
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Portability in Implementing Distributed Shared
Memory System on the Workstation Cluster
Environment

Nanri, Takeshi
Computer Center, Kyushu University

Sato, Hiroyuki
Department of Computer Science and Communication Engineering, Kyushu University

Shimasaki, Masaaki
Kyoto University

https://doi.org/10.15017/1522389

出版情報：九州大学大学院システム情報科学紀要. 2 (2), pp.185-190, 1997-09-26. 九州大学大学院シ
ステム情報科学研究科
バージョン：
権利関係：

九州大学大学院

システム情報科学研究科報告

第2巻 第2号 平成9年9月

Research Reports on Information Science and

Electrical Engineering of Kyushu University

 Vol.2, No.2, September 1997

Portability in Implementing Distributed Shared Memory System

 on the Workstation Cluster Environment

 Takeshi NANRI* , Hiroyuki SATO**, Masaaki SHIMASAKI***

 (Received June 23, 1997)

Abstract: Cluster of workstations or personal computers connected with high speed network has
become one of major architectures of distributed memory parallel computers. However, software
on the cluster environment is still not improved in performance. In particular, there has not been

proposed a standard distributed shared memory mechanism on the cluster environment, The dis-
tributed shared memory can be a solution of programming style on distributed memory parallel
system including clusters because we know from experiences that shared memory model makes

programming easy. It must be implemented with care for the performance problem. However,
there is no hardware support for shared memory system. Another, but serious problem is the

portability. In this paper, we discuss the design and implementation of portable distributed shared
memory system. Our shared memory system is based on PVM in consideration of portability.
Our contributions in this paper is the design and implementation of portable shared memory sys-
tem on the cluster environment using faithful implementation of active messages fully in software,
together with an enhancement of PVM to support active messages.

Keywords: Portability, Cluster environment, Distributed shared memory, Active message

 1. Introduction

 Cluster of workstations or personal computers

connected with high speed network has become one

of major architectures of distributed memory par-

allel computers. Its advantage over parallel com-

puters provided with special hardware is the cost
effectiveness. On the other hand, on performance,

there has not been put stress. However, as the per-

formance of general purpose network such as Ether-

net or FDDI has been improved rapidly, the parallel

performance of clusters has also been improved. To-
day, a cluster can be considered as an alternative of

distributed memory parallel computers with special

hardware. From this viewpoint, there have been

carried out projects such as NOW of UCB8>, RWC

of RWCP9> and SWCP of U. Penn.

 On the side of software on the cluster environ-

ment, programs have been written almost in the

message passing style in which programming is not

easy. As the programming style of the cluster en-

vironment, however, the distributed shared mem-

ory can be a solution on distributed memory paral-

lel system because we know from experiences that

shared memory model makes programming easy.

However, it must be implemented with care be-

* Computer Center

** Department of Computer Science and Communication

Engineering

* * * Kyoto University

cause in its implementation on the cluster environ-

ment, we cannot assume any hardware support, but

the high performance is strongly required to remote

memory access. Another, but serious problem is

the portability. Distributed shared memory must

be implemented on a standard language or standard

message passing libraries.

 In this paper, we examine the design issues of

portable distributed shared memory system. In its
implementation, we must consider the simulation of

primitive level functions related with memory access

such as DMA and hardware interrupt. We discuss

our implementation from the above viewpoint to-

gether with that of portability. Specifically, we show
our design and implementation of portable shared

memory system on the cluster environment using

faithful implementation of active messages fully in

software, together with an enhancement of PVM to

support active messages.

 The rest of this paper is organized as: Section 2

surveys the related work. Section 3 discusses our

design of portable shared memory system. Section

4 outlines our design and implementation of dis-

tributed shared memory system using our faithful

implementation of active messages fully in software,

together with an enhancement of PVM to support

active messages. Section 5 shows the performance

of our implementation. Section 6 gives a brief sum-

mary.

 2. Related Work

 Today, we can say that the cluster environment

is a major class of distributed memory parallel ar-

chitectures. Projects on the cluster environment in-

clude NOW of UCB8 , RWC of RWCP9 , and SWCP

of U. Penn, together with the well-tuned message

passing libraries such as active message of NOW and
the PM library of RWCP. All of these projects aim

at proposing alternatives of "real" parallel machines

by building parallel system by connecting high per-

formance workstations with high speed network,

which is a significant difference from conventional

clusters. Our project shares the problem with those

projects. However, we also put stress on portabil-
ity, and we do not use high performance network

such as Myrinet2>, but restricting the network in-

terface within 10BaseT or 100BaseT and connecting

switches.

TreadMarkl) is a project of distributed shared

memory system. Memory allocation and access are

implemented as library calls. The access method

to the global memory space is separated from that

to the local memory space. In TreadMark, memory

consistency is also given a consideration, and lazy

release consistency is implemented. However, it is

pointed out that in the implementation, even the
access to the global memory resident on the local

processor raises signals.
 Porting of Split-C4) is reduced to the implemen-

tation of active messages on the target environment.

Culler reports an implementation of active message

on Myrinet10). In the UCB implementation of Split-

C on PVM, however, the active message is not faith-

fully implemented. Our previous work') is an im-

plementation of Split-C on PVM. However, the im-

plementation of active messages is not safe.
 HPF is another major distributed shared mem-

ory programming language. Sato et.al.7 report the

implementation of HPF using Split-C as its inter-

mediate language.

 3. Design of Portable Distributed

 Shared Memory System

 Our problem is to design and implement portable

distributed shared memory system fully in software.

 3.1 Functions to be Implemented

 In implementing the distributed shared memory

system on the cluster environment, the fact that we

cannot expect any hardware support nor any oper-

ating system support is a severe handicap. As for

the hardware support, the function which handles

the request of memory access and the transfer of

data is strongly required. In other words, we need

a kind of DMA method to a remote processor for

the performance improvement. As for the operat-

ing system support, the function which resolves the

address of the data posessed by a remote processor

is indispensable.

 In real distributed memory parallel machines,

those functions are fully provided, or at least they

are given a consideration. However, in the cluster

environment, there is no support of such functions.

Therefore, we must implement them fully in soft-

ware.

 Major troubles in implementing them are as fol-

lows:

 1. we do not have any DMA to remote memory.

 This means that we must implement the mem-

 ory access method using software interrupt and

 user-level event queue.

 In early architectures, the network interface

 raises an interrupt to CPU when network pack-

 ets are transferred to memory. However, it has

 become clear that the cost of such interrupts

 can be the obstacle in the performance improve-

 ment. Architectures of these days implement

 DMA-like interface between network interface

 and memory. Because the cluster environment

 does not have DMA between network and mem-

 ory, the cost is severely high.

 Though we cannot fully solve this problem, we

 can lower communication cost by eliminating

 unnecessary transfer of data. Active message

 can be a candidate for a solution.

 2. we cannot make any assumption on the static

 address resolution because data on the dis-

 tributed memory machines is usually trans-

 ferred using ports. This means that we must

 implement a certain dynamic mechanism for

 the address resolution.

 We solve this question by imposing the condi-

 tion: we consider the SPMD programming style

 on the homogeneous cluster environment, and

 we fork the same binary file on each node pro-

 cessor, by which the memory layout is known at

 compile time, and thus the address resolution

 problem becomes easy.

 3.2 Portability

 The next major problem is portability. Today,

portability is one of major concerns in program-
ming. To keep portability, we write programs in

 • a standard programming language which is

 widely used, and

 • a standard message passing library functions.

 We choose Split-C as the target of the program-

ming language which supports distributed shared

memory. We implement its distributed shared

memory system on PVM. The protocol stack of our

implementation is, therefore, figured in Figure 1.

 In our implementation, active messages on PVM

is proposed as the common memory access meth-

ods. On our active messages for the cluster envi-

ronment, we can build a variety of shared memory

programming languages other than Split-C. In the
subsequent section, we discuss the enhancement of

PVM to support active messages. In fact, we need

more powerful functions of signals to simulate the

real hardware interrupt functions by PVM.

 MPI vs. PVM

 PVM and MPI are two major portable message

passing libraries. In choosing one of them, we con-
sider their expressive power in implementing the

distributed shared memory system.

 As discussed in 3.1, we must design our dis-

tributed shared memory system by virtually sim-

ulating hardware functions for parallel machines.

From this viewpoint, PVM has advantage over MPI

in that PVM has the inter-processor signal handling

functions by which we simulate the hardware inter-

rupt of each processing element of parallel machines,

and implement a parallel virtual machine.

 In MPI-211>, the demand-driven data trans-

fer functions are implemented as MPI_WIN_PUT,

MPI_WIN_GET, and MPI_WIN_ACCUMULATE, though

those functions are still clumsy. Windows which are

defined to be the pair of memory block and its owner

process for the remote memory access must be de-
clared first. The remote data is accessed via the

offset from the base address of the memory block of

the window. Moreover, access phase and open phase

are defined. RMA(remote memory access) can be
allowed only when the origin is in the access phase,

and the target is in the open phase. These phases

must be controlled by a programer.

 The principles of RMA of MPI-2 are different

from that of shared memory in which remote mem-

ory is accessed in the same way as the local memory

without phase control nor domain restriction. Ac-

tive messages do not have the above phase problem

because in any phase, they interrupt the target pro-

cess with the handler specified by the message.

 4. Implementation

 Our design problems of distributed shared mem-

ory are summarized as the address resolution of the

remote data and the safe and faithful implementa-

tion of active messages.

 We design and implement a distributed shared

memory system on the cluster environment by port-

ing active messages') of Splt-C4) on PVM. What

we must implement is the faithful simulation of the

memory access sequence to a remote node in real

parallel machines, which includes the interface of
network interface with memory unit and CPU unit

and the address resolution of the memory to access.

 In this paper, we divide the porting problem into

two stages: implementation of active messages on

PVM and address resolution mechanism on the clus-

ter environment.

 4.1 Problems in Unix

 Design of the shared address space of Split-C de-

pends on the implementation of functions of 3.1
which are supported by hardware in real parallel

machines. As our implementation of these func-

tions, we use software signals as the substitute of

hardware interrupt, and we make the SPMD as-

sumption: every object on each processor has the

same image.

 However, these decisions can cause other kind of

problems. First, we must simulate the hardware in-
terrupt related with memory access using software

signals of Unix. In Unix, software signals are not

guranteed to be raised. At least, sending a signal
while handling a signal and having a waiting signal

results in the loss of the signal last sent, and there

is no method of knowing whether a signal is lost

or not as in Figure 2. In PVM, pvm_sendsig, sig-

nal handling function is provided. This function has

the same semantics as the software signals. Because

simulating hardware interrupts needs safe `signal'

handling, PVM lacks the expressive power in this

sense.

 Next, SPMD assumption makes the address reso-

lution easy, but the real address is determined at the

fork of a process, which means that we cannot re-

solve addresses fully at compile time, and therefore

that we need some runtime mechanism of address

resolution.

 4.2 Active Message

 In our design, we aim at faithfully implementing

active messages fully in software.

Split-C

Active Message

PVM

UDP, (Domain Socket)
 IP

H Language Layer

H

4-4

Message Passing Layer

Transport Layer

Vender-Specific

Hardware-Support

Cluster
"Real" Parallel Machine

Fig.1 Protocol Stack

Fig.3 Communication in PVM

Fig.2 Case that a Unix Signal may be Lost.

 4.2.1 Active Messages on PVM
 von Eiken et.al. proposed active messages3> .

Communication using active messages is character-
ized as the reduced access phases, and as the buffer-
less handler raising. In the conventional data trans-
fer, three-phase protocol(request, ack, actual data
transfer) is used. Instead, an active message sends
a request together with a(n address of) handler for
message handling, and the phase of ack can be elim-
inated. The message is handled immediately, and
therefore message buffer is not needed. In this sense,
an active message is suitable for handling small size
messages because of this reduced access phase.

 In this subsection, we examine PVM from the
above viewpoints.

 We use PVM signal handling functions in imple-
menting handler invocation of active messages. In
PVM, this is implemented as the daemon-daemon
communication and daemon-task communication as
in Figure 3.

 First, we discuss the phase reduction in active
messages. The principle in phase reduction in ac-
tive messages is that by using active message mech-
anism, we can avoid the unnecessary acknoledg-
ment between communication request and the data
send/receive action. In our implementation, our
version of pvm_sig is sent with the signal num-
ber and the data to be sent/received on UDP. Un-
like TCP, the implicit acknoledgment is not sent

in UDP. Therefore, if we ignore the Unix domain
socket protocol used in communication between

intra-processor tasks, we can conclude that we can
avoid three-phase protocols in our implementation.

 Second, we discuss the handler invocation in ac-

tive messages. The handler invocation is imple-
mented using PVM signal invocation. At this point,
the reliability of handler invocation must be dis-
cussed, because PVM signal invocation depends on
the Unix signal invocation. We solve this problem
by enhancing the daemon around signals.

 4.2.2 Enhancement of PVM
 We add two entries of libraly functions of PVM

to send signal safely as Table 1.
 For the implementation of active messages, we

need an enhancement of PVM on the safe signal
handling, and on the argument passing to the sig-
nal handling. Here, we discuss the former enhance-
ment which needs the essential rewriting of PVM
daemon.
 In pvmd, we have made the pending queue of sig-

nal request for each PVM task. It is guaranteed
that no two signals are not raised at the same time
by a pvmd. Changes around dm_sendsig(the entry
for signal handling in pvmd) are figured in Figure 4

 Just before the invocation of dm_sendsig, signal

handling functions in the daemon, a flag is tested
whether a signal is raised or not. If a flag is down,
dm_sendsig is invoked as usual. If a signal is raised,
however, the request of dm_sendsig is put into the

Table 1 Signal Handling Functions of PVM(* our enhancement)

Function

pvm_sendsig(tid , signum)

pvm_safesigsend(tid, signum, mid)*

 pvm_safesigsendrecv(tid, signum, mid, bufid)*

Description

Raise Signal(conventional semantics)
Raise signal safely, and send

handler. Signal is guaranteed

data

to he

to the

raised.

Raise signal safely, and send data to the

handler, and receive the data from the han-

dler. Signal is guaranteed to be raised.

Fig.4 Changes around signal handling routines

message queue, and waits in the queue for the com-

pletion of the signal handler.

 4.3 Global Address Space

 On distributed memory machines, if a program

is written in SPMD style, each processing element

is assumed to have the same memory image. This

essentially simplifies the implementation of virtual

shared memory system, because data in a remote

processor is placed at the identical address corre-
sponding to that in a local processor. The loader

and the operating system of the distributed mem-

ory machines are responsible for keeping this corre-

spondence.

 In the cluster environment, however, there is no

guarantee that each node-executable file have the
same address space. As a solution, we have sepa-

rated the address of the global memory address in

each processing element into a base address and its

offset. The base address is obtained from the initial-

ization routine by sbrk (0) . Global memory is ac-

cessed uniformly via the offset which is guaranteed

to be the same in a given executable image in SPMD

style. To obtain a piece of data from a remote pro-

cessor, the node sends a request for the data whose

address is given as the offset only. When the node

has received the request, it returns the data of the

address which is the base address plus the offset of

the request.

 4.4 Memory Access Sequence

 With thus enhanced PVM and the address reso-

lution mechanism, we can implement the access to

Fig.5 Sequence of Remote Memory Access

remote memory as follows:

 1. issue a request of memory access with its ad-
 dress offset calculated as (corresponding ad-
 dress of the local processor) - (bss) to the pvrn

 layer,
 2. send the request to the task of the remote pro-

 cessor using pvm_safesigsendrecv,
 3. receive the request, and invoke the signal han-

 dler,
 4. calculate the address as (the offset sent in the

 request) + (bss), and access the data of the
 address in the signal handler,

 5. return the value of the data.
 Figure 5 illustrates the sequence. As the conse-

quence, we can conclude that we faithfully imple-
ment active messages, and that we implement the

address resolution mechanism with SPMD assump-
tion.

 5. Experimental Result

 We have experimentally implemented the dis-

tributed shared memory on the cluster environment
of Table 2 fully in software. Table 2 shows the
latency and throughput of our distributed shared
memory system. We find that the bottleneck of
the performance is on the latency, rather than the
throughput.

 It is to be noted that the overhead of signal in-

Table 2 Latency and Throughput of the Remote Memory Access

 Environment:

vocation is not yet a problem of the latency in our
system. Let us consider the transfer of 8 bytes. In

BSDI BSD/OS, the overhead of signal invocation is
measured as 29 ,usec. If we estimate the ideal com-
munication cost as the throughput performance, it
is approximately 16,umsec(8 / ((0.613 + 0.428)/2)).
Therefore, we can conclude that most of the latency

is the overhead incurred by PVM and UDP/IP han-
dling. To improve the latency, we must first improve
the performance of PVM and UDP/IP.

 There is another approach by which we can im-

prove the performance. We can restructure the
communication pattern by overlapping the commu-
nication and computation, by collecting the small
size communication(by using bulk data transfer) 7) ,
and by utilizing data locality (by using software
cache)6) .

 6. Concluding Remarks

 In this paper, we discussed the design problems
of distributed shared memory system on the clus-
ter environment. Faithful implementation of ac-

tive messages was discussed, and an enhancement of
PVM to support active messages was also discussed.
Finally, the performance of our implementation was
discussed and some approaches for the performance

improvement were investigated.

 The authors have been partially supported by
The Japan Society for The Promotion of Sci-
ence Research for the Future Program (JSPS-
RFTF96P00505: Software for Distributed and Par-

allel Supercomputing) and by The Ministry of Ed-

ucation, Science and Culture(No. 08458071).

 References

 1) Amza, C., Cox, A.L., Dwarkadas, S., Keleher, P., Lu,
 H., Rajamony, R., Yu, W., Zwaenepoel, W.: "Tread-

 Marks: Shared memory computing on networks of
 workstations," IEEE Computer, 1996, pp. 18-28.

 2) Boden, N.J., Cohe, D., Felderman, R.E., Kulawik,
 A.E., Seitz, C.L., Seizovic, J.N., Wen-King Su:

 "Myrinet - A Gigabit-per-Second Local-Area Net-

 work," IEEE Micro, Vol. 15, No. 1, 1995, pp. 29-36.
 3) von Eicken, T., Culler, E., Goldstein, S., Schauser K.:

 "Active Messages: a Mechanism for Integrated Com-

 munication and Computation," Proc. 1992 Int. Sympo.
 Computer Architecture, 1992, pp. 256-266.

 4) Krishnamurthy, A., Culler, E., Dusseau, A., Goldstein,
 S., Lumetta, S., von Eicken, T., Yelick, K.: "Paral-

 lel Programming in Split-C," Proc. Supercomputing'93,
 1993, pp. 262-273.

 5) Nanri, T., Sato, H., Shimasaki, M.: "Implementing a
 Portable SPMD Shared Memory Model Parallel Lan-

 guage in a Distributed Computing Environment," Proc.
Int. Symp. Parallel and Distributed SuperComputing,

 1995, pp. 243-252.
 6) Nanri, T., Sato, H., Shimasaki, M.: "Using Cache Opti-

 mizing Compilier for Managing Software Cache on Dis-
 tributed Shared Memory System," Proc. HPC Asia 97,
 1997, pp. 312-318.

 7) Sato, H., Nanri, T., Shimasaki, M.: "Using Asyn-
 chronous and Bulk Communication to Construct an

 Optimizing Compiler for Distributed-Memory Ma-
 chines with Consideration Given to Communication

 Costs," Proc. 1995 ACM ICS, 1995, pp. 185-189.
 8) http://now.cs.berkeley.edu

 9) http://www.rwcp.or.jp
 10) http://www.cs.berkeley.edu/AM/lam_release.html
 11) http://ftp.cs.wisc.edu/pub/lederman/mpi2

