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Abstract: In this paper, we present a new control method firstly for nonlinear systems using 
Universal Learning Network(ULN) with radial basis function(RBF). ULN can model and control 
the large scale complicated systems such as industrial plants, economic, social and life phenom-
ena. The basic idea of ULN is that large scale complicated control systems can be modeled by 
the network which consists of nonlinearly operated nodes and branches which may have arbitrary 
time delays including zero or minus ones. Second, a new learning algorithm is applied to the 
design of the optimal network controller of a nonlinear control system. The optimization method 
is named RasVal, which is a kind of random searching, and it can search for a global minimum 
systematically and effectively in a single framework which is not a combination of different meth-
ods. The searching for a global minimum is carried out based on the probability density functions 
of searching, which can be modified using information on success or failure of the past searching 
in order to execute intensified and diversified searching. 
Simulation studies were carried out in the following four cases to compare the learning speed and 

performance: (1). comparing Radial Basis Function(RBF) with Sigmoid Function(SF) based on 
the gradient method. (2). comparing RBF with SF based on RasVal. (3). comparing RasVal with 
the gradient method for the RBF controller. (4). comparing RasVal with the gradient method 
for the SF controller. 
By applying RasVal and the gradient method to a nonlinear crane control system, it has been 
proved that the simulation results of ULN with RBF based on the gradient method are superior 
in performance to those of neural networks, and it has also been shown that the RBF control has 
better performance for the generalization capability than the neural network control based on the 

gradient method. On the other hand, it has been shown that the neural network control based 
on RasVal has better performance than the RBF control. 
At the same time, it has been shown that the RasVal is superior in performance to the commonly 
used back propagation learning algorithm whether the RBF controller or the NN controller is 
used. On the other hand, the generalization capability of a Radial Basis Function controller using 
RasVal was studied and it is shown that a new method is effective to overcome the over-fitting 

problem in nonlinear control systems. 

Keywords: Universal learning network, Random search method, Nonlinear control, Neural 
network, Radial basis function, Generalization capability

 1. Introduction 

 Nowadays, neural networks have been widely 

used in the control fields because of their remark-
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able ability to control the nonlinear systems. A neu-

ral network which has only one hidden layer can 

approximate exactly any nonlinear system theoret-

ically. To achieve this, a large number of hidden 

units are needed. That is, the structure of the neu-

ral networks become complicated and the learning 

of the network becomes very time-consuming. This 

is the main problem to be solved for neural net-

works. On the other hand, the radial basis function 

network is taken notice with regard to the learning 

speed and performance. We believe that in the fu-

ture the radial basis function will be widely used 

to control systems. But, there are some unknown 

problems that should be solved when the radial ba-



sis functions are applied to the nonlinear control 

systems. 
 A new control method has been presented for the 

nonlinear control systems using Universal Learning 
Network with the radial basis  function3>  . Univer-
sal Learing Network (ULN)1) is a new-type of net-
work which can be used to model and control large-

scale complicated systems such as economic, social 
and living phenomena as well as industrial plants. 
Universal Learning Network consists of nonlinearly 
operated nodes and multi-branches that may have 

arbitrary time delays between the nodes. 
 In the above system using Universal Learning 

Network, as learning algorithm of parameters in the 

controller was based on the gradient method, the 

problem of falling into a local minimum that leads 
to low efficiency of learning could not be solved. To 
overcome this problem, a new learning algorithm 
that can search for a global minimum has been pre-
sented and it was applied to build the optimal con-

troller of a nonlinear control system. The proposed 
learning algorithm is called RasVal2) which is an ab-
breviation of Random Search with Variable Search 
Length and it can search for a global minimum sys-
tematically and effectively in a single framework 
which is not a combination of different methods. 

RasVal is a kind of random search based on the 

probability density function of searching, which can 
be modified using information on the results of the 

past searching in order to execute the intensified 
and diversified searching. The features of RasVal 
are as follows. 

  (1) it does not require differential calculations as 
the gradient method, therefore, it takes a shorter 
calculation time than the gradient method. 

  (2) random search with the intensification and di-
versification is carried out in order to solve the local 
minim um problem. 

  In this paper, simulation studies were carried out 

in the following four cases to compare the learning 
speed and performance: 

  (1) comparing radial basis function(RBF) with 
sigmoid function(SF) based on gradient method. 

  (2) comparing radial basis function(RBF) with 
sigmoid function(SF) based on RasVal. 

  (3) comparing RasVal with gradient method for 
the RBF controller. 

  (4) comparing RasVal with gradient method for 
the NN controller. 

  By applying RasVal and the gradient method to 
a nonlinear crane control system, it has been proved 
that the simulation results of ULN with RBF based

on the gradient method are superior in performance 
to those of neural networks, and it has also been 

shown that the RBF control has better performance 
for the generalization capability than the neural net-
work control based on the gradient method. On 
the other hand, it has been shown that the neural 
network control based on RasVal has better perfor-

mance than the RBF control. 
 At the same time, it has been shown that the 

RasVal is superior in performance to the commonly 
used back propagation learning algorithm whether 
the RBF controller or the NN controller is used. 

 In the simulations to study the generalization ca-

pability of RasVal, it was found that too much learn-
ing causes the over-fitting problem, that is, the con-
trol system becomes unstable at the different con-
dition from that of learning. In the reference 5), a 

new method to overcome the over-fitting problem in 
the nonlinear control systems was proposed, where 
the weighting coefficients of control variables in the 
criterion function are increased in order to obtain 
the generalization capability of RasVal. From sim-

ulation results of a nonlinear crane system, it has 
been shown that the smaller the scale of the RBF 
controller is, the smaller the weighting coefficients 
of the control variables could be. 

 2. Universal Learning Network 

 The structure of the ULN is shown in Fig.1.

Fig.1 Structure of ULN with Multi Branches

 Basic equation of ULN is represented by Eq. (1) : 

hi(t) = O3({hi(t — Dii(p))li E JF(j),p E B(i, j)}, 

{rn(t)In E N(j)}, {A,(t)Im E M(j)}) (1) 
                jEJ, tET 

where, 
hi (t): output value of node j at time t; 
A, (t): value of m th parameter at time t; 
rn(t): value of n th external input variable at time 

    t; 

Oi : nonlinear function of node j; 
Di7 (p): time delay of p th branch from node i to



 node  j; 
JF (j) : set of numbers of nodes whose outputs are 

      connected to node j; 
JB(j): set of numbers of nodes whose inputs are 

      connected from node j; 
B (i, j) : set of numbers of branches from node i to 

      node j; 
N (j) : set of numbers of external input variables 

     that are fed into node j; 

N: set of numbers of external input variables; 
M(j): set of numbers of parameters that are 

      included in node j; 
M: set of numbers of parameters; 
J: set of numbers of nodes; 

T: set of sampling times; 
 ULN is trained so as to minimize a crite-

rion(evaluation) function which can be generally 
written as, 

 E = E ({h,.(s)}, {Am(s)})(2) 

reJ0, Tit eMo,sETo 

where 

Jo: set of numbers of nodes related with evaluation; 

Mo: set of numbers of parameters related with 

     evaluation; 

To: set of sampling times related with evaluation. 

 The important features of ULN are such that the 

function of the nodes can take any nonlinear func-

tion and that the nodes can be connected arbitrar-

ily. So the structure of ULN is a general one in 

the sense that ULN with sigmoid functions and one 

sampling time delays corresponds to the recurrent 

neural network. 

 Therefore, ULNs form a superset of all kinds of 

neural network paradigms with supervised learning 

capability. 

 3. ULN with RBF and NN 

 3.1 Learning algorithm of ULN with 

    RBF 

  ULN with RBF can be expressed as follows. 

hi (t) = E [fjm(xim)] + bi(3) 
mEL(j) 

fjm(xjm) = kjmexp(xjrn)(4) 

1  

       =E E hi (t — Dia (p)) — hm(p) )2 (cJ) xm-- 
ajim,(p) iEJF(j) 

pEB(i,j) 

where,

L (j) : set of numbers of nonlinear functions 
      of node j ; 

kj,,hijm(p),0 m(p),bj: parameters for node j. 
  Learning algorithms of ULN with RBF based on 

the gradient method is shown below. 

  kim — k~m, _ 7ahj (t/) b(~, t~) + aE(6)             ak
jmakjm                       tIET 

h'jm(p) <— hj'm(p) —'Y ahj(t1)  ob,to] + aE  
                 t/ETah~m(p)ah.;m(p) 

                                (7) 

crjm (p) Cr.;m (p) — ey E a~  ahi(ti)                      (p)6u, t~)+aQaE(p) 
t,ET~'n,im 

                                (8) 

            [0hi(tF)(aE    Fbj_I, ti)+(9) Ob
iabj t,CT 

ahk (t + Djk (p))  sk
, t + s(~, t) _ 8h

3(t)(jk (p)) kEJB(j) 
pEB(j,k) 

  +ah((10)  t) 

where, E: criterion function. 

  3.2Learning algorithms of ULN with 
     SF 

  For ULN with sigmoid functions Eq.(1) can be 

specifically rewritten as follows, 

         — hi (t) =1c(11) 
         1±e 

  x = E E [wij(p)hi(t — wij (p))] + bj (12) 
iEJF(j) pEB(i,j) 

where, 

bj : the threshold of node j. 
wij (p): the weight associated with the branch from 

       node i to j. 
  Learning algorithms of ULN with SF based on 

 the gradient method are as follows. 

wij(p)' wij(p) --y [0h3(tI) 60, ti)] + OE  

                  awij(p)awij (~~) 
                       ttET 

                             (13)



 4. Random Search Method with Vari-
    able Search Length — RasVal 

 When learning algorithm of parameters in the 
controller is based on the gradient method, the 
problem of falling into a local minimum that leads 
to low efficiency of learning can not be solved. In 
this section, a new learning algorithm named Ras-
Val is presented and it is applied to build the opti-
mal controller of a nonlinear control system. Ras-
Val can search for a global minimum systematically 
and effectively in a single framework which is not a 
combination of different methods. RasVal is a kind 
of random search based on the probability density 
function of searching, which can be modified using 
informations on the results of the past searching in 
order to execute intensified and diversified search-
ing. The features of RasVal are such that it does not 
require differential calculation as gradient method, 
therefore, it takes a shorter calculation time than 
the gradient method, and random search with inten-
sification and diversification is carried out in order 
to solve the local minimum problem. 

  Calculation procedure of RasVal is as follows.  

i  f E(A + x) < E(A)---> A F— A + x; (14) 

       (Searching is a success) 

i f E(A + x) > E(A)---> A — A. (15) 

       (Searching is a failure) 
where, 

E : criterion function; 

A = : parameter vector; 

x = [x1...x,n...x M : parameter search vector. 
The probability density function f (xm) of searching 
xm (seeFig.2) is represented by Eq.(16) and (17): 

                    ~xm 
  (_p~',QexmC 0((16   flx rra)-q

m/3e-~i~y, xm > 0l) 

pm + gm = 1(17) 

Therefore xm can be calculated as follows: 

if 0<z<pm>xm=7ln(
pm)(18)

                     1 
if pm<z<1.0--->xm= --

gm                     ln(lz) (19) 

where, z : random numbers in [0,1] . 
Parameters /3, pm, qm of f (xm) which are related to 
searching range and direction are modified based 
on the information of success or failure of the past 
searching as follows. 

/3 = 13e-71 n + /3(20) 

In the case of negative direction searching : 

pm apm+(1—a)•SF(21) 

In the case of positive direction searching : 

qm <-- aqm + (1 - a) • SF(22) 

In the case of failure, 

n4---n+1(23) 

In the case of success, 

n n, n=0;(24) 

nE—n-1, 0<n<no(25) 

n F— no, n > no(26) 

where, 

SF = 1.0, in the case of success; 

SF = 0.0, in the case of failure; 

: exponential filter coefficient; 

Q + 13 : upper limit of /3; 

13 : lower limit of 13; 
: coefficient.

Fig.2 Probability Density Function of Searching xm



Fig.3 Explanation of Intensification and Diversification 

 From Fig.3 and Eq.(14)  ti (26), intensification 
and diversification of the search can be realized; 
when there is quite a possibility of finding good solu-
tions around the current one(as A in Fig.3), inten-
sified search for the vicinity of the current solution 
is carried out; on the other hand, when there is no 

possibility of finding good solutions(as B in Fig.3), 
diversified search is executed in order to find good 
solutions in the region far from the current solution. 

 5. Simulations 

 5.1 Nonlinear Crane Control System 
 A nonlinear crane system(Fig.4) is studied in or-

der to compare the performance of the controller 
with RBF and NN and to compare the performance 
of the gradient learning and RasVal learning. The 

aim of the control is to bring the trolley to the tar-

get position, and to winch the load to the target 
height at the same time while making the angle of 
the load as small as possible.

0: angle of the load; 
x: location of the trolley; 
C, D: coefficients of the friction. 
ud, um: input voltage to the system from the con-
troller to the crane system. 

 Assuming the following, 

hi (t) = x(t) h2(t) = ±(t) 

 h3(t) = 0(t) h4(t) = 0(t) 
h5(t) =1(t)  h6 (t) =1(0 

                     then, the above equations can be expressed by the 
discrete time form. 

hi(t) = aiihi(t — 1) + a21h2(t — 1) (30) 

 h2(t) = a22h2(t — 1) + a32h3(t — 1) 
  + blud(t)(31) 

 h3(t) = a33h3(t — 1) + a43h4(t — 1) (32) 
         h2(t — 1) h3(t — 1) h

4(t) = a24 h
5(t — 1) + a34 h5(t — 1)  

+ a44h4(t — 1) + h5(bl1)ud(t) (33) 
 h5(t) = a55h5(t — 1) + a65h6(t — 1) (34) 

 h6(t) = a66h6(t — 1) + b2um(t) (35) 

where 
a2~ : coefficients representing the system paraments.

        Fig.4 Nonlinear Crane System 

The equations of the crane system are represented 
by the following: 

mg D+G. G x= 
M0—  M  x+Mud(27) 

o =MMmgo—1MGX + lMud(28)
•l_C+Gm1 +Gm um(29) 

m m 
where, 

M: mass of the trolley; 

m: mass of the load; 1: height of the load;

Fig.5 Structure of Nonlinear Crane Control System 

  The structure of the nonlinear crane control sys-
tem is shown in Fig.5. The nonlinear crane control 
system has two parts. The upper part is a crane sys-
tem which includes 6 nodes(real line frame) and the 

lower part is a controller(dotted line frame). The 
controller is constructed by the radial basis func-
tion network or the neural network. The arbitrary 
time delay is assumed to be one sampling time. The 
ULN with RBF controller has two RBF controllers 
and the ULN with SF controller has also two NN



controllers. Each RBF controller has  24(j)  L  (j) = 21) 
or 4 (1 L (j) = 41) nonlinear functions, and the NN 
controller has the three layered structure. In the 
controller, the left controller has two inputs(x,8) 
and the right controller has two inputs(/, 1). Boch 
the crane system and RBF(or NN) controller are 
constituted by ULN. 

 In the simulations, control time is 40 seconds, the 
criterion function can be expressed as follows. 

1 
 E = —

2 — 1(t))2 
t-o 

{ Q2(xref — x(t))2 + Q302(t) + Q482(t) 
+ Q571,2,(t) + Q61i(t)] 

+ 2 (Q7±2(tf) + (2812 (tf))(36) 

where, 

/„f, , xre f : target value of 1, x; 

t 1: final sampling time; 

QZ: coefficient of criterion function. 

 5.2 Comparison of Radial Basis Func-

     tion(RBF) with Sigmoid Func-
     tion(SF) Using Gradient Method 

  Simulation conditions were shown in Table 1.

caseD, and caseE. The reference values of x and 1 

(xr.e f, lry.e f) are shown in Table 2. 
 By changing the initial parameters of RBF and 

SF, simulations were carried out 5 times for each 
case. Average E were shown in Table 3. 

 CaseA and B are for studying the learning per-

formance and caseC, D and E are for testing the 

generalization capability. In caseA and caseB, the 
goal of the task is to bring x from 0.0m to 0.2m in 
the first 20 seconds and from 0.2m to 0.4m in the 
last 20 seconds; 1 from 2.0m to 1.7m in the first 20 

seconds and from 1.7m to 2.0m in the last 20 sec-
onds; and to let 0 be as small as possible. 

    Table 2 Reference Values of x and 1 

(Comparison of RBF and SF based on Gradient 
Method)

Table 1 Simulation Conditions

L: for learning; 

G: for testing generalization capability. 

Table 3 Average Values of Criterion Function 

(Comparison of RBF and SF based on Gradient 
Method)

 To compare the performance of the ULN with 

RBF and NN using the gradient method, simu-

lations were carried out for caseA, caseB, caseC,



Fig.8 Simulation Results(caseE)

 Parameters learning was carried out in order to 

bring x from 0.0m to 0.2m and  l from 2.0m to 

1.7m in the 40 seconds, on the other hand, the 

kinetic dynamics for testing the generalization ca-

pability was calculated changing the reference in-

put xre f from 0.0m to 0.2m(caseC), -0.2m(caseD), 
-0.4m(caseE), /ref from 2.0m to 1.7rn(caseC), 

2.3m(caseD), 2.6m(caseE) in the first 20 seconds; 
and return back to the original value in the last 20 
seconds. Fig.6, Fig.7, and Fig.8 show the kinetic 
dynamics of simulations corresponding to caseC, 
caseD, and caseE. The real lines were obtained us-
ing RBF and the dotted lines were obtained using 

SF. 
 In the above simulations, a new control method-

ology was presented, which discribes the RBF con-
troller and the NN controller in an unified manner 
using Universal Learning Network. The simulation 

results have proved that the ULN with RBF has 
better performance than that of the system using 
ULN with SF, regardless of the number of param-
eters(caseA, caseB), and it is also shown that the 
RBF control has better performance for the gen-
eralization capability than the neural network con-

trol(caseC, caseD, caseE). 

 5.3 Comparison of Radial Basis Func-
    tion(RBF) with Sigmoid Func-

     tion(SF) based on RasVal 

 In this subsection, we will compare RBF with SF 
based on RasVal. 

 By the same way as the preceding simulation, a 
nonlinear crane system(Fig.4) was studied in order 
to compare the performance of RBF and SF based 
on RasVal. The structure of Nonlinear Crane Con-
trol System is shown in Fig.5. The controller is 

constructed by the radial basis function network or 
sigmoid function network. The arbitrary time delay 
is assumed to be 1.0 sampling time. 

 Simulation conditions for RasVal are shown in 
Table 4. 

 Table 4 Simulation Conditions for RasVal 

          Learning

The reference values of x and l (xTc f, /„f) are shown 
in Table 5. 

 By changing the initial parameters of RBF con-



troller and SF controller randomly, simulations were 
carried out 5 times for caseF, caseG, caseH,  caseI 
and caseJ, average values of criterion function of E 

are also shown in Table 6. CaseF is for studying 
the learning performance and caseG, H, I and J are 
for testing the generalization capability. 

    Table 5 Reference Values of x and 1 

(Comparison of RBF and SF based on RasVal)

L: for learning; 
G: for testing generalization capability. 

Table 6 Average Values of Criterion Function 

(Comparison of RBF and SF based on RasVal)

 Fig.9 and Fig.10 show the kinetic dynamics of 
simulations corresponding to caseF and caseJ. The 
real lines were obtained using RBF and the dotted 
lines were obtained using SF.

Fig.10 Simulation Results(caseJ) 

 From the simulation results, it is shown that 
the ULN with sigmoid function has better perfor-



mance than that of the system using ULN with 
RBF(caseJ), and it is also shown that the NN con-
trol has better performance for the generalization 
capability than the RBF control(caseG, caseH,  ca-
seI and caseJ). 

 Why did we get different conclusions from 5.2 
and 5.3? We think that in the case of the gradient 
method, sigmoid function falls into the local min-
imia problem easily, so the RBF was better than 
the SF in performance; While in the case of RasVal, 
the RasVal can solve the local minimia problem, so 
the SF was better than RBF in performance. 

 5.4 Comparison of RasVal with Gra-
     dient Method for the RBF Con-
     troller 

 As the preceding subsections, a nonlinear crane 
system(Fig.4) was studied in order to compare the 

performance of RasVal with the gradient method. 
 In the learning, control time is 40 seconds, the 

goal of the task is to bring x from 0.0m to 0.2m in 
the first 20 seconds and from 0.2m to 0.4m in the 
last 20 seconds; 1 from 2.0m to 1.7m in the first 20 
seconds and from 1.7m to 2.0m in the last 20 sec-
onds; and to let 0 be as small as possible. Therefore 
the criterion function can be expressed by Eq.(36). 

Table 7 Simulation Conditions for Gradient and 
     RasVal Learning

    Table 8 Reference Values of x and 1 

(Comparison of RasVal and Gradient Method for 
RBF Controller)

L: for learning; 
G: for testing generalization capability. 

Table 9 Average Values of Criterion Function 

(Comparison of RasVal and Gradient Method for 
RBF Controller)

 Fig.11 and Fig.12 show the kinetic dynamics of 

simulations corresponding to caseL and caseM re-

spectively. The real lines were obtained using Ras-

Val; the dotted lines were obtained using gradient 

method.

 Simulation conditions for gradient and RasVal 

learning are shown in Table 7. 

 The Target values are shown in Table 8. 

 By changing the initial parameters of RBF con-

troller randomly, simulations were carried out 5 

times in caseK, caseL, and caseM, CaseM is for test-

ing the generalization capability, and the values E 

are also shown in Table 9.



Fig.11 Simulation Results for Studying the Learning Perforance(caseL)

Fig.12 Simulation Results for Testing the generalization Capability(caseM)

Fig.13 Searching Range of RasVal Fig.14 Searching Probability of RasVal



 From simulation results, it is shown that the 
learning speed, learning performance and the gener-
alization capability of RasVal are better than those 

of gradient method. Fig.13 and Fig.14 show the 
results of searching  range(0) and searching prob-
ability of negative direction(pm) at the beginning 
of and at the end of searching respectively. From 
Fig.13, Fig.14, it is shown that intensification and 
diversification of searching can be realized by Ras-

Val. 
 At the beginning of searching which corresponds 

to the left part of Fig.13 and Fig.14, searching 
range is small and searching probability is evenly 
distributed around 1.0 or 0.0, which means the in-

tensification of search (corresponds to A in Fig.3); 
on the other hand, at the end of searching which 
corresponds to the right part of Fig.13 and Fig.14, 
searching range is large and searching probability is 

mainly distributed around 0.5, which means the di-
versification of search(corresponds to B in Fig.3). 

 In this subsection, it has been proved that a non-
linear crane control system using RasVal has better 

performance than that of the system using the gra-
dient method. It has also been shown that the Ras-

Val has better performance for generalization capa-
bility than the gradient method.

 5.5 Comparison of RasVal with Gradi-
     ent Method for the NN Controller 

 In the preceding subsection, we discussed the 
ULN with RBF trained by RasVal, and it was shown 
that the RasVal was superior in performance to the 
gradient method. In this subsection, we discuss the 
ULN with sigmoid functions trained by RasVal. By 
applying the proposed method to the design of non-
linear crane control system, we obtain the same con-
clusion, that is, RasVal is superior in performance 
to the back propagation learning algorithm irrespec-
tive of the functions in the ULN nodes. 

 For ULN with sigmoid functions Eq.(1) can be 
specifically rewritten as Eq.(11) and Eg. (12) . 

 A nonlinear crane system(Fig.4) was studied in 
order to compare the performance of RasVal with 
that of the gradient method. The structure of the 
ULN nonlinear crane control system are shown in 
Fig.5. The controller is constructed by the neu-
ral network. The time delay is assumed to be one 
sampling time. 

 Simulations were carried out to compare the

performance of RasVal and that of the gradient 
method. The criterion function employed here is 
Eq.(36), 
 Simulation conditions for gradient and RasVal 

learning are the same as Table 7. 
 Two different structures are considered for NN 

controllers for studying the learning performance; 
in CaseN-1,2, the left NN in Fig.3 has three hidden 
nodes and the right controller has two, whereas, in 
CaseO-1,2, each has five nodes. Also two sets of tar-

get values of the trolley position and the load height 
are used. These are summarized in Table 10. 

 By changing the initial settings of the parame-
ters of NN controllers randomly, simulations were 
carried out 5 times. The average of the criterion 
function E is shown in Table 11, the behaviors of 
1(t), x(t), and 9(t) are shown in Fig.15, Fig.16, 

Fig.17 and Fig.18. The real lines were obtained 
using RasVal; the dotted lines show the results of 
the gradient method. 

 The trained controllers are then employed in the 
new control problems with different target values 

from those considered in the learning. The new tar-

get values are listed in Table 12. The controller in 
CaseN-1 is applied to CaseN-3, the one from CaseN-
2 is used in CaseN-4, and so on. 

 The criterion function values shown in Table 13 

and the behaviors of the crane in Fig.19-23 show 
that the RasVal learning again gives the better re-
sults. 
 This means that with RasVal we can well min-

imize the criterion function and that the resulting 

controllers perform well. 
 From these, we can confirm that RasVal learning 

provides better performance. 
 In this section, a new optimization method named 

RasVal is compared its performance with the gradi-
ent method in traing of neural network based ULN 
control systems. It has been proved that a nonlinear 
crane control system trained by RasVal has better 

performance than that of the system obtained by 
the gradient method, and this indicates, together 
with our previous results, that RasVal gives better 

performance than the gradient methods in optimiz-
ing ULN control systems irrespective of the specific 
functions contained in ULN.



Table 10 Reference Values of x and  l 

     (Learning Ability)

G: for testing generalization capability 

Table 13 Average Values of Criterion Function 

         (Generalization Capability)

Table 11 Average Values of Criterion Function 

          (Learning Ability)

Fig.15 Simulation Results(caseN-1)

Table 12 Reference Values of x and l 

     (Generalization Capability)

Fig.16 Simulation Results(caseN-2)



Fig.17 Simulation  Results(caseO-1) Fig.21 Simulation Results(caseO-3)

Fig.18 Simulation Results(caseO-2) Fig.22 Simulation Results(caseO-4)

Fig.19 Simulation Results(caseN-3)

Fig.20 Simulation Results(caseN-4)

 6. A New Method to Improve Gen-

    eralization Capability of Nonlin-

    ear Crane Controller Systems Using 

    RasVal 

 Generally, the words "generalization capability" 

mean the ability of assuring of that the system 

works well even in the different environment from 

that at learning stage. It is commonly said that 

the generalization capability will be improved by 

learning a great number of cases with different en-

vironments and also by reducing the scale of net-

works for learning. Recently, some papers on the 

enhancement of the generalization capability have 

been reported by using the second order derivatives 

in Universal Learning Network). These methods 

are based on the idea that a criterion function re-

lating to the improvement of system rebustness is 

added to the usual criterion function in order to en-

hance the generalization capability. 

 In this section, a new method for the enhance-

ment of the generalization capability in the non-

linear control systems is presented, where control 

signals to a plant to be controlled are suppressed 

by increasing the weighting coefficients related to



the control signals in the criterion function.  Simu-

lations of a nonlinear crane system are carried out 

in order to study the above new method. 

 Simulations were carried out to study the gener-

alization capability of the proposed method. In the 

sim ulations, control time is 40 seconds. 

 The generalization capability was investigated as 

follows. While learning of parameters was carried 

out so as to bring x from 0.0m to 0.2m and l from 

2.0m to 1.7m in the 40 seconds, kinetic dynamics for 

investigating the generalization capability was cal-

culated by changing the reference input from x = 

0.0m to 0.2m, from l = 2.0m to 1.7m in the first 20 

seconds; and from x = 0.2m to 0.4m, from l = 1.7m 

to 2.0m in the last 20 seconds. By changing the 

initial parameters of the RBF controller randomly, 

simulations were carried out 5 times. 

 Simulation conditions were shown in Table 14. 

      Table 14 Simulation Conditions

Fig.23 Simulation Results(Learning times:20000)

Fig.24 Simulation Results(Learning times:80000) 

 Fig.23 and Fig.24 show the average learning 
curives and l(t), x(t), 6(t) of the nonlinear crane sys-
tem which were obtained for the study of the gen-
eralization capability, on the condition that L(j)=4 

(four RBF functions), Q5 = Q6 = 0.001 and learn-
ing was carried out 20000 times and 80000 times 
respectively. 
 From Fig.24 it is shown that when the learn-

ing was continued until 80000 times, dynamics of 
the system becomes unstable because of the over-
fitting of the learning. Curved surfaces of control



signals  ud, um which are the function of (x, 0) and 

(1, 1) respectively are shown in Fig.25 and Fig.26. 
It is understood that curved surfaces of Fig.26 ob-

tained when the learning is carried out too much 
can not calculate the appropriate control signal urn 
around /„f — l = 0.3. Therefore, suppressing of the 
control signals was tried by increasing the weighting 
coefficients Q5, Q6 related to urn, ud in the criterion 

function. 
 Fig.27 show the curved surfaces of control sig-

nals ud, um obtained by the condition that four RBF 
functions, Q5 = Q6 = 1.0 were used and learning 
was carried out 80000 times. Q5, Q6 in Fig.27 are 

the lowest value(see Table 15), where stable dy-
namics is obtained even when the reference inputs 
xre f, /ref are changed in the middle of the control. 

Table 15 Relation between L(j) and the Lowest 
       Bound of Q5 and Q6

Fig.26 Curved Surfaces of Control Signals Ud and 
Um (Learning Times: 80000)

Fig.25 Curved Surfaces of Control Signals Ud and 

         Urn (Learning Times: 20000)
Fig.27 Curved Surfaces of Control Signals Ud and 

           Urn,(Q5 = Q6 = 1.0)



 From Fig.27 and Table 15, it is known that the 

larger the number of RBF functions is, the more 

needed the suppression of control signals are, and it 

is also known that sufficient generalization capabil-

ity can not be obtained by using one RBF function. 

 In this section, the generalization capability of 

RBF controller using RasVal in Universal Learning 

Network was studied. From simulations of a non-

linear control system, it has been proved that the 

generalization capability is enhanced by suppress-
ing the control signals, and a great numbers of RBF 

functions in the controller of the system deteriorate 

the generalization capability. 

 7. Conclusions 

  In this paper, we presented a new control method 

for nonlinear systems using ULN with RBF firstly. 

From the simulation results, it has been proved that 

ULN with RBF based on the gradient method is 

superior in performance to that of neural networks, 

and it has also been shown that the RBF control 

has better performance for the generalization ca-

pability than the neural network control. We also 

introduced a new learning algorithm named Ras-

Val. By applying RasVal method to a nonlinear 

crane control system which can be controlled by 

the Universal Learning Network with the RBF and 

the sigmoid functions, it has also been shown that 

the sigmoid function control has better performance 

than RBF control. At the same time, it have been 

shown that the RasVal is superior in performance 

to the commonly used back propagation learning 

algorithm. Finally, generalization capability of a 

Radial Basis Function controller using RasVal in 

Universal Learning Network was studied and it has 

been shown that a new method is effective to over-

come the over-fitting problem in nonlinear control 

systems.

           References 

1) K.Hirasawa,M.Ohbayashi and J.Murata: Uni-
versal Learning Network and Computation of its 
Higher Order Derivatives, Proc.of 1995 IEEE Inter-
national conference on Neural Networks,  pp.1273-
1277, 1995 

2) N.Shao,K.Hirasawa,M.Ohbayashi and K.Togo: 
Nonlinear Control System with Radial Basis Func-

tion Controller using Random Search Method of 
Variable Search Length,Proc.of IEEE International 
Conference on Neural Networks, pp. 788-793, 1997 

3) N.Shao,K.Hirasawa,M.Ohbayashi: Nonlinear 
Control System Using Universal Learning Network 
with Radial Basis Function,Proc.of 2nd Asian con-
trol conference, PP. II 19-22, 1997 
4) N.Shao,K.Hirasawa,M.Ohbayashi and K.Togo: 
Nonlinear Control System with Neural Network 

Controller using RasVal Learning,Proc.of IEEE 
SMC, 1997 
5) N.Shao,K.Hirasawa,M.Ohbayashi and K.Togo: 
Generalization Capability of Radial Basis Function 
Controller using Random Search Method of Vari-

able Search Length in Univerasl Learning Network, 
Research Reports on Information Science and Elec-
trical Engineering, Vol.2, No.1, pp.31-38, March, 
1997 
6) M.Ohbayashi, K.Hirasawa, J.Murata and 
M.Harada: Robust Learning Control using Uni-
versal Learning Network, Proc. of IEEE Interna-
tional Conference on Neural Networks, pp.2208-
2213, 1996 
7) Jyh-shing Roger Jing, Chuen-tsai Sun: Neuro-

Fuzzy Modeling and Control, Proc. of IEEE, 
Vol.83, No.3, MARCH,1995 
8) S.Chen,C.F.N.Cowan, and P.M.Grant: Orthog-
onal Least Squares Learning Algorithm for Ra-

dial Basis Function Networks, IEEE Transaction on 
Neural Networks, Vol.2,No.2,March, 1991 
9) Jone Moody,Christian J.Darken: Learning in 
Networks of Locally-Tuned Processing Units, Neu-
ral Computation, pp.1281-1294, 1989


