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Abstract: This paper presents a hybrid quasi-ARMAX modeling and identification scheme for 

nonlinear systems. It is shown that a general nonlinear ARMAX system can be represented by 

using a constrained time-variant ARMAX model, whose coefficients are nonlinear functions of 

input-output variables of system. A hybrid quasi-ARMAX model are then obtained by embed-

ding a group of fuzzy models in the coefficients of the constrained time-variant ARMAX model to 

describe the time-variant coefficients. One of the distinctive features of the hybrid quasi-ARMAX 

model is that its parameters to be estimated have useful explicit meanings which can be taken as 

advantages for setting initial values of parameter estimation and for improving the generalization 

ability of the model. 
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 1. Introduction 

 The key problem in system identification is to find 

a suitable model structure, within which a good 

model is to be found. When no physical insight 

is available or used, one usually choose black-box 

model structure which belongs to families that are 

known to have good flexibility and have been "suc-

cessful in the past"'. 

 Under the assumption that the unknown system 

is linear, linear black-box models can be chosen for 

the system identification. The identification based 

on linear approximation has been extensively and 

successfully handled within some well known linear 

black-box structures 2),3) . If the linear assumption 

is relaxed, one has to use nonlinear black-box mod-

els. For nonlinear black-box modeling, the "classi-

cal" literature seems to have concentrated on global 

basis function expansions, such as Volterra expan-

sions 4). These have apparently had limited suc-

cess. Recently, some authors have suggested the 

use of nonlinear structures based on neural networks 

(NN), wavelet networks (WN), radial basis function 
networks (RBFN), etc, and have achieved consider-
able success 5),6) . However, the latter ones empha-
size only on the input-output representation ability 
which is realized by including a lot of parameters
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in the models. Since the parameters in these mod-

els do not have useful meanings, these models suffer 
some problems concerning their parameter estima-
tion (e.g. local minimum problem) and their perfor-
mance (e.g. generalization ability). This motivates 

us to develop a new modeling scheme to obtain a 
nonlinear black-box model whose parameters have 
useful meanings. 

 It is shown that a general nonlinear ARMAX 
system can be represented by using a constrained 

time-invariant ARMAX model, whose coefficients 
are nonlinear functions of input-output variables of 
system. In order to describe those time-variant co-
efficients, we first divide each coefficient into two 

parts: constant parameter and nonlinear term, and 
then represent the nonlinear term using a fuzzy 
model with adjustable parameters. In this way, A 
hybrid quasi-ARMAX model is obtained, in which 
a group of fuzzy models are embedded in the co-

efficients of the constrained time-variant ARMAX 
model. We will show that one of the distinctive 
features of such hybrid model is that its parame-
ters to be estimated have useful explicit meanings 

which can be taken as advantages for setting initial 
values of parameter estimation and for improving 
the generalization ability of the model. Experimen-
tal studies using both real data and simulated data 
are carried out to investigate the effectiveness of the 

proposed modeling and identification scheme. 
 The paper is organized as follows: Section 2 pro-

poses a hybrid quasi-ARMAX modeling scheme for 
general nonlinear systems. In Section 3, we discuss



its identification problem. Numerical simulations 
using real data and  simulated date are carried out 
in Section 4. Finally, Section 6 is devoted to discus-
sions and conclusions. 

 2. Hybrid Quasi-ARMAX Modeling 

 Let us consider a SISO general nonlinear ARX 
(NARX) system described by 

S : y(t) = g((P(t)) + v(t)(1) 
(P(t) _ [y(t - 1) ... y(t - n) 

u(t - 1) ... u(t - m)]T (2) 

where y(t) is the output at time t (t = 1, 2, ...), 
u(t) the input, cp(t) the regression vector, v(t) the 
system disturbance, and g(• ) the unknown contin-
uously differentiable nonlinear function. 

  Performing Taylor expansion to g(c,o(t)) around 
the region cp(t) = 0 and introducing a moving av-
erage (MA) noise model to the system disturbance, 
we can express the system (1) in a linear ARMAX 
structure') 

M : y(t) = y)T (t)0(cp(t)) + C(q-1)e(t) (3) 
8(cp(t)) = [al,t ... an,t bl,t ... b,m,t]T (4) 
C(q-1) = 1 + c1q 1 + ... + c1q-1(5) 

where q-1 is backward shift operator, for instance, 

q'u(t) = u(t - 1), e(t) is the white noise, and the 
coefficients ai,t and bi,t are nonlinear functions of 
cp(t), defined by 

ai,t = ai(cp(t)), bi,,t = bi(cp(t)) (6) 

The system described by (3) can be further ex-

pressed in an ARMAX form 

A(0,-1,00) = B(q-1, t)u(t) + C(q-1)e(t) (7) 
A(q-1 t) = 1 - a1,tq-1 - ... - an,tq-n (8) 
B(q-1, t) = b1,t + ... + bm,tq-n.(9) 

(7) is a time-variant ARMAX model whose coeffi-
cients are however constrained to be nonlinear func-
tions of cp(t). We call it a quasi-ARMAX model. 

  The above results show that a general nonlinear 
ARMAX system can be described by using a con-
strained time-variant ARMAX model whose coeffi-
cients are nonlinear functions of input-output vari-
able of system. This motivates us to introduce a 
hybrid quasi-ARMAX model by embedding a group 
of fuzzy models in the coefficients of the quasi-
ARMAX model. 

  Suppose that the coefficients ai,t and bi,t consist 
of two parts: constant parameters ai, bi and non-

linear terms Aai,t, Abi,t 

ai,t = ai + Aai,t, bi t = bi + Obi,t(10) 

Then we represent each nonlinear term using a fuzzy 
model with adjustable parameters, which can be de-
scribed explicitly by (13) 8) 

Lao = Zi(cp(t)) (i = 1, ..., n) (11) 
Lb j t = Z +n(cP(t)) (.7 = 1, ..., m) (12) 

E 3M 1 Wij (A k=1 µAk (xk (t)))  
Zi((pr(t)) - 

             j=1(Ak=1 ILAk (xk (t))) 

= EWijNf(pa,, P(t))(13) 
j=1 

       r = dim(cp(t)) = n + m 
where A is the minimum operator, M is the number 
of fuzzy rules, xk(t) are the elements of cp(t), and 

/LA, (•) is the membership function of fuzzy set A. 
As the membership function, ttA (•) may simply be 
a triangle function or a Gaussian function defined 
by 

                     )2] ,UA3k(xk (t)) = a3kexp-~ (Xk(t)_xk(14) 
In the latter case, the parameter vector p is given 

by 

 pij = [ai xi a?]T(15) 

On the other hand, we can obtain another expres-
sion for the hybrid quasi-ARMAX model by using 

(10)-(13) in (3), which is described as 

 y(t) = cpT(t)0 + C(q 1)e(t) 

             ARMAX 

+ (PT (t)Sj Nf (pij, 'P(t))(16) 
j 1` AR 

where c2 = [W13 ... Wrj]r. (16) shows that the hy-
brid quasi-ARMAX model is equivalent to a hybrid 
model combining a linear ARMAX model and a 
multi-ARX-model based on interpolation using the 
"basic function" Arf (•

, •) . This follows that the pa-
rameters of the hybrid quasi-ARMAX model have 

useful explicit meanings, where 
  • 0, = [OT , el ... cl]T is associated with global 
    linear ARMAX approximation, 

  • S2 = [S21 ..Sim]T is associated with M local 
    linearARX approximations, and 

  •p=[P11 prM]T is associated with the par-



Fig.1 Useful explicit meanings of the parameter in the 

      hybrid quasi-ARMAX modeling.

   tition in the operating region of  co(t). 
Figure 1 shows the images of the global linear AR-
MAX approximation, the multiple local linear ARX 
approximations and the partition of operating re-
gion of co(t) in the hybrid quasi-ARMAX modeling. 

 3. Parameter Estimation 
 For nonlinear black-box models based on nonlin-

ear structures such as neural networks, parameter 
estimation is usually performed by using a back 
propagation algorithm with random given initial 
values. Such scheme can certainly be applied to the 
hybrid quasi-ARMAX model. However, since the 

parameters to be estimated in our case have useful 
explicit meanings, a more sophisticated algorithm 
can be developed in order to improve the conver-
gence properties by using a better initial value, and 
to improve the generalization ability of model by 
reducing the parameter redundancy. Such an esti-
mation algorithm consists of the following two pro-
cedures. 

 3.1 Estimation Procedure 1 
 It is obvious form (16) that the parameters to be 

estimated can be divided into two groups: {9e7 S2} 
in which the model is linear and {p} in which the 
model is nonlinear. In the Procedure 1, {0e7 Sl} will 
be adjusted while fixing {p} to its initial value po. 
 3.1.1 Setting the initial values 

 (1) Since 9e describes a linear ARMAX model 

 y(t) = cPT (t)9 + C(q-1)e(t), (17) 

it is naturally to set its initial value 9e0 by using 
the estimates of the linear ARMAX model for the

Fig.2 An example for determining poj.

nonlinear system. 

 (2) The initial value S2o for Q can simply be taken 
as 0. 

 (3) The initial value po for p should be obtained 
based on an appropriate partition in the operating 
region of co (t) . 

  Let po = [poii , i = 1, ..., r; j = 1, ..., M] = 

[poi, j = 1, ..., M] which means that the partitions 
in the operating region of cp(t) for all fuzzy models 
used are the same. And poj can then be determined 
based on the following partition. 

 Suppose the fuzzy model has r inputs, X = 

[xi, i = 1, ..., r] and the operating region is mostly 
located in Xmin < X < Xmax, Xrnin = [xi min, _ 
1, ..., r], Xmax = [xi max, Z = 1, ..., r]. X V 

[Xmin, Xmax] is allowable in practice. We first par-
tition the input hyperplane, that is, put nodes into 
the input hyperplane. As shown in Fig.2, if the 
number of nodes corresponding to xi is denoted as 
ni, the total number of the nodes (fuzzy rules) in the 
hyperplane will be M = ~i ni. Next, the param-
eter vectors poi are chosen so that the ̀ basis func-
tions' A f (poj , X) have appropriate shape and are 
put onto each node. Without using other knowledge 
information, the nodes will be uniformly assigned in 
the hyperplane. Figure 2 shows an example for de-
termining poi with r = 2 and M = 4 x 4 in the case 
where triangle membership functions are used. 

 3.1.2 Estimation Algorithm 
  Introduce a parameter vector e and a regression 

vector 7' NL (t) defined as 

e = [or, S21]1' (18) 
LP„ (t) _ [(PT (t), e(t - 1) ... e(t - 1), 

'PT (t) 0'PT (t)]T (19) 
Ar 

wherecpNf(t) =Wf (pi,j,cp(t), j = 1, ..., M],and 
the symbol 0 denotes Kronecker production. Then



the hybrid quasi-ARMAX model can be expressed 

as 

 y(t) _ LPNL (t)e + e(t)(20) 

The estimation of e for (20) is done by minimizing 
the following extended criterion function 

VN(e) = 

1 —
2 [(y(t) - pNL (t)e)2 + CaeTe] (21) t=1 

which can be carried out by using an existing recur-
sive algorithm 2),3). The second term in the right 

hand of (21) is introduced to improve the general-
ization ability, in which C0 is a small positive value. 

 3.2 Estimation Procedure 2 
  In the Estimation Procedure 1, since the param-

eter vector p is kept fixed, the model is linear in 
the parameters {0e7 CZ} to be estimated. Therefore, 
the estimation algorithm can almost guarantee to 
find the global minimum of the criterion function 

(21). It have been found that a satisfying perfor-
mance of the model can be obtained for many real 
applications by merely carrying out the Estimation 
Procedure 1 7) . However, another estimation pro-
cedure (Estimation Procedure 2) may be performed 
by adjusting the parameter vector p as well if higher 

identification accuracy is needed. 
  In the Estimation Procedure 2, the parameter 

vectors p and S2 are adjusted while the parameter 
vector 9e are fixed, in which the results obtained 
in the Estimation Procedure 1 are used as initial 

values. This can be done because 9 is not indepen-
dent of C2, which is obvious from (6) and (13) since, 
for instance, there exits w'3 = ai + wij that (22) is 
satisfied 

ai,t = ai + EWijNf (Pij, sor(t)) 
j=1 

= WijNf (Pij c,r (t)) (22) 
=1 

Estimation of p and S2 can be carried out using a 

back propagation algorithm for neural networks by 

minimizing the following extended criterion func-

tion 

VN(p,C2) = 

1 —
2 [62(t) + Ca(p — Po)T (P — Po)1 (23) 

t=1 

where 6(t) = y(t) — y(t) is prediction error, Po is 
the initial value of p, and Co is a small positive

Fig.3 Estimation data: (a) the input u(t), (b) the out-

      put y(t).

value. The second term in the right hand of (23) is 
introduced to improve the generalization ability. 

 4. Experimental Studies 
 In this section, experimental studies using both 

real data and simulated data are carried out to in-
vestigate the effectiveness of the proposed scheme. 
Since the systems used are not so complicated, the 
estimation of the hybrid quasi-ARMAX model is 
performed merely by using the Estimation Proce-
dure 1. That is, p is taken as constant vector in the 
simulations. 

 4.1 Modeling a Hydraulic Robot Ac-
      tuator 

 The real system considered is a hydraulic robot 
actuator. Let us denote by u(t) and y(t) the po-
sition of the valve and the oil pressure at time t, 
respectively. A sample of 1024 pairs of {y(t), u(t)} 
was registeredtl. We divide it into two equal parts 
for estimating and for validating our model, respec-
tively. The estimation data is depicted in Fig.3. 

  For comparison, the simulation were carried out 
by using linear ARX model (ARX), one hidden layer 
neural networks (NN), and the proposed hybrid 

quasi-ARMAX model (HQAR), in which the regres-
sion vector is taken as so(t) = [y(t —1) y(t — 2) y(t — 
3) u(t — 1) u(t — 2)F. The results of identified mod-
els simulated on the validation data are shown in 

Fig.4 and Table 1. We can see that the linear ARX 

model could not model the system well, while neu-

ral networks improves the performance quite much, 

and the proposed model has the best performance

ti The data were taken from public ftp domain. We grate-
fully acknowledge Linkoping University for providing the 
data.



Table 1 Comparison of Identification Results Table 2 Comparison of Identification Results

Fig.4 Simulations of identified models on validation 

      data. The solid line shows the true oil pressure 

      and the dashed line the simulated model output.

among the three models. 

 4.2 Modeling a Mathematical System 
 The mathematical system is taken from Narendra 

(1990)  9), which contains rather strong nonlinearity. 
The system is governed by 

 y(t) = f [y(t — 1), y(t — 2), y(t — 3), 
                 u(t — 1), u(t — 2)] (24) 

where 
x1x2x3x5(x3 — 1) + x4    f [

x1, x2, x3, x4, x5] = 1 
+x2+4. 

Estimation data are sampled when system is excited 

using random input uniformly distributed in the in-

terval [-1, 1], while validation data are sampled from 
system using an input u(t) = sin(27rt/250) for t <

Fig.5 Simulations of identified models on validation 

      data. The solid line shows the system true output 

      and the dashed line the simulated model output.

500 and u(t) = 0.8 sin(2irt/250) +0.2 sin(2irt/25) for 
t > 500. 

 Similar to the above one, the simulations were 
carried by using linear ARX model, two hidden 
layer neural networks and the proposed model, in 
which the regression vector is taken as cp(t) = 

[y(t — 1) y(t — 2) y(t — 3) u(t — 1) u(t — 2)1T. The 
results of identified models simulated on the valida-

tion data are shown in Fig.5 and Table 2. 

 From the simulation results shown in Fig.4 and 

5, Table 1 and 2, we can see that the proposed 

hybrid quasi-ARMAX model has superior perfor-

mances to neural network models. The reason for 

better performances is that the estimator for the hy-

brid quasi-ARMAX model has better convergence 

properties. The two examples used in our simula-
tions are well known in the literature where they



have been used to test neural network models and 
other nonlinear black-box models. The interested 
reader is referred to the references  9),5) for a com-

parison. 

 5. Discussions and Conclusions 

 We have proposed a hybrid quasi-ARMAX 
model, which is obtained by first representing a 

general nonlinear with a constrained time-variant 
ARMAX model, then describing the time-variant 

coefficients of the ARMAX model via a group of 
fuzzy models. One of the distinctive features of 
the hybrid quasi-ARMAX model is that the pa-
rameters to be estimated have useful explicit mean-
ings which have been taken as advantages for set-

ting initial values of parameter estimation and for 
improving the generalization ability of the model. 
The results of experimental studies using both real 
data and simulated data show that the identifica-
tion of the model has nice convergence properties, 

and the identified model has better generalization 
ability than commonly-used neural networks. 

  In the hybrid quasi-ARMAX model, the model 
order consist of two part: the ARMAX order (n, 
m, 1) and the order of fuzzy models (M), both of 
which should be determined before the parameter 

estimation can be carried out. The ARMAX order 

(n, m, 1) is assumed to be known. If it is unknown, 
it can be determined based on the results of identi-
fying the system using a linear ARMAX model be-

cause the hybrid quasi-ARMAX model is basically 
an extension of linear ARMAX model. Many exist-

ing approaches for determining the order of linear 
models such as Akaike criteria AIC and FPC can 
be applied as a reference. On the other hand, the 

order of fuzzy models (M), which means the num-
ber of fuzzy rules, is usually unknown and should be 
determined based on knowledge information about 
system structure. If the initial value poi is deter-
mined in a way described in the subsection 3.1.1, 

the order is given as M = fi=1 ni, which should be 
chosen as small as possible in order to reduce the 

number of parameters to be estimated. The follow-

ing hints can be used to make M small: 

 (1) Hint A: If the system is linear with respect 
   to xi, ni may be chosen to be 1. 

 (2) Hint B: If no other useful information is avail-
   able, n1 and nn+i corresponding to y(t —1) and 

   u(t — 1) are assigned with appropriate values, 
   while all other ni's are set to 1. 

 (3) Hint C: If the role of rules can be replaced 
   by employing interpolation of other rules, those 

    rules may be removed. 
The efficient use of knowledge information plays a 
key role in the hybrid quasi-ARMAX modeling, for 
which further research are needed. 
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