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Abstract. We propose a new boosting algorithm based on a linear pro-
gramming formulation. Our algorithm can take advantage of the sparsity
of the solution of the underlying optimization problem. In preliminary
experiments, our algorithm outperforms a state-of-the-art LP solver and
LPBoost especially when the solution is given by a small set of relevant
hypotheses and support vectors.

1 Introduction

Learning of sparse classifiers has been popular these days in Machine Learning
and related fields. For example, in text classification applications, the number
of features is typically more than millions, but only a small fraction of features
are likely to be relevant. In such cases, sparse classifiers are useful not only for
classification but for feature selection.

A major approach for learning sparse classifiers is to formulate problems as
ℓ1 soft margin optimization, which learns a linear classifier enlarging the margin
by regularizing ℓ1 norm of the weight vector [12]. Large margin theory guaran-
tees that this approach is robust in classification (see, e.g., [12]). Recently, the ℓ1

soft margin optimization is also applied in learning with “similarity functions”
[6, 8, 1, 14]. Since the ℓ1 soft margin optimization is a linear program, standard
optimization methods such as simplex methods or interior point methods can
solve the problem. However, solving the problem directly might need much com-
putation time even when the number of features or examples goes beyond ten
thousands.

LPBoost, proposed by Demiriz et al., is a popular boosting algorithm de-
signed to solve the soft margin optimization problem [5]. Although its iteration
bound is not known and a worst case lowerbound is exponentially worse than
other boosting algorithms, it is very fast in in most practical cases (earlier results
of LPBoost for hard margin optimization are appeared in [7]). Given m labeled
instances and n hypotheses, consider the m×n matrix in which each component
is uij = yihj(xi) for i = 1, . . . , m and j = 1, . . . , n. Note that each row or col-
umn corresponds to an example or a hypothesis, respectively. Instead of solving
the soft margin LP problem directly, LPBoost works repeatedly as follows: For
each iteration t, it finds a “good” hypothesis ht w.r.t. the current distribution



dt and construct the next distribution dt+1 by solving the reduced soft margin
LP problem restricted to the hypotheses set {h1, . . . , ht}. The final hypothesis
is given by a linear combination of past chosen hypotheses, whose coefficients
are Lagrange multipliers of the reduced problem. In the the view point of the
matrix, it generates columns and solve LPs repeatedly. In fact, LPBoost can be
viewed as a LP solver using the column generation approach (e.g., [11]), which
is a classical technique in Optimization literature.

LPBoost, however, does not seem to fully exploit the sparsity of the under-
lying problem. In fact, the ℓ1-soft margin optimization problems have two kinds
of sparsity. First sparsity arises in hypotheses. As explained above, only relevant
hypotheses have nonzero coefficients in the optimal solution. The other sparsity
appears in examples. More precisely, only some relevant examples (often called
“support vectors”) affect the optimal solution and the solution does not change
even if other examples are removed.

In this paper, we propose a new boosting algorithm which take advantage of
the sparsity of both hypotheses and examples. Our algorithm, Sparse LPBoost,
takes a “column and row ” generation approach. Sparse LPBoost generates seem-
ingly relevant columns(hypotheses) and rows(examples) and solves the linear
programs repeatedly. We prove that, given precision parameter ε > 0, Sparse
LPBoost outputs the final combined hypothesis with soft margin larger than
γ∗ − ε, where γ∗ is the optimal soft margin. Further, we propose some heuris-
tics for choosing hypotheses and examples to make the algorithm faster. In our
preliminary experiments, Sparse LPBoost solves ℓ1 soft margin problems faster
than the standard LP solver and LPBoost both in artificial and real data. Es-
pecially, for large datasets with ten thousands hypotheses and examples, Sparse
LPBoost runs more than seven times faster than other algorithms.

There are some related researches. Warmuth et al. proposed Entropy Reg-
ularized LPBoost [16], a variant of LPBoost that approximately solves the
soft margin optimization problem. Entropy Regularized LPBoost provably runs
in O(log(m/ν))/ε2 iterations, while a lowerbound of iterations of LPBoost is
Ω(m) [15].

The algorithm proposed by Mangasarian [10] and the one proposed by Sra [13]
add a quadratic term into the linear objective in the original LP problem and
solve the modified quadratic program by Newton methods and Bregman’s method
(see, e.g., [3]), respectively. Their methods, unlike ours, does not take advantage
of the sparsity of the underlying problem.

Bradley and Mangasarian [2] also proposed an algorithm that decomposes
the underlying linear program into smaller ones, which seems similar to our
idea. However, this algorithm only generates columns (hypotheses) as done in
LPBoost.

2 Preliminaries

Let X be the domain of interest. Let S = ((x1, y1), . . . , (xm, ym)) be the given
set of m examples, where each xi is in X and each yi is −1 or +1 (i = 1, . . . , m).
Let H be the set of n hypotheses, where each hypothesis is a function from X



to [−1, +1]. For any integer k, let Pk be the set of probability simplex, that is,

Pk = {p ∈ [0, 1]k :
∑k

i=1 pi = 1}. The margin of an example (x, y) w.r.t. a
(normalized) hypothesis weighting α ∈ Pn is defined as yi

∑n

j=1 αjhj(xi). Also,
the margin of the set S of examples w.r.t. w ∈ Pn is defined as the minimum
margin of examples in S. The edge of a hypothesis h ∈ H w.r.t. a distribution
d ∈ Pm is defined as

∑m

i=1 yidih(xi). For convenience, we denote γd(h) as the
edge of a hypothesis h w.r.t. a distribution d.

2.1 Linear Programming

A soft margin optimization problem with ℓ1 regularization is formulated as fol-
lows (see, e.g., [5, 16]):

max
ρ,α,ξ

ρ −
1

ν

m∑

i=1

ξi (1)

sub.to

yi

∑

j

αjhj(xi) ≥ ρ − ξi (i = 1, . . . , m),

α ∈ Pn,

min
γ,d

γ (2)

sub.to
∑

i

diyihj(xi) ≤ γ (j = 1, . . . , n),

d ≤
1

ν
1, d ∈ Pm,

where the primal problem is given as (1) and the dual problem is given as (2),
respectively. Let (ρ∗, α∗, ξ) be an optimizer of the primal problem (1) and let
(γ∗, d∗) be an optimizer of the dual problem (2). Then, by the duality of the
linear program, ρ∗ − 1

ν

∑m
i=1 ξ∗i = γ∗. A notable property of the solution is its

sparsity. By KKT conditions, an optimal solution satisfies the following property.

d∗i



yi

∑

j

α∗
jhj(xi) − ρ∗ + ξ∗i



 = 0 (i = 1, . . . , m)

d∗i ≥ 0, yi

∑

j

α∗
jhj(xi) − ρ∗ + ξ∗i ≥ 0 (i = 1, . . . , m)

ξ∗i (1/ν − d∗i ) = 0, ξ∗i ≥ 0, d∗i ≤ 1/ν (i = 1, . . . , m)

This property implies that

– If yi

∑
j α∗

jhj(xi) > ρ∗, then d∗i = 0
– If 0 < d∗i < 1/ν, then yi

∑
j α∗

jhj(xi) = ρ∗.
– If ξ∗i > 0, then d∗i = 1/ν.

Especially, an example (xi, yi) s.t. d∗i 6= 0 is called a “support vector”. Note
that the number of inseparable examples (for which ξ∗i > 0) is at most ν, since,
otherwise,

∑
i d∗i > 1.

Further, the primal solution has sparsity as well.

– If d∗ · uj < γ, then α∗
j = 0.

We call hypothesis hj relevant if α∗
j > 0. So, we can reconstruct an optimal

solution by using only support vectors and relevant hypotheses.



Algorithm 1 LPBoost(S,ε)

1. Let d1 be the uniform distribution over S.
2. For t = 1, . . . ,

(a) Choose a hypothesis ht whose edge w.r.t. dt is more than γt + ε. Let ut,i =
yiht(xi).

(b) If such a hypothesis doe not exist in H, let T = t − 1 and break.
(c) Solve the soft margin optimization problem (2) w.r.t. the restricted hypothesis

set {h1, . . . , ht}. Let (γt+1, dt+1) be the solution.
3. Output f(x) =

PT

t=1
αtht(x), where each αt (t = 1, . . . , T ) is a Lagrange dual of

the soft margin optimization problem (2).

3 Algorithms

In this section, we describe algorithms for solving the problem (2) in details.

3.1 LPBoost

First, we review LPBoost [5]. Given the initial distribution which is uniform over
examples, LPBoost works in iterations. At each iteration t, LPBoost choose a
hypothesis ht with edge larger than γt + ε w.r.t. dt, and add a new constraint
d · ut, where ut,i = yiht(xi) for i = 1, . . . , m to the current optimization prob-
lem and solve the linear program and get dt+1 and γt+1. We summarize the
description of LPBoost in Figure 1.

For completeness, we show a proof that LPBoost can approximately solve
the optimization problem (2).

Theorem 1 LPBoost outputs a hypothesis whose soft margin is at least γ∗ − ε.

Proof. By definition of the algorithm, when LPBoost outputs the final hypothe-
sis, it holds that γT ≥ maxh∈HγdT

(h)−ε. Further, since dt is a feasible solution
of the dual problem (2), we have maxh∈HγdT

(h) ≥ γ∗. Combining these facts,
we obtain γT ≥ γ∗ − ε.

3.2 Our algorithm

Now we describe our algorithm Sparse LPBoost. Sparse LPBoost is a modifi-
cation of LPBoost. There are two main differences. Fist difference is that the
support of the distribution does not cover the entire set of examples, but cov-
ers the examples which have low margin with respect to the current hypothesis
weighting. The second difference is that Sparse LPBoostcan choose more than
two hypotheses at each iteration. The details of Sparse LPBoost is shown in
Figure 2.

Then we prove the correctness of Sparse LPBoost.

Theorem 2 Sparse LPBoost outputs a hypothesis whose soft margin is at least

γ∗ − ε.



Algorithm 2 Sparse LPBoost(S,ε)

1. (initialization) Pick up ν examples arbitrarily and put them into S1. Let γ1 = 1.
2. For t = 1, . . . ,

(a) Choose a set S′

t of examples with margin w.r.t. ft less than ρt.
(b) If there exists no such S′

t, then let T = t − 1 and break.
(c) Let St+1 = St ∪ S′

t.
(d) For t′ = 1, . . . ,

i. Choose a set H ′

t′ of hypotheses whose edge is larger than γt + ε. Let
Ht = Ht ∪ H ′

t′ .
ii. If there exists no such H ′

t′ , then let ft = ft′ , ρt = ρt′ and break.
iii. Solve soft margin LP problem (2) with respect to St and Ht.Let ft′+1(x) =

P

h∈Ht
αhh(x), where each αh is the Lagrange dual of the problem (2),

and ρt′+1 be the solution of the primal problem (1).
3. Output fT (x) =

P

h∈HT
αhh(x).

Proof. Let C = S − ST . Since there is no hypothesis whose edge is more than
γT + ε, γT ≥ maxh∈H γdT

(h). Further, since dT is a feasible solution of the
problem (2), maxh∈H γdT

(h) ≥ γ∗, which implies γT ≥ γ∗ − ε. Now, consider
the distribution d′

T = (dT , 0, . . . , 0) ∈ P |S|, which puts zero weights on examples
in C. Then, it is clear that (γT , d′

T ) satisfies the KKT conditions w.r.t. S.

3.3 Heuristics for choosing hypotheses and examples

So far, we have not specified the way of choosing hypotheses or examples. In this
subsection, we consider some heuristics.

Threshold: Choose a hypothesis with edge larger than γ′
t + ε and an example

with margin less than ρt.
Max/min-one: Choose a hypothesis with maximum edge and an example with

minimum margin.
Max/min-exponential: Let Ĥt′ be the set of hypotheses whose edges with

respect to dt′ are more than γ′
t + ε, and let Ŝt be the set of examples whose

margin is less than ρt. Then, choose the top K hypotheses with highest edges
among Ĥt′ and the top L examples with lowest edges among Ŝt, where K is
min{|Ĥt′ |, 2

t′} and L is min{|Ŝt|, 2
t}.

Let us consider which strategies we should employ. Suppose that ν = 0.2m and
we use a linear programming solver which takes time is mk, where k is a constant.
Note that the value of ν is a reasonable choice since we allow at most 20% of
examples to be misclassified.

If we take Threshold or Max/min-one approach, the computation time of

Sparse LPBoost needs at least
∑ν

t=1 tk >
∫ ν

t=1 tkdt = νk+1−1
k+1 = Ω(mk+1).

On the other hand, suppose we choose Max/min-exponential approach and
the algorithm terminates when the number of chosen examples is cm (0 < c < 1).



Then, the computation time is at most

⌈log(cm)⌉∑

t=1

(ν + 2t)k =

k∑

s=0

(
k

s

)
νs

⌈log(cm)⌉∑

t=1

2t(k−s) ≤

k∑

s=0

(
k

s

)
νs(c′m)k−s = O(mk).

Similar arguments hold for choosing hypotheses as well.
Therefore, we conclude that, among these approaches, Max/min-exponential

approach is a more robust choice. Note that, the advantage of Sparse LPBoost is
its small constant factor, e.g., (0.2 + c′)k. Even if the improvement is only by a
constant factor, it might still influence the performance significantly.

4 Experiments

We compare LP, LPBoost and Sparse LPBoost for artificial and real datasets.
Our experiments are performed on a workstation with a 8Gb RAM and Xeon
3.8GHz processors. We implemented our experiments with Matlab and use CPLEX
11.0, a state-of-the art LP solver.

Our artificial datasets contain from m = 103 to 106 instances in {−1, +1}n.
We fix a linear threshold function f(x) = x1 + x2 + · · · + xk + b, which assigns
a label(−1 or +1) of each instance. We set n = 100, k = 10 and b = 5. For each
data set, we generate instances randomly so that positive and negative instances
are equally likely. Then we add 0% or 5 % random noise on labels.

For each dataset, we prepare n + 1 weak hypotheses. First n hypotheses
correspond to the n th dimensions, that is hj(x) = xj for j = 1, . . . , n. The last
hypothesis corresponds to the constant hypothesis which always answers +1. We
set ν = 1 and ν = 0.2m for noise-free datasets and noisy datasets, respectively.
For LPBoost and Sparse LPBoost, we set ε = 0.01.

We summarize the results for noise-free data and noisy data in Table 1 and ??,
respectively. Sparse LPBoost tend to run faster than others while approximating
the solutions well. Note that, compared to other algorithms, the result of Sparse
LPBoost is more robust with respect to the choice of ν. In addition, one can
observe that, for both noise-free or noisy datasets, Sparse LPBoost picks up
fewer examples than the total size m. As a result, the number of variables in the
underlying problem is reduced, which makes computation faster. Also, as can be
seen, Sparse LPBoost has fewer non-zero dis when setting ν = 1. On the other
hand, Sparse LPBoost’s computation time tends to increase when ν = 0.2m.
This is because the optimal distribution needs at least ν non-zero components.

Then we show experimental results for some real datasets. As real datasets,
we use Reuters-21578 1 and RCV1 [9].

For Reuters-21578, we use the modified Apte(“ModApte”) split which con-
tains 10170 news documents labeled with topics. We create a binary classification
problem by choosing a major topic “acq” as positive and regarding other topics
as negative. As hypotheses, we prepare about 30, 839 decision stumps corre-
sponding to words. That is, each decision stumps answers +1 if a given text
contains the associated word and answers 0, otherwise.
1 http://www.daviddlewis.com/resources/testcollections/reuters21578.



m = 103 time(sec.) #(di > 0) #(wj > 0) time(sec.) #(di > 0) #(wj > 0)

LP 0.98 96 96 0.46 217 46
LPBoost 5.46 83 83(84) 6.95 237 65(66)

Sparse LPBoost 2.38 26(520) 26(98) 4.80 243(655) 79(82)

m = 104 time(sec.) #(di > 0) #(wj > 0)

LP 29.66 101 101 7.01 2035 70
LPBoost 267.85 67 67(67) 21.51 2012 29(29)

Sparse LPBoost 6.78 25(5250) 25(98) 65.76 2031(6551) 58(58)

m = 105 time(sec.) #(di > 0) #(wj > 0)

LP 132.99 101 101 321.54 20046 92
LPBoost 1843.1 97 97(99) 71.65 200007 11(11)

Sparse LPBoost 62.89 22(50515) 21(94) 60.51 20006(64810) 11(11)

m = 106 time(sec.) #(di > 0) #(wj > 0)

LP 2139.3 101 101 39923 200031 60
LPBoost 17435 97 97(97) 1179 2000004 11(11)

Sparse LPBoost 632.29 22(439991) 22(100) 1281.1 200004(648771) 11(11)
Table 1. Summary of results for noise-free artificial data with n = 100, ν = 1. For
LPBoost and Sparse LPBoost, the numbers of chosen hypotheses or examples are
shown in parentheses. LP, LPBoost and Sparse LPBoost obtained the same objective
values γ.

Reuters-21578 time(sec.) ρ (×10−3) γ (×10−3) #(di > 0) #(wj > 0)
(m=10,170,n=30,839)

LP 381.18 4.8 0.633 2261 463
LPBoost 804.39 4.8 0.633 2158 452(528)

Sparse LPBoost 52.16 4.8 0.633 2262(6578) 458(613)

RCV1 time(sec.) ρ (×10−3) γ (×10−3) #(di > 0) #(wj > 0)
(m=20,242,n=47,237)

LP 2298.1 1.9 0.267 8389 639
LPBoost 2688.1 1.9 0.261 8333 454(465)

Sparse LPBoost 235.63 1.9 0.262 8335(16445) 480(518)
Table 2. Summary of results for real datasets. For LPBoost and Sparse LPBoost, the
numbers of chosen hypotheses or examples are shown in parentheses.

For RCV1 data, we use the data provided by LIBSVM tools [4]. In the data,
we consider binary classification problem by regarding the labels CCAT and
ECAT as positive and labels GCAT and MCAT as negative. Each hypothesis is
associated with a word and there are 47236 hypotheses in total. The output of
hypothesis is given by the tf-idf weighting.

For both datasets, we add the constant hypothesis −1. We set ε = 10−4 as
the precision parameter of LPBoost and Sparse LPBoost. We specify ν = 0.2m
and ν = 0.4m for Reuters-21578 and RCV1, respectively.

The results are summarized in Table 2. Sparse LPBoost runs several times
faster than other algorithms. Like previous results for artificial datasets, Sparse
LPBoost uses fewer examples (as many as about 0.6m to 0.8m). Further, Sparse
LPBoost seems to take advantage of the sparsity of relevant hypotheses as well.
In both datasets, Sparse LPBoost chooses only about 600 hypotheses among
more than 30, 000 hypotheses.



5 Conclusion

In this paper, we proposed a decomposition algorithm that approximately solves
ℓ1-soft margin optimization problems. Our algorithm performs faster than the
standard LP solver using CPLEX and LPBoost by exploiting the sparsity of the
underlying solution with respect to hypotheses and examples.

One of our future work is to modify Sparse LPBoost so as to have a theoretical
guarantee of iteration bounds. Also, as a practical viewpoint, better heuristics
for choosing hypotheses and examples should be investigated.
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