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Abstract:This paper deals with the instability of RC active circuits containing non-ideal op-

amps. It is very often that, when we design a circuit with a prescribed transfer function, installed 

RC active circuits are unstable, even though the designed transfer function itself is stable. One of 

the reasons for it is the existence of inevitable deviations of circuit element characteristics from 

ideal ones. In this paper we assume that the voltage gain of each op-amp is represented by the 

one-pole model and give a topological sufficient condition for the denominator polynomial of RC 

active circuits with these op-amps to be able to possess negative coefficient terms. 
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 1. Introduction 
 When we design an active circuit with a pre-

scribed transfer function, there often arises an in-
stability problem, though the transfer function itself 
is stable, i.e., all poles of this transfer function lie 
only in the left-half plane of the complex variable 
s. Similar instability problem occurs for an equi-
librium point of a nonlinear  do circuit composed of 
dc sources, nonlinear resistors, and active elements. 
There are some explanations for these instabilities 
in the literatures 1)-6) as follows: 1)Deviation of 
real circuit-element characteristics from ideal ones 
(frequency characteristics, element losses, etc.), 2) 
Existence of parasitic elements(capacitances, induc-
tances), 3) Existence of a positive feedback with 
the gain greater than unity. These explanations are 
plausible in some aspects, but are not necessarily 
reasonable. Further the relations among them have 
not been clarified yet. 

 In this paper we assume that gain characteris-
tics gi of each op-amp are represented by one pole 
model, i.e., gi = goi/(1 + s/wBTi), and discuss the 
instability of a circuit consisting of these op-amps 
and resistors and capacitors. 

 Let the prescribed transfer function be T(s) = 
Q(s)/P(s), where P(s) is a Hurwitz polynomial of 
order n. If op-amps are ideal, i.e., goi are infinite, 
then the designed circuit surely realizes the above 
T(s) and therefore is stable. However due to the 
fact that goi are finite there arise many unwanted 
parasitic terms in the denominator of the real trans-
fer function in addition to designated terms. 

  Since among these parasitic terms those having 
order lower than or equal to n will be embedded 
into the designated terms with large values, they
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will hardly affect the stability of the circuit. It 

is however very probable that those having order 

higher than n and having negative coefficients will 

cause the instability with high probability. 

 In some cases these negative coefficient terms may 
be canceled with positive ones but we cannot opti-

mistically expect it, because the above parasitic val-

ues of these higher order terms as well as the values 

got and WBTi are not predictable a priori, when we 
design the circuit. Hence it is desirable to know a 

priori the possibility of negative coefficient term of 
order higher than n. 

 In this paper we investigate the condition that 

the denominator polynomial of an actual transfer 
function can possess a negative coefficient term of 

order higher than n independent of values of circuit 

parameters, such as resistances, capacitances, and 
op-amp's gains. The obtained condition is graph-

theoretic, and the result seems to be a generaliza-
tion of that of total feedback gain, which is very 

familiar to circuit designers. 

 2. Preliminaries 

 2.1 Graph representation 
  Consider an RC active circuit with op-amps as 

shown in Fig.1, which is composed of m resistors, 

RL, and Ri(= 1/Gi) (i = 1, • • • , m — 1), n capaci-
tors, Ci (i = 1, • • • , n), k op-amps, and an indepen-
dent current source, J. Here RL is the load resistor. 

  From a practical point of view, we assume as fol-
lows: 
Assumption 1: One of output terminals of each 
op-amp is grounded.^ 

  In the subsequence an op-amp #i is replaced 
by a cascade of a voltage-controlled current source 
(VCCS) with the gain gi and an ideal gyrator with 
gyration ratio gGi as shown in Fig.2(b), where 
gGi = 1. The gain gi has the frequency charac-
teristic described below and should be written as



Fig.1 An RC active circuit with op-amps

(a) Op-amp

(b) Equivalent circuit of an Op-amp

        (c) Directed graph 

Fig.2 Op-amp  #i, its equivalent circuit using a VCCS 
       and a gyrator and its corresponding graph.

92(s). 
 We derive a graph denoted by G corresponding to 
the above-mentioned modified circuit with VCCSs 
and gyrators in the following way: 

 1) Replace a resistor Ri and a capacitor C3 by di-
   rected branches bR2 and be j, respectively. They 

   are called resistor- and capacitor-branches or 
   simply R- and C-branches, respectively. 

 2) Replace an op-amp by four directed branches 
   corresponding to the VCCS and the gyrator 

   as shown in Fig.2(c), where ba and bb respec-
   tively correspond to controlling and controlled 

   branches of the VCCS, and branches be and 
   bd correspond to the gyrator. The direction 

   of each branch is also shown in Fig.2(c). We 
   call branches ba, bb, be, and bd a-, b-, c-, and 
   d-branches, respectively. 

 3) Replace an independent current source J by

   a directed branch bj. 

 2.2 Circuit analysis 
 Let A = [aii] be a reduced incidence matrix of the 

obtained graph G, where the ground is regarded as 
the reference node of A. Let Vbr and Ibr denote a 
branch voltage vector and a branch current vector. 
We assume that the first element of Vbr (Ibr) corre-
sponds to the current source, the second element to 
the load resistor, the 3rd to 4k + 2th elements to the 
k op-amps and the remainings to other resistors and 
capacitors. Let the total number of nodes including 
the ground be p + 1 and let p-dimensional vector 
U denote the node potential vector with respect to 
the reference node 0. Note that nodes 1 and 2 are 
designated as in Fig.1. 

 Then the equations of this circuit can be de-
scribed as : 

      KCL : AIbr = 0 
    KVL : Vbr = AT U(1) 

 Ohm's Law : Ibr = YbrVbr 
where Ybr is the constitution matrix representing 
the characteristics of all elements. Concretely, it 
has the form: 

Ybr _ (0)10 00 gG1 RL gi °)-gGl 0 
0 00 9G2 ED

••• 
g2 0—gG2 0 

                 (1)0 0a) gGk 
                gk 0—90k 0 

        diag (1...,, 1  
R1Rm—i, sCl, • • • , sCn (2) 

where ® denotes the direct sum of matrices. The 
first term of the right-hand side of Eq.(2) is the 
internal conductance of the independent current 
source, the second one the load conductance, the 
third and fourth ones the characteristics of the gy-
rator corresponding to the first op-amp, the fifth 
and sixth ones the characteristics of the VCCS cor-
responding to the second op-amp, and so on. 

 Combining equations in (1), we have the nodal 
equation 

AYbrAT U = AJ (3) 

where J = (J, 0, • • - , 0)T. 
 Let the coefficient matrix of the nodal equation 

be 

Y = AYbrAT . (4) 

 The incidence matrix A is an p x b matrix where 
b = m n + 4k + 1. The matrix A has the form in 
(5)-



 Here the label of each column of A represents the 
corresponding branch. Then the matrix AYbr can 
be formally represented as in (6).

 The matrix  AYbr in (6) shows how columns of 
AYbr are related to those of A in (5). That is, the 
first column of AYbr is equal to the first column 
of A multiplied by zero(= the conductance of the 
independent current source), the second column of 
AYbr is equal to the second column of A multiplied 
by GL, the third column of AYbr is equal to the 
fourth column of A multiplied by gi, and so on. 

 2.3 Transfer function of an RC active 
     circuit 

 The transfer function T = V2/J of the RC active 
circuit as shown in Fig.1 is given 

V2 A21  T(7)  J 0 

where A is a determinant of the coefficient matrix 
Y in (4) and A21 denotes a cofactor of the (2, 1) 
element of Y. 

 The determinant of Y in (4) can be calculated by 
means of the well-known Binet-Cauchy's theorem. 
That is, A can be written as:

•A = IA[~ ... i] I I AYbr[~1 ... i] I (8) 
l<i1<•••<ip<b 

where A[i ... i] denotes the p x p submatrix com-
posed of the i1th, • • •, i,th columns of A. The other 
symbol AYbr[,,,...,,,] has also the similar meaning. 

 As is easily seen from Y in (4) the ith column of 
AYbr is the jth column of A multiplied by yij for 
some j. Then the second term of the right-hand 
side of Eq.(8) is given as 

IAYbr[i1 ... iP] I = yi131 ... yiPjP I A[j1 ... jP] I. (9) 

Therefore we have from Eqs.(8) and (9),

  A = E yiiii ... yiP1P IA[i1 ... iP] I ' IA[J1 ... ;~~ I.(10) 
1<i1<•••<ip<b 

 In (10), I A[~ ... i] and I A[j1i...opi are either 0 or 
±1 because of the totally unimodularity of an inci-
dence matrix. Since A is a multilinear function of 
the op-amp gain gi (i = 1, 2, • • • , k), Eq.(10) can be 
written as follows: 

 A=g1g2...gk(P +P1+P2+...+pk+ 
          gi g2 gk 

P12 P1 '3 + ... +Pk-1,k + P172,3  
glg2 glg3 gk—lgk glg2g3 

               +P1'2,4 +...+ P12...k(11) 
glg2g4glg2 • • gk 

where P, Pi, and P1 ,2,...,k denote multilinear forms 
of some 1/Ri's and sCj's, hence polynomials in s. 
  The cofactor A21 can also be written as 

DeltaQ1Q2Qk      2l=g1g2"gk Q++++ 
gl g2 gk Q

1,2 + Q1,3+ ...+Qk-1,k+Q1,2,3  
glg2 glg3gk—lgk glg2g3 

+ Q1,2,4 + ... +  Q1 2 ... k (12) 
glg2g4gig2•••gk 

where Q, Qi, and Q1,2,...,k are also multilinear forms 
of some 1/Ri's and sCj's only and polynomials in 
s. Other symbols also have the similar meanings. 

  Concerning actual op-amps, we assume: 
Assumption 2: The gain characteristic of each op-
amp can be represented by one-pole model: 

       9  __ oi(13)•  9z
1+ s/WBTi 

where go, has a large positive value. ^ 
 Combining (7), (11), (12), and (13), we obtain 

       Q + Q1 +Q2I...+Q1,2,,kQQ(s)   T = 91 92+9192•••9k=(14) 
        p + Pl + +...+P1,2,...,kP(s) gi 929192•••9k 

Remark 1: If all op-amps are ideal, i.e, goi = o0 
in (13), then the actual transfer function T equals 
the prescribed transfer function Q/P. ^ 

  Concerning the prescribed transfer function Q/P, 
we assume the followings. 
Assumption 3: P 0 and deg P = n. ^ 
Assumption 4: Two polynomials P and Q do not 
have a common factor.^ 
Assumption 5: P(0) > 0. ^ 
Remark 2: Assumption 3 is reasonable because, if 
P - 0, then some of op-amps are not required for 
the realization of the circuit. The latter part of As-
sumption 3 means that the circuit is a minimum ca-

pacitor circuit, i.e., the number of capacitors equals 
the degree of the transfer function. ^ 
Remark 3: Though Assumption 4 does not neces-
sarily hold in conventional realization methods, it is



reasonable for low sensitive realization. ^ 
 We also make the following assumption: 

Assumption 6: The op-amp gains  goi (i = 
1, • • • , k) are sufficiently large, but may be relatively 

quite different from each other.^ 
Remark 4: The latter part of Assumption 6 is rea-
sonable because we cannot exactly predict them in 
general and because this paper deals rather with the 
worst case in some sense. _^ 
 Concerning the polynomialP. in (14), the fol-

lowing lemma holds. 
Lemma 1: If the degree of a polynomial, say 
Pi, i...i in (11) equals n, then it is possible to 
choose op-amp parameters such that the coefficient 
of degree n + v in the denominator polynomial P(s) 
almost equals the coefficient of the highest order in 
Pi,i ~ ... i for some goi and W BT i • ^ 
Proof: If deg Pi, i ... i = n, then it follows from 

(13) that det (Pi, i i /gi, gi2 . • • gi„) = n+ v. Thus 
Lemma 1 holds when we choose goi and WBTi (i = 
1, 2, • • • , k) as follow: 

'y 2 = i2 ,•••,iv 
90i = Iotherwise 

and 

Wm 2 = 21,i2,•••,iv 
  WBTi = 

      WMotherwise 

where F > -y and Wm > Wm.^ 

 3. Main result 

 3.1 Instability of RC active circuits 
      containing op-amps 

 In this paper, instability of RC active circuits con-
taining op-amps is defined as follows: 
Definition 1: If at least one zero of the denomina-
tor polynomial P(s) in (14) exists in the left half s-

plane for arty parameter values such as goi and WBTi 
(i = 1, 2, • • • , k) in (13), resistance and capacitance 
, then the RC active circuit is said to be potentially 
unstable.^ 
 According to the above definition for instability 

of RC active circuits and Lemma 1, the following 
lemma holds. 
Lemma 2: If there exists a negative term of order 
n in the denominator polynomials except P in (14), 
then the circuit is potentially unstable.^ 

 3.2 Main theorem 
  In order to describe our main result we will intro-

duce some graph operations and a special class of 

graphs. 
  Let a connected graph be composed only of sub-

Fig.3 Example of a cactus graph

sets of a-branches and d-branches, dendted by Ba 

and Bd, respectively. If each of Ba and Bd forms a 

tree of the graph, then the graph is said to have a 

complementary tree structure with respect to Ba and 
Bd, or simply have a complementary tree structure. 

 Let G be the graph defined in Sec.2.1. We apply 

the following graph operations: 

 (I) Open-circuit the branch b and all b-
    branches. 

 (II) Short-circuit all capacitor branches and all 
    c-branches. 

 (III) Open-circuit or short-circuit each resistor 
   branch arbitrarily. 

 (IV) Open-circuit some (nonzero) a-branches 
   and short-circuit the associated d-branches. 

 (V) Move one node of a-branches which are not 
   grounded along other a-branches to the ground. 

Remark 5: By applying the graph operations (III) 
and (IV) arbitrarily, many subgraphs can be de-
rived. Some subgraphs have a complementary tree 
structure with respect to the remaining a-branches 
and d-branches.^ 
Remark 6: Unless a subgraph has a complemen-
tary tree structure, either 1A[k1,...,kid l or 
in (10) is singular, that is, the degree of the cor-
responding polynomial is less than m. Thus this 
subgraph does not satisfy Lemma 1. ^ 

 For the subsequent discussion let the subgraph 
obtained by applying the graph operations have a 
complementary tree structure with respect to the 
remaining a-branches and d-branches. 

 Let one of the resulting graphs with a complemen-
tary tree structure be composed of i a-branches, for 
example, bal., ba2, • • •, and ba,£ and the correspond-
ing i d-branches, bdl, bd2, • • •, and bd,£. If bdi and 
bai+i (i = 1, 2, • , — 1) form a loop and bd, and 
bai form a loop, then we say that the resulting graph 
is said to be a cactus graph (See the reference ). 
Remark 7: The order of the subscripts of branches 

is not essential in the definition of cactus graphs. ^ 

  Fig.3 shows an example of a cactus graph. In 
Fig.3 we say that the branches bdi and ba2 form 

a similarly directed cutset and form an opposite di-

rected loop. Similarly we say that the branches bd3 

and ba4 form a similarly directed loop and form an



opposite directed cutset. 
 We can now  state our main theorem: 

Theorem 1: The circuit is potentially unstable, if 
we can obtain a cactus graph with an even number 
of similarly directed loops by applying the graph 
operations (I)-(V) to the original graph G. ^ 
Remark 8: Theorem 1 gives a topological condi-
tion for the denominator polynomial P(s) to have 
a negative term of higher order than n. ^ 

 The proof of Theorem 1 is very involved but is 
similar to the proof of theorems in the literature5 . 
We only describe an outline of the proof in Ap-
pendix. 

 3.3 Example 
 Consider an RC active circuit shown in Fig.4 con-

sisting of 3 nullors9) 10) . The transfer function of this 
nullor circuit is given as follows: 

A21 
                    T=  q 

0 = s2 C1 C2 (R21 R4 1 + R2 R5 ) 
+sC2R41R61(R11 +R21 +R31) 

+R3-1R4-1R1 R7 1 + R3-1R5-1R6-1 R7 1, 
                               and 

A21 = —(s2C1C2R2 1 + R3 1R6 1R7 1). 

 It is well known that a nullor is equivalent to 
an ideal op-amp. Thus, we can derive 48 differ-
ent op-amp circuits") which realize the above trans-
fer function. One of these op-amp circuits is illus-
trated in Fig.5. Fig.6(a) shows a corresponding 
directed graph where all b- and c-branches are omit-
ted. Based on the mentioned graph operations (I)-
(V), open-circuit branches bj, bR2, bR4, bR5, bR6, 
bR7 and ba1, and short-circuit branches bci, bc2, 
bRi, bR3, and bdl . Then we have a subgraph as 
shown in Fig.6(b). 
 There exists two similarly directed loops in the 

obtained subgraph as shown in Fig.6(b). It fol-
lows from . Theorem 1 that the RC op-amp circuit 
in Fig.5 turns out to be unstable. This assertion 

accords with the result of the experiment in the 
reference11

Fig.4 Example of a nullor circuit

 4. Conclusion 

 We showed a topological condition for a negative 

coefficient due to the frequency characteristic of op-
amps to possibly arise. The result is given in terms 

of a cactus graph with an even number of similarly 

directed loops. 
 This condition is identical to the existence of a 

positive feedback in a wide sense. Since a positive 
feedback can apparently produce a negative coef-

ficient, we showed that the existence of a positive 

feedback is also necessary for a negative coefficient. 
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Fig.5 Example of an op-amp circuit equivalent to the nullor circuit in Figure 4.

            Appendix 

 A Proof of Theorem 1 

 We will describe an outline of the proof of Theo-
rem 1 mainly for the polynomial P1 in (14). 

 According to  Eq.  (8), a term of order n in P1 is 
calculated by 1A11  •IA2I where Al and A2 are p x p 
submatrices of A and AYbr, respectively. 
Remark 9: All columns associated with c-branches 
are always included in a submatrix of A. ^ 

 Submatrices Al and A2 are represented as fol-
lows:

(a) Graph

       (b) Obtained subgraph 
Fig.6 Example of the application of Theorem 1

Remark 10: From topological point of view, delet-
ing columns of an incidence matrix means an open-
circuiting associated branches from the original di-
rected graph.^ 

 Submatrices Al and A2 are obtained by delet-
ing some columns of A and AYbr, respectively. In 
this case, we open-circuit branches corresponding to 
columns not appearing in both Al and A2. Thus, 
branches bj, bRL, bai, bbl, bRµ+1, • •, bRm_i are 
open-circuited from the graph G. Let G' denote a 
directed graph obtained by this operation. 

 Observing the direction of bbi and bci (See 
Fig.2(c)) and interchanging columns of Al and A2 
appropriately, we have

IA1 IA2I =sn(-1)k-1g2g3... gkgGlgG2 • • • gGk          1 •••
R-----Ci...CnIAiI'IA2I (A.3)      1µ 

where matrices Al and A2 take the form 

Al = (badba3...bak bc1 ••• bck bd1 
bR1 ... bRµ be 1 ...bcn) (A.4) 

and 

A2 = (bd2 bd3 ... bdk 1 bc1 ...Ibck 1 bd1 
bR1 ... I bRµ bCl . • • bcn) • (A.5) 

 Since the gyrator ratio gGi (i = 1, 2, • • • , k) equals 
1, the following lemma holds. 
Lemma 3: 1A1 I •IA2I is negative if and only if 
IAi I ' IA2I = (-1)k• ^ 

 In a similar way as in the case of the polynomial 
Pi, we have the following lemma for a general poly-
nomial, say 
Lemma 4: If IAi 1 • IA2I = (-1)v+1, there exists a



Fig.7 Matrix  A

negative term of order n in P~1 i~2 i...i, . ^ 
 Let us partition the submatrix Al (resp. A'2) into 

two submatrices (Aa Ac) (resp. ( Ad Ac) ). Here 
we call branches corresponding to columns in Ac 

(i.e., common columns in both Ai and A'2) as com-
mon branches. For example, in the case where sub-
matrices Al and A'2 are given as (A.4) and (A.5), 
respectively, branches bc1, • • •, bck bdl, bRl, • • •, bRµ, 
bcl, • • • and bcn are common branches. 

 Submatrix A' is a p x (p + v) incidence matrix of 
the directed graph G' whose branches correspond 
to the columns in A'1 and A'2. 

 Suppose without loss of generality that the (v + 
1, 2v + 1) element of A' is nonzero. Let us multiply 
the 2v + lth column by 0 or +1 appropriately, and 
add this column to other columns so that elements 
of the v + lth row except the (v + 1, 2v + 1) element 
become 0. This operation is said to be an sweeping 
out by the (v + 1, 2v + 1) element as a pivot. 

 Let us consider that the 2v + lth column of A' is 
associated with an branch b in the graph G'. As-
sume that one of endpoints of the branch b is node 
v+1. Then the graph-theoretic interpretation of the 
sweeping out by the (v + 1, 2v + 1) can be stated as 
follows. 
Remark 11: All branches connected to node v + 1 

except the branch b are moved along b so that they 

are attached to another endpoint of the branch b as

shown in Fig.8.^ 
 Applying the sweeping out operations by some 

pivots, we obtain a matrix A as shown in Fig.7(b) 
from A'. 
Remark 12: We can identify that v x 2v subma-
trix (Aa Ad) is an incidence matrix with respect 
to the remaining a-branches and d-branches of a 
graph G obtained from G' by short-circuiting com-
mon branches.^ 

Because of the topology of d-branches, the sub-
matrix Ad always equals an identity matrix of order 
v. Thus_wehaveIA'1'IA2I= AaI'IAdI=IAa~• 

 LetAa be a reducible matrix. By interchan - 
ing rows and columns appropriately, then (Aa Ad 
has the following structure: 

Bai Ba2 Bdl Bd2 

 (Aa Ad=14110_1v1 0(A.6)       )A21A22 0 1,2 
where ivi (i = 1, 2) is an identity matrix of order 
vi. Submatrix Azi (i = 1, 2) denotes an irreducible 
matrix of order v2, and v1 + v2 = v. It follows from 

(A.6) that 

IAaI 'IAdI = IA11I • IA22• (A.7) 

 If Lemma _4 holds, it follows from(A.6) and (A.7) 
that either IA11I = (-1)v1+1 orIA22I= (-1)v2+1 al- 
ways holds. Thus it is sufficienttoconsider the case 
where the following lemma holds. 
Lemma 5: Matrix Aa is an irreducible matrix. ^ 

 According to Lemma 5, a-branches in the directed 

graph G' form a strongly connected component. 
Applying sweeping out operations to the matrix Aa 
and interchanging rows and columns appropriately 
so that a-branches still form a strongly connected 

component, then (Aa Ad) can take the form

and we have 

AaI • IAdI = (_1)v-1E1E2 ... Ev. (A.9) 

 When e1E2 • • • e1, = +1, Lemma 4 holds, from 
which Theorem 1 follows.

Fig.8 Graph-theoretic interpretation of a sweeping out 

      operation in the incidence matrix


