-3041a, b, c, d, loc. T591d, couche IIb (le plus bas); tous de la vallée d'Abeshinai et la région adjacente, Province de Teshio, Hokkaido (Coll. T. MATSUMOTO). GK. H1058a, loc. Y650a, couche IIf (inférieur), la vallée de Shiyubari, Province d'Ishikari, Hokkaido (Coll. T. MATSUMOTO).

Damesites semicostatus MATSUMOTO

GT. I-3104, lectotype, loc. T592b, couche IIIa, la vallée d'Abeshinai, Province de Teshio, Hokkaido (Coll. T. МАТЅИМОТО). GT. I-361, GT. I-362, et GT. I-363; syntypes, tous de «la couche de *Pachydiscus*» (= zone à *Anapachydiscus*), la vallée d'Ikushumbetsu, Province d'Ishikari, Hokkaido (Coll. H. YABE). GK. H4108, GK. H4111, GK. H4113, et GK. H4114; syntypes, tous de la vallée d'Obirashibetsu, Province de Teshio, Hokkaido (Coll. H. YABE). GK. H4102 et GK. H4103; de la même vallée (Coll. K. ТАNAKA et E. INOUYE). GT.
I-1473a, b, et GT. I-1475, syntypes, tous les deux de loc. Togushi-35, «schiste de Togushi» (≒ le Groupe de Miho, supérieur), la région de Togushi, la pénin-sule de Nishi-notoro, Saghaline du Sud (Coll. M. ISHIZAKI et K. SAKAKURA).
Damesites damesi (JIMBO)

GT. I-91, lectotype, loc. «entre Tsuetomanai et Motomari, le long de la rivière d'Obirashibetsu, Province de Teshio» (Coll. K. JIMBO). GT.I-2566a, b, loc. N165p, zone Mh6; GT. I-2567a, loc. N143r, zone Mh6 (supérieur); GT. I-2568b, loc. N401e2, zone Mh6; GT. I-2570, loc. N143a, zone Mh6 (supérieur); GT. I-2571, loc. N148p2, zone Mh6; GT. I-2573, loc. N446b, zone Mh6; GT. I-2574, loc. N189b, zone Mh6 β ; GT. I-2576, loc. N401g4, zone Mh6 β ; GT. I-2581, loc. N446f, zone Mh6 β ; GT. I-2605, loc. N27-28, zone Mh4; GT. I-2610, loc. N26b, zone Mh4; tous de la vallée de Naibuchi, Saghaline du Sud (Coll. T. MATSUMOTO).

Damesites sugata (Forbes)

GT. I-1469 et GT. I-1470 de loc. Togushi-9.7, GT. I-1467 de loc. Togushi-96.217; tous à «le schiste de Togushi», équivalent de la partie supérieure du Groupe de Miho, la péninsule de Nishi-Notoro, Saghaline du Sud (Coll. M. Ishizaki et K. Sakakura). GT. I-2593 de loc. N22z, zone Mh6 β ; GT. I-2589 de N401g3, Mh6 β ; GT. I-2582 de N391, Mh6; GK. H2408 de N143p2, Mh6 α 2; GK. H2407 de N22z, Mh6 β ; tous de la vallée de Naibuchi, Saghaline du Sud (Coll. T. MATSUMOTO). GT. I-3119 de loc. T310b, couche IIId, la vallée d'Abeshinai, Province de Teshio, Hokkaido (Coll. T. MATSUMOTO). GK. H3270 de loc. U595, couche Ur1 β , de la région d'Urakawa, Province de Hidaka, Hokkaido (Coll. T. MATSUMOTO). GT. I-359a de Shisanushibe, «couche de *Pachydiscus*» \rightleftharpoons (zone à *Anapachydiscus*), Province d'Iburi, Hokkaido (Coll. H. YABE). GK. H5124, GK. H5129, GK. H5130, et GK. H5131, enregistrement incertain, Saghaline du Sud (Coll. S. NAGAOKA).

Damesites hetonaiensis MATSUMOTO

GK. H3836, lectotype, loc. H12d3 (entre Omagari et Hetonai), couche IVb, dans la partie supérieure du Groupe de Hakobuchi, région de Hetonai, Province d'Iburi, Hokkaido (Coll. T. MATSUMOTO). Syntypes: GK. H3837, loc. H12d8, couche IVb; GK. H3838a, loc. H12d8, couche IV (Coll. T. MATSUMOTO); et un autre spécimen préservé en l'Institut de Géologie et Minéralogie, Université de Hokkaido (Coll. K. OTATUME); tous de la vallée de Mukawa, la région de Hetonai, Province d'Iburi, Hokkaido.

Desmophyllites diphylloides (Forbes)

BM. C22682, lectotype, et BM. C22683, syntype; tous les deux de Valudayur, Pondicherry, l'Inde. GT. I-1478a, b, c, d, f; GT. I-1479a, b, c, d, e; GT. I-1488b, c, d, e, f, g, h; tous de loc. 823, la région de Togushi, la péninsule de Nishi-Notoro, Saghaline du Sud (Coll. M. ISHIZAKI et K. SAKAKURA). GT. I-3114a, loc. T280, couche IIIe; GT. I-3117a, b, loc. T280, couche IIIe; GT. I-3118a, b, c, loc. T313, couche IIIe; GT. I-3133, loc. T579p, couche IIIe; tous de la région d'Abeshinai-Saku, Province de Teshio, Hokkaido (Coll. T. Матѕимото). Hauericeras (Gardeniceras) angustum YABE

GT. I-259, holotype, dans «la couche de l'Ammonite Supérieur» à Urakawa, Province de Hidaka, Hokkaido (Coll. K. JIMBO?). GT. I-257 de Kikume-zawa, Province d'Ishikari, et GT. I-274 d'Urakawa; tous les deux dans «les couches de Pachydiscus» (= zone à Anapachydiscus) en Hokkaido (Coll. H. YABE). GT. I-554 dans la partie supérieure du Groupe de Miho, la vallée de Naibuchi, Saghaline du Sud (Coll. M. KAWADA). GT. I-2594, loc. N143p, zone Mh6; et GT. I-3582, loc. N401g4, Mh6 β , tous les deux de la vallée de Naibuchi, Saghaline du Sud (Coll. T. MATSUMOTO). GK. H3836 de loc. H5c, dans le Groupe de Yezo Supérieur, la région de Hetonai, Province d'Iburi, Hokkaido (Coll. T. MATSUMOTO). GK. H3322 de loc. U141p3, couche Ur1 β ; GK. H3323 de loc. U141p3, couche Url β ; GK. H3326 de loc. U143p4, couche Url β ; GK. H3328, de loc. U150p6, couche Ur2 β ; GK. H3334a, b, de loc. U505, couche Ur1 β ; GK. H3335 de loc. U151p, couche Ur2 β ; GK. H3336 de loc. U596, couche Ur1 β ; tous de la région d'Urakawa, Province de Hidaka, Hokkaido. GK. H5138, GK. H5139, GK. H5140, GK. H5141, et GK. H5213 de Saghaline du Sud (Coll. S. NAGAOKA). GK. H5209 d'Abeshinai, Province de Teshio, Hokkaido (Coll. U. TANAKA).

Hauericeras (Gardeniceras) gardeni BAILY

BM. R11370, BM. R11371, BM. C18517, BM. C18520, BM. C18528, BM. C18516,
BM. C18518, BM. C18522, BM. C18521; tous de l'Afrique australe, d'après de mesures par T. MATSUMOTO.

Dimensions

J'ai adopté les dimensions selon les descriptions de MATSUMOTO (1954, pp. 250, 253, 258, 259, 261, 268-269, 271), celles de MATSUMOTO et d'OBATA (1955, pp. 122-123, 127, 128-129, 138-139), MATSUMOTO (1959a, p. 58), MATSUMOTO (1959b, p. 14), et le manuscrit de MATSUMOTO (le 16 mars 1954). Je corrige, dans ce traité, des fautes d'impression des descriptions ci-dessus. Les dimensions en mm. sont en liste suivante:

Desmoceras kossmati MATSUMOTO

Spécimen	Diamètre total	Hauteur	Épaisseur
GT. I-2551	35.0	18.0	19.0
GT. I-2552	60.0	33.0	30.0
GK. H1001a	30.0	15.5	16.0
GK. H1001b	22. 5	12.0	13.0
GK. H1001c	30.8	16, 0	16.0

38	а на	Obata	
GK. H1001f	30.0	15.5	15.8
GK. H1002a	13.1	6.8	5.8
11	8.3	4.6	3.8
GK. H1002b	5.5	2.8	2.7
//	3.5	1.8	2.1
GK H1004	40.0	20.0	. 23 0
//	23 0	12 0	12.5
"	16.0	8 5	73
GK H1005a	10.0	5.2	1.5
GK H1005b	14.6	7.2	4.0
CK H10056	14.0	7.1	6.1
GK. H1003C	14.5	0.5	0.1
GK. 111024a CK U1024b	10.4	5.0	0.7
CK U10240	20.0	21.0	4.0
GR. 11025a	39.0	21.0	21. 5
Desmoceras (Pseu	douhligella) japonicum	Үаве	<u> </u>
Specimen	Diametre total	Hauteur	Rpaisseur
G1. 1-260	118.0	60.0	50.0
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	90.0	42.5	36.0
G1. 1-3023	57.0	28.0	26.5
Desmoceras (Pseu	douhligella) japonicum	mediocompressa MATSUMOR	<u> </u>
Spécimen	Diamètre total	Hauteur	Epaisseur
GT. 1-3020a	44.0	22.0	22.0
GT. I-3021	36.0	18.0	16.5
GT. I-3020b	30.0	14.0	13.5
Desmoceras (Pseu	douhligella) japonicum	compressior Matsumoto	,
Spécimen	Diamètre total	Hauteur	Epaisseur
GT. I-3026	28.8	14.5	11.3
"		9.5	8.2
11		6.3	5.8
11		4.8	4.0
11		3.2	3.0
"		2.0	2.0
GT. I-2558	35.0	18.0	15.0
Desmoceras (Pseu	douhligella) japonicum	Yabe d'Alaska	
Spécimen	Diamètre total	Hauteur	Épaisseur
USNM. 129263	53.5	29.0	24.7
USNM. 129264	52.0	27.3	22. 2
USNM. 129265	40.4	22.2	20.5
USNM. 129266	62.5	34.2	29.3
USNM. 129267	44.2	23.5	20.7
USNM. 129291a	49.5	27.5	22.1
USNM. 129291b	57.7	31.0	27.9
USNM. 129291c	30.2	16.3	12.2
USNM. 129291d	42.6	22.5	22.6
Desmoceras (Pseu	douhligella) po <b>r</b> onaıcun	и Үабе	
Spécimen	Diamètre total	Hauteur	Épaisseur
GT. I-261	25.0	12.0	11.0
GT. I-3027a	34.0	17.5	15.3
GT. I-3027b	14.4	8.1	7.5

Desmoceras (Pseudouhligella) ezoanum Matsumoto					
Spécimen	Diamètre total	Hauteur	Épaisseur		
GT. I-3030	52.0	25.0	18.0		
GT. I-3032a	21.5	11.0	7.5		
GT. I-3032b	15.0	7.5	5.5		
GT. I-3034	35.0	17.0	11.5		
GT. I-3035a	27.0	14.0	10.5		
GT. I-3035b	12.3	6.6	4 7		
GT I-3035c	9.7	5 1	3.9		
GT. 1-2025d	9.7	5.1	J. J 4 1		
GI. 1-30350	0.9	4.0	4.1		
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	14.0	3.0	2.7		
GT. 1-3041a	14.3	7.1	5.9		
GT. I-3041b	15.3	8.3	5.2		
GT. I-3041c	19.2	10.2	6.7		
GT. I-3041d	9.9	5.4	3.7		
GK. H1058a	11.8	6.0	4.2		
Damesites semicos	status Matsumoto				
Spécimen	Diamètre total	Hauteur	Énaisseur		
GT L-3104	37 7	23.3	18 Q		
CT I 261	22 0	20.0	10.5		
GT. 1-301 CT. 1-202	55.9	20.4	17.0		
GI. 1-302	10.0	32.3	24.3		
GT. 1-363	46.3	26.4	20.8		
GT. I-1473a	41.0	24.6	19.4		
GT. I-1473b	35.6	22.3	18.4		
GT. I-1475	36.6	21.2	17.4		
GK. H4102	51.2	32.5			
GK. H4103	36.9	21.5	17.7		
GK. H4108		29.7	23.7		
GK H4111	37 5	22. 2			
CK H4113	61.0	35.6	97 1		
CK H4114	76 7	46.2	21.1		
GK. H4114a	10.1	40. 3			
Damesites damesi	(Јімво)		,		
Spécimen	Diamètre total	Hauteur	Epaisseur		
GT. I-91	60.0	34.0	25.0		
GT. I-2566a	25.0	14.0	11.5		
GT. I-2566b	29.0	15.0	13.0		
GT. I-2567a	55.0	30.0	26.5		
GT. I-2568b	30, 0	16.5	15.0		
GT L-2570	28.0	16.0	14.0		
GT. L 2571	20.0	18.0	15.0		
CT 1 9579	40.0	21 5	10.0		
GI. 1-25/5	40.0	21.5	10.0		
G1. 1-25/4	20.0	10.5	10.0		
GT. 1-2576	30.0	15.5	13.0		
GT. I-2581	30.0	16.5	13.7		
GT. I-2605	21.0	11.5	10.0		
GT. I-2610a	15.0	8.5	7.0		
GT. I-2610b	10.0	5.2	5.0		
Damesites sugata	(Forbes)				
Spécimen	Diamètre total	Hauteur	Épaisseur		
Чокочама, 1890	44 5	96 F	10 ^		
de la figure	44. 0	40.0	19. V		

GT. I-359a 40.0 22.4 16.5 GT. I-1467 63, 0 34.1 GT. I-1469 35.5 20.5 65.5 11 46.8 24.0 17.3 " 31.5 16.4 12.5 9.2 22.0 12.0 " GT. I-1470 24.013.6 9.0 GT. I-2582 24.5 13.6 11.2 GT. I-2589 14.3 33.5 19.8 19.5 GT. I-2593 25.3 35.5 13.1 GT. I-3119 17.8 GK. H2407 15.2 8.5 6.3 23.4 12.9 10.2 GK. H2408 54.0 28.0 21.2 GK. H3270 GK. H5124 26.2 17.2 46.8 GK. H5129 37.0 20.8 15.4 GK. H5130 38.0 21.3 15.3 13.6 33.7 19.2 GK. H5131 Damesites hetonaiensis MATSUMOTO Epaisseur Spécimen Diamètre total Hauteur GK. H3836 44.0 26.0 17.0 16.5 12.7 GK. H3837 29.0 6.8 GK. H3838a 8.0 14.5 GH. 54.0 32.0 22.0 ____ Damesites hetonalensis fresnoensis MATSUMOTO Spécimen Diamètre total Hauteur Epaisseur 37.0 106.0 60.5 164.0 66.5 40.3 116.5 14.6 31.6 18.4 Desmophyllites diphylloides (FORBES) Diamètre total Hauteur Épaisseur Spécimen 9.0 BM. C22682 20.0 11.0 22.0 12.0 9.1 BM. C22683 37.4 16.7 GT. I-1478a 19.9 GT. I-1478b 25.4 13.7 11.7 9.7 GT. I-1478c 20.9 11.7 12.5 GT. I-1478d 26.9 15.6 11.6 9.5 GT. I-1478f 19.0 20.4 11.7 9.5 GT. I-1479a GT. I-1479b 15.5 9.3 6.9 GT. I-1479c 6.5 5.4 10.7 GT. I-1479d 8.0 4.4 4.3 12.1 GT. I-1479e 25.1 15.0

16.0

9.0

11.2

6.7

4.1

8.9

10.8

13.7

7.1

10.0

6.3 4.3

8.1

9.3

I. Obata

40

GT. I-1488b

GT. I-1488c

GT. I-1488d GT. I-1488e

GT. I-1488f

GT. I-1488g

GT. I-1488h

30.1

15.5

19.2

12.8

8.0

15.6

19.6

Croissance relative sur quelques Espèces des Desmoceratidae

GT. I-3114a	21.1	12.9	9.7
11	14.1	8.4	7.1
11	9.9	5.2	5.2
"	7.0	3.7	3.7
11	5.1	2.7	2.7
11	3.7	1.8	1.9
11	2.5	1.3	1.4
11	1.8	0.8	1.0
GT. I-3117a	27.0	15.7	13.2
GT. I-3117b	19.1	11.2	9.2
GT. I-3118a	24.6	15.1	11.5
GT. I-3118b	23.1	13.2	11.1
GT. I-3118c	15.7	9.3	8.4
GT. I-3133	17.6	10.5	9.0

Hauericeras (Gardeniceras) angustum YABE

Spécimen	Diamètre total	Hauteur	Épaisseur	Diamètre de l'ombilic
GT. I-259	33.0	14.0	7.0	11.0
GT. I-257	34.0	13.0	8.0	12.5
GT. I-274	83.0	31.0	14.0	31.0
11	44.0	17.0	8.0	15.0
11	20.5	9.0	4.5	6.5
GT. I-554	123.5	42.3		51.2
"	92.5	32.5	16.5	38.3
GT. I-3852	41.3	15.5	8.7	15.5
11	20.2	8.0	5.0	7.5
GT. I-2594	53.0	21.0	9.5	18.0
GK. H3322	123.4	42.8	23.2	51.0
GK. H3323	24.2	11.0	6.0	8.0
GK. H3326	60.6	25.0	11.5	20.5
GK. H3328	38.3	14.0	8.0	14.6
GK. H3334a	27.8	11.3	6.3	10.4
GK. H3334b	22.8	9.9	5.3	8.0
GK. H3335	138.0			60.0
GK. H3336		44.3	23.3	
GK. H3836	140.0	47.0		60.4
GK. H5138	46.6	18.1	9.4	17.4
GK. H5139	39.7	16.7	8.6	13.7
GK. H5140	47.6	18.9	11.0	17.4
GK. H5141		34.3	17.3	36.9
GK. H5209	126.2	43.1		51.2
GK. H5213	139.6	46.7	25.0	60.0

Hauericeras (Gardeniceras) gardeni BAILY

Spécimen	Diamètre total	Hauteur	Epaisseur	Diamètre de l'ombilic
BM. R11370	78.2	29.0	16.1	29.0
BM. R11371		43.0	25.5	
"		41.5	23.5	
BM. C18516	140.0	46.5	24.8	60.0
"	112.0	38.5	21.3	
BM. C18517	116.3	39.2	20.9	48.3
BM. C18518	129.5	43.0	27.1	52.3
4		30.5	17.6	

"		27.0	16.0	
BM. C1852	20 106.5	36.5	21.5	41.0
"	78.0	28.5	16.5	28.0
"	55.5	21.0	11.7	19.5
"	38.5	15.0	8.2	13.8
"	26.5	10.0	5.8	9.5
BM. C1852	21 59.0	23.0		20.8
BM. C1852	94.0	32.0	18.2	38.4
BM. C1852	28 68.0	25.5	14.3	25.0

Résultat de calcul

Ayant examiné les matériaux déjà publiés, j'ai trouvé que la relation susdite existe vraiment entre x et y. Le diamètre total, celui de l'ombilic, la hauteur du dernier tour, l'épaisseur (la largeur) du dernier tour sont chacun montrés par les symboles de D, O, H, et E. Le numéro qui est en bas droit de chaque symbole montre le stade de la croissance. Les quantités constantes calculées par la méthode des moindres carrés sont en liste suivante:

Desmoceras kossmati Matsumoto

H=0.49D^{1.01}, E₂=0.64D^{0.84}, E₃=0.01D^{2.20}, E₄=1.05D^{0.30}, E₂=0.92H^{0.97}, E₃=0.96H^{1.02} Desmoceras (Pseudouhligella) japonicum YABE

 $H = 0.42D^{1.03}$, $E = 0.81D^{0.85}$, $E = 1.64H^{0.83}$

Desmoceras (Pseudouhligella) japonicum mediocompressa MATSUMOTO

 $H = 0.23D^{1.20}$, $E = 0.16D^{1.29}$, $E = 0.79H^{1.06}$

Desmoceras (Pseudouhligella) japonicum compressior MATSUMOTO

 $H = 0.33D^{1.12}$, $E = 0.05D^{1.59}$, $E = 1.03H^{0.91}$

Desmoceras (Pseudouhligella) poronaicum YABE

 $H = 0.80D^{0.86}$, $E = 0.83D^{0.81}$, $E = 1.08H^{0.92}$

Desmoceras (Pseudouhligella) ezoanum Matsumoto

 $H = 0.58D^{0.95}$, $E = 0.51D^{0.88}$, $E = 0.79H^{0.95}$

Damesites semicostatus MATSUMOTO

 $H = 0.59D^{1.00}, E = 1.16D^{0.76}, E = 1.33H^{0.84}$

Damesites damesi (JIMBO)

 $H = 0.51D^{1.01}$, $E = 0.58D^{0.93}$, $E = 1.08H^{0.91}$

Damesites sugata (Forbes)

 $H = 0.59 D^{0.97}$, $E = 0.67 D^{0.85}$, $E = 1.02 H^{0.83}$

Damesites hetonaiensis MATSUMOTO

 $H = 0.47D^{1.05}$, $E = 0.67D^{0.86}$, $E = 1.24H^{0.81}$

Desmophyllites diphylloides (Forbes)

 $H = 0.46D^{1.06}, E = 0.48D^{1.00}, E = 1.16H^{0.86}$

Hauericeras (Gardeniceras) angustum YABE

 $H_1 = 0.55D^{0.91}, H_2 = 1.10D^{0.75}, E = 0.39D^{0.82}, O_1 = 0.32D^{1.02}, O_2 = 0.11D^{1.26},$

 $E = 0.99 H^{0.78}$

Hauericeras (Gardeniceras) gardeni BAILY

 $H_1 = 0.35D^{1.02}, H_2 = 0.11D^{0.79}, E = 0.31D^{0.90}, O_1 = 0.38D^{0.97}, O_2 = 0.15D^{1.20}, E = 0.56H^{0.99}$

Considérations

On remarquait *D. kossmati* en raison de la spécialité de l'ontogénie de la forme de la coquille (MATSUMOTO, 1954, p. 250). A propos de l'ontogénie de la forme des Desmocerataceae, en général, la coquille en maturité a le tour haut et celle en immaturité a le tour large, mais. quant à *D. kossmati* l'épaisseur (la largeur) du tour en maturité est aussi grande ou un peu plus grande que la hauteur, et l'épaisseur du tour en immaturité est plus petite que la hauteur, excepté au premier stade ontogénique (pp. 37-38). La relation entre la hauteur et l'épaisseur est montrée comme $E_2 = 0.92H^{0.97}$, negative allometry, quand le tour est de 3 mm. à 10 mm. de haut, mais comme $E_3 = 0.96H^{1.02}$, positive allometry, en maturité (fig. 1c). En ce cas, la relation entre la hauteur et le diamètre est constamment montrée comme $H=0.49D^{1.01}$ (fig. la), mais dans la relation entre l'épaisseur et le diamètre, on peut distinguer quatre stades au cours de la croissance de tour (fig. 1b). De cette manière on peut facilement connaître que le changement de la forme de *D. kossmati* est principalement dû au changement ontogénique de la manière de croître de l'épaisseur du tour (fig. la-c, fig. 7).

A l'égard de la relation entre la hauteur et l'épaisseur, aussi bien que celle entre l'épaisseur et le diamètre, D.(P.) poronaicum est une form intermédiaire entre D. kossmati et D.(P.) ezoanum (fig. la-c, fig. 7). D.(P.) ezoanum montre un peu de variabilité dans la relation entre la hauteur et l'épaisseur (fig. lc), provenant de la variation de celle entre l'épaisseur et le diamètre (fig. la, b). La flèche dans le diagramme triangulaire montre le changement ontogénique des espèces ci-dessus (fig. 7).

D. (P.) japonicum montre une variation considérable dans la forme de la coquille (fig. 2a-c, fig. 8). MATSUMOTO a décrit deux sous-espèces excepté la forme normale, principalement à cause de la variation susdite (1954, pp. 252-259, pl. 1, fig. 7a, b; pl. 2, la, b, 2a-c, 3a, b, 4a-c). Cependant, récemment il a supprimé ses «sous-espèces» mediocompressa et compressior (1959a, p. 59). La relation de la hauteur au diamètre est similaire entre les trois «sous-espèces», mais quelque peu différente entre la forme de Japon et celle d'Alaska (fig. 2a). La relation de l'épaisseur au diamètre montre une variation dûe aux différents stades ontogéniques (fig. 2b). La variation de la forme de cette espèce s'explique être causée par la variation du tour dans le même stade (fig. 2a, b), aussi bien que celle dûe aux différents stades ontogéniques (fig. 2b). Les deux lignes parallèles de la fig. 2a et les deux groupes de la fig. 8 suggèrent une variation géographique d'une même espèce au

Cénomanien.

La coquille en immaturité de *D. damesi* et celle de *D. semicostatus* se ressemblent beaucoup l'une à l'autre. L'aspect général de la cloison et l'ornement dans les deux espèces en maturité se ressemblent, mais on peut les distinguer l'un de l'autre par la notabilité des côtes. De plus, la relation de la hauteur à l'épaisseur est quelque peu différente entre les deux espèces en maturité. (cf. MATSUMOTO et OBATA, 1955, p. 127, texte fig. 4). C'est-à-dire, quand le diamètre de *D. semicostatus* est plus de 30 mm., la relation entre l'épaisseur et la hauteur est montrée comme E= $1.33H^{0.84}$, loin de $E=1.08H^{0.91}$ de *D. damesi*, et le tour devient étroit (fig. 3c). En ce cas, la dimension de l'épaisseur pour le diamètre de *D. semicostatus* tombe dans l'extension de la variation de *D. damesi* (fig. 3b), mais la dimension de la hauteur de *D. semicostatus* est usuellement plus grande que la dimension de *D. damesi* en même diamètre (fig. 3a). On ne peut pas apercevoir une direction ontogénique dans le diagramme triangulaire de *D. damesi* (fig. 9).

A l'égard de la variation des formes de *D. sugata* et *D. diphylloides*, ces espèces montrent la variation de la hauteur et de l'épaisseur du tour (figs. 4a, b, 5a, b), et spécialement celle de l'épaisseur est éminente. En général, les deux espèces montrent la variation considérable de la forme (figs. 4c, 5c, 10, 11).

Quant à *D. hetonaiensis*, concernant les deux formes du Japon et de la Californie, la proportion de l'épaisseur diminue au cours de l'ontogénie (fig. 10).

On distingue H. (G.) angustum de H. (G.) gardeni par les caractères des sillons et par la différence de E/H. (Матѕимото et Овата, 1955, p. 140). La manière de la croissance du tour est montrée comme $E = 0.99H^{0.78}$ dans le premier, E = 0.56H^{0.99} dans le dernier, mais, quant au premier, il y a la variation considérable (fig. 6c, 12, 13). En ce cas, quant à la hauteur du tour, on peut connaître deux stades ontogéniques concernant les deux espèces, et la période de changement est celle où le diamètre est environ de 60 mm. (fig. 6a). La hauteur de H. (G.) gardeni croît positivement pour diamètre au premier stade, et négativement au dernier. A l'égard de la relation entre le diamètre total et celui de l'ombilic des deux espèces, on peut connaître aussi deux stades séparés ontogéniques aux environs de 60 mm. du diamètre (fig. 6d). Au cas de H. (G.) angustum, elle serait montrée comme $O_1 =$ $0.32D^{1.02}$, positive allometry, $O_2 = 0.11D^{1.26}$, positive allometry, dans le cas où H. (G.) gardeni, comme $O_1 = 0.38D^{0.97}$, negative allometry, $O_2 = 0.15D^{1.20}$, positive allometry, et les équations des espèces se ressemblent excessivement les unes aux autres.

Conclusions

La croissance relative des caractères (c.-à-d. la hauteur, l'épaisseur (la largeur), et le diamètre total et celui de l'ombilic) dans quelques espèces des Desmoceratidae est montrée généralement par l'équation $y = bx^{\circ}$. Pourtant, chaque espèce a sa manière particulière de croissance. Suivant des circonstances la relation entre deux caractères est constante toute la vie (p. ex. *Damesites damesi* (JIMBO)) ou la relation est modifiée selon des stades ontogéniques (p. ex. *Desmoceras kossmati* MATSUMOTO).

Au cas où l'on observera la variation considérable de la forme de la coquille, on peut, par l'étude de l'allometry, clairement connaître, si elle est causée par la modification ontogénique dans la relation entre la hauteur et le diamètre (p. ex. Hauericeras (Gardeniceras) angustum (YABE)) ou entre l'épaisseur et le diamètre (p. ex. Desmoceras (Pseudouhligeila) japonicum YABE); si elle est causée par la combinaison des deux modifications susmentionnées; si elle est dûe à la variabilité dans un certain stade ontogénique (p. ex. Desmophyllites diphylloides (FORBES)).

Quant à l'équation $y = bx^{\alpha}$, j'ai constaté, par l'étude des Ammonites, que: 1°, α , equilibrium constant, est principalement un exposant de l'espèce; 2°, b signifie la variation individuelle, et aussi la variation géographique; 3°, α et b d'une espèce se modifient dûe au changement des stades ontogéniques.

Ouvrages cités

- HUXLEY, J. S. and G. TEISSIER (1936): Terminology of Relative Growth, Nature, Vol. 137, pp. 780-781.
- Матимото [Матяимото], Т. (1942-1943): Fundamentals in the Cretaceous Stratigraphy of Japan, Part I, Mem. Fac. Sci., Kyushu Imp. Univ., Ser. D, Vol. 1, pp. 129-280, pls. 5-20 (1942); Part II & III. Ibid., Vol. 2, pp. 97-237 (1943).
- MATSUMOTO, T. (1954): Selected Cretaceous Leading Ammonites in Hokkaido and Saghalien, Appendix in T. MATSUMOTO (Editor), 1954 [1953], The Cretaceous System in the Japanese Islands. pp. 243-313, pls. 17 [1]-36 [20], Tokyo.
 - (1959a): Cretaceous Ammonites from the Upper Chitina Valley, Alaska, Mem. Fac. Sci., Kyushu Univ., Ser. D, Vol. 8, No. 3, pp. 49-90, text-figs. 1-16, tables 1, 2, pls. 12-29.
 - (1959b): Upper Cretaceous Ammonites of California Part II, Mem. Fac. Sci., Kyushu Univ., Ser. D, Special Vol. 1, pp. 1-172, text-figs. 1-80, pls. 1-41.
- MATSUMOTO, T. and I. OBATA (1955): Some Upper Cretaceous Desmoceratids from Hokkaido and Saghalien, Mem. Fac. Sci., Kyushu Univ., Ser. D, Vol. 5, No. 3, pp. 119-151, text-figs. 1-13, tables 1-2, pls. 24-30.
- THOMPSON, D'A. W. (1942): On Growth and Form, Cambridge Univ. Press, 2nd ed., 1116 p., 2pls, 554 figs., Cambridge.