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Abstract: This paper proposes a minimization learning method for neural networks with one 

hidden layer. We treat two types of networks without and with thresholds in their output layers. 

Both of them are learnt by minimizing error functions whenever one unit is added to the hidden 

layer. Our learning method is applied to design a neural network with thresholds for image recog-

nition. 
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 1. Introduction 

 It is well known that the learning ability of neu-

ral networks having one hidden layer increases with 

the number of hidden units. In this paper, we pro-

pose a method for learning the network locally by 
adding hidden units. There are a few articlesl)2) on 

minimization learning algorithms for the same type 

of neural networks. In the paper 1), a condition for 

learning a training set exactly was found in rela-

tion with a consistency condition for the solutions 

of linear equations. And from this condition, the 

paper' derived a minimization problem for decid-
ing connection weights between the input and the 

hidden layers. An algorithm for solving this prob-

lem was also given. However, the cost function to 

be minimized includes a nonlinear transfer function 

and hence, we can not avoid the trapping of the so-

lutions in local minima. 

 In this paper, we present a method for deter-

mining connection weights of the network so as to 

minimize the output errors for training data. This 

minimization is carried out whenever one unit is 

added to the hidden layer. First, the weights be-

tween the hidden and output layers are determined 

by minimizing a quadratic functional. Substituting 

the weights into this functional, we can obtain a re-

lation between the error functions before and after 

adding one unit to the hidden layer. It is desirable 

to maximize the difference of both error functions. 
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This maximization problem coincides with that de-

rived in the paper'). In this paper, we separate 

this problem, under some restriction, into two min-

imization problems. One is concerned with a mini-

mization of a rational cost function on independent 

variables, which is derived from the penalty method. 

The other is related to a process trying to prune the 

new connections between the input arid the hidden 

layers. 

 Although the papers 1) 2) deal with only the net-

work without thresholds in the output layer, this 

paper treats the networks without and with thresh-
olds in the output layer. Our method is applied to 

construct both types of neural networks. 

 Finally, the simulations are carried out by using 

landscapes as a training set with a network having 

thresholds in the output layer. 

 2. Minimization Learning Algorithm 

 2.1 Neural Network without Thresh-

     olds in the Output Layer 

 We consider a neural network which consists of 

an input layer with n +1 nodes, a hidden layer with 

h units, and an output layer with 1 units: 

    h n+1 

gi = g  wf vikxk ,i = 1,2,...,1, (1)       (\I:                       k=1 

where xk indicates the k-th input value, yi the i-
th output value, vjk a weight connecting the k-th 

input node with the j-th hidden unit, and wij a 
weight between the j-th hidden unit and the i-th 
output unit. The functions f (t) and g(t) are given 
by 

      f (t) =1- e-tt 1              1 + e-tg() =1 + e-t'



respectively. We write (1) as 

 y  =  g  (W  f  (Vx))  , 

where we set x = (x1, x2, ... , xn, xn+1) with 
xn+1 = -1, y = (yl , y2, ... , yl), V = (vjk) 
and W = (wi3).Moreover, f (V x) means 

(f (Vix), f (V2x), . . . , f (vhx)) and g(W f (V x)) indi-
cates (g(Wif (V x)), g(W2f (V x)), ... , g (WI f (V x))), 
where V3 = (v31, v32i ... , v3,n+1) and W = 
(wi i , wi2, ... , wih) . This network is shown in Fig.1.

 Fig.2 Neural network after adding one unit in the hid-
       den layer in Fig.1 

We describe how to determine the added weight 
vectors w and v. Since it holds that W f (V x") = 
Wf(Vx")+wf(vx"), we have 

J(V, W) = J(V, W) - 2(d, w) + allw112 (3) 

in which d and a represent

 Fig.1 Neural network without thresholds in its output 

        layer 

 Let (x", y"), v = 1, 2, ..., m, be training data for 
the network. We define an output error between 
the outputs of the network for the inputs x" and 

the relevant outputs y" by 

                   rn 

J(V,W) _ E 11g-lo") - Wf(Vx")112 (2) 
v=1 

where g-1(y") (g-1 (y107 g 1(y2 ), ... , g-1(yi )) 
with the inverse function g-1(s) of s = g(t), and 

II • II stands for the Euclidean norm. To determine 
V and W , we need to minimize the error function 

(2). In this paper, we present a technique for de-
termining the weights V and W successively. We 
suppose that the weights V and W have already 
been learnt. We add one unit to the hidden layer 
of this network, which is called an (h + 1)-th hid-

den unit. Let v denote a connection weight vector 
between the (h + 1)-th hidden unit and the input 
layer, and let w be a weight vector connecting the 

(h + 1)-th hidden unit with the output layer. The 
neural network after adding the (h + 1)-th hidden 

unit is shown in Fig.2. 
  We denote the weight matrices (V, v) and (W, w) 

by V and W, respectively. Then a new error func-
tion can be written as 

rn 

J(V,W) _ E -Wf(Vx")112. 
v-1

and

where c" = g- l (y") - W f (V x") and the symbol 
(•, •) indicates an inner product in Rl. When the 
vector v is fixed, the vector w which minimizes the 
error function (3) is given by

Substituting this vector into (3) yields

where

 Next, we must determine the weight vector v. In 
the paper 1), the vector v was determined so as to 
minimize - 1(v) by applying directly the steep-
est descent method. However, this method shows a 

poor convergence behavior and has a disadvantage 
that solutions are trapped in local minima, because 
/(v) contains the nonlinear function f . We em-

ploy another approach to determine the vector v.



Let us assume that the dimension n of input pat-

tern vectors is larger than the number  m of training 

patterns. This case occurs frequently. For example, 
the size n of image patterns is sufficiently large in 

comparison with m. Under this condition, we max-

imize the function 1(v), namely, minimize —1(v). 
As is easily seen from (4), (5) and (7), —1(v) can 
be written as 

mmrn —1(v) = — KE (svcvsvc)v l E sv, (8) 
v=1v=1v=1 

where we have put 

Sv = f (vxv)• (9) 

So we regard (8) as a function of the variables 
sv and minimize it with respect to sv first. This 
minimization problem can be solved by the penalty 

method. Indeed, we can formulate the function with 
a penalty term as 

mmm 

   — Esvcv,Esvcv +P (Es — 1)2, 
v=1 v=1 v=1 

where P is a penalty constant. The unknown 

parameters s,, can be sought by minimizing this 
functional using, for instance, the steepest descent 
method. Substituting the solutions into (9) and 

using the inverse function f —1(s) give 

    vxv = In1+ Svv = 1, 2, ... , m (10) 
                         v which are simultaneous equations with respect to 

v. By assumption n > m, the number of unknown 
variables v = (vh+1,1, vh+1,2, ... , vh+1,n+1) is more 
than the number of the equations. So we impose on 

(10) a restrictive condition 

I1142 — min.(11) 

which has a role to improve the behavior of these 
networks. The minimization problem (10) and (11) 
can be solved by Lagrange method as follows: 

                                rn 

v = — 2E Aµ                                   x, 

µ=1 

where A, are solutions of

1 rn1 + sv    —
2L(xv,xµ)A=ln1—s,v=1,2,...,m.  a=1v 

Substituting the solution v into a and d defined by 

(5) and (4), respectively, we can obtain w of (6). 
If we go through this procedure from one unit in the 
hidden layer, we can compose a minimum scale of 

network in a sense. 

 2.2 Neural Network with Thresholds 
     in the Output Layer 

 Next we will consider the network with thresh-

olds 0,7 i = 1, 2...,1, in its output layer as shown in 
Fig.3.

Fig.3 Neural network with thresholds in the output 

       layer

In this case, we can write 

      h n+1 

yi =g>wijf(Vkxk)—0, , 
        j=1k=1 

i = 1,2,...,l 
whose simple form is 

y = g (W f (V x) — 0) , 

where 0 = (01, 02i ... , 0i) and q(W f (V x) — 0) = 

(9(Wif (Vx)-01), g(W2f (Vx)-02), . . . , 9(Wif (Vx) 
—00).  The error function related to the present net-
work takes the following form 

m J(V, W, 0) = E mg-1(yv) — W f (Vxv) + eV. 
v=1 

We add one unit to the hidden layer and represent 

new weight vectors again by v and w. By adding 

one hidden unit, the threshold vector 0 must be 

changed. We denote a new threshold by 0 and write 

as 9 = 0+A0. The network after adding one hidden 

unit is shown in Fig.4: The error function related



Fig.4 Neural network with thresholds after adding one 

      unit in the hidden layer in Fig.3

to this network can be expressed as 

 17E 

J(V,W,0)  _  E  11g-1(V) - Wf(Vxv) +e112, 
v=1 

where we have used again the symbols V = (V, v) 
and W = (W, w). The same procedure as in the 
previous subsection will be applied in order to de-
termine v, w and De so that J(V,W ,  0) is mini-
mum. Since W f (Vxv) = W f (Vxv) +w f (vxv) and 
0 = 0 + A0, we can decompose the error function 
J(V,W,0) as 

J(V, W, 9) = J(V, W, 0) - 2 E f (v xi'(cv + AO, w) 
v=1 

mm 

        + f2(vxv)I1w112+2E(A0,cv) 
v=1 v=1 

+E Iloe112, (12) 
v=1 

where we put ev = g-1(yv) - W f (Vxv) + 0. We fix 
v and determine w and A0 so that J(V, W, 9) is 
minimum. The weight vector w and the correction 

AO are obtained by solving the equations 

8J(V, W, e) —o3J(V,W,0)_o 
awz,h+1—— aoei 

as follows: 

mdi - a2d2 
w -(13) b ' 

AO _a2d1 — aid2(14)           b ' 

where al = Ev1 f2(vxv), a2 = Iv 1 f (vxv), 
di = v=1 f (vxv)cv, d2 = Erni,=1 cv, and b = 
mai - a2. Substituting (13) and (14) into (12), 
we get 

     J(V, W, e) = J(V, W, 0) - K(v)

in which K(v) denotes 

K(v) = Ko(v) + —1 d2) , 

m where Ko(v) is given by 

 Kdi Ko(v) =b - m d2,d1 - —a2d2)  
 We want to determine the weight vector v so that 

K(v) is maximum. The term m (d2, d2) is indepen-
dent of v. Therefore, it suffices to determine v so 
that Ko(v) is maximum, namely, the term -Ko(v) 
is minimum. The term Ko(v) can be transformed 
into 

           1 (mdi - a2d2, mdi - a2d2)   K
0 (v)_ mmai - a2 

mm 

(tVC,tVC)v _ 1 v=1 v=1  

m m m 
      in( Ety -(Et                           v)2 

v=1 v=1 

where tv = f (vxv) and CV = mcv - Eµ i cµ. We 
first determine tv, v = 1, 2, ..., m, such that -Ko(v) 
is minimum. This is carried out using the penalty 
method: 

 mm      tvCV , tvc-) 
rn v=1v=1 2+P(Ety-1)2—>min. 

v=1     M — E tv 
v=1 

This minimization problem can be solved by the 
steepest descent method. Using tv thus obtained, 
the weight vector v is sought in the same way as in 
the previous subsection and, as a result, w and AO 
can be obtained by (13) and (14), respectively. 

 3. Simulations 

  As regard for the simulations of image recogni-
tion, we construct a neural network with thresholds. 
To memorize the training patterns xv, we consider 
40 landscapes, i.e. m = 40, with gray scale, each 
of which has the size 128 x128. Some of them are 
shown in Fig.5. The number 1 of output units was 
taken as 1 = 40, and the output y" for the pattern 
xv was chosen as y'i = &v,i, where bv,i indicates the 
Kronecker's delta symbol.



Table 1. Recognition results for noisy patterns 

         with 30  % added noise.

Fig.5 Part of the memorized patterns

Using these pictures, we determined the weights and 

thresholds of the network based on the proposed 
learning algorithm. The error function was suffi-

ciently small when adding 30 units to the hidden 

layer. 

 Noisy patterns for recognition were created first 

by adding 30% random noise to all the memorized 

patterns. Some of them are shown in Fig. 6.

 Next, we created noisy patterns by adding 50 % 

random noise to all the memorized patterns, some 

of which are shown in Fig. 7.

Fig.6 Part of the noisy patterns with 30 % random 

        noise

Table 1 shows that 10 units in the hidden layer 

were needed to recognize all the noisy patterns. We 

can notice from Table 1 that some of those could 

be recognized by a smaller size of network. 

 In each box of Tables 1-3, we listed the number 

of hidden units necessary for recognition, the max-

imum value of outputs and recognized patterns.

Fig.7 Part of the noisy patterns with 50 % random 

       noise

Table 2 illustrates that only 10 hidden units of the 

network were needed to recognize all the noisy pat-

terns.



Table 2. Recognition results for noisy patterns 

         with 50 % added noise.

 Finally, we present the result of simulation for five 

noisy patterns as shown in Fig.8.

Fig.8 Patterns which are lacking part of the memorized 

       patterns

Table 3 shows that the first three patterns could 

be recognized by the  network with 18 hidden units, 

but the last pattern failed to be recognized even if

30 units are added in the hidden layer. 

  Table 3. Recognition results for the patterns 

               shown in Fig.8.

 4. Conclusion 

In this paper, we proposed a method for learn-

ing three-layered neural networks by adding hid-

den units successively. For two types of neural net-

works without and with thresholds in the output 

layers, their connection weights were determined lo-

cally whenever hidden units are added. Our learn-

ing method can update the model structure when 

our application requires it. To avoid the trapping 

of solutions in local minima, we devised two steps 

of algorithms in determining the weights between 

the first and the second layers. Such a device real-

izes fast learning of neural networks. We designed a 

neural network with thresholds by using landscape 

training data based upon our method. By the use 

of this network, we carried out the simulations for 

recognition of some noisy patterns. Patterns pro-

duced by adding random noise to the memorized 

pictures were recognized very well. The network, 

however, couldn't recognize the picture which is 

lacking a large part of the original one. 

  There are some remaining_ problems to be solved 

in the future. One problem is to analyze a detailed 

mechanism of our minimization learning procedure. 

Simulations were carried out using limited number 

of pictures, but must be done for more pictures in 

order to examine the relation between the recog-

nition ability and the size of neural networks. It 

is also important to examine the recognition for 

shifted patterns. 
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