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1 Introduction

(1) The devil's staircase is equal to the restriction of function
of probability of tending to 400 w.r.t. the random
dynamics on R s.t. we take hi(z) = 3z with prob. 1/2
and we take ho(x) = 3z — 2 with prob. 1/2.
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(2) Lebesgue's singular function L, with parameter p € (0,1)
is equal to the restriction of function of probability of
tending to 400 w.r.t. the random dynamics on R s.t.
we take hq(x) = 2x with prob. p and
we take hy(x) = 2x — 1 with prob. 1 — p.

(3) The Takagi function (on [0, 1]) is equal to the function

v L 2, w e [0,1).
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We want to consider complex analogues of the above story.
We consider the following setting.

o C:=CUoo= 52 (Riemann sphere).
o Let s € N.

o Let f;: C— @,i =1,...,s+ 1, be rational maps with
deg(fi) = 2.

e Probability parameter space of dimension s:

W .= {ﬁ (p17p27' . '7p8) S (071)3 ‘ sz < 1} )
i=1
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e For each p' € W we consider the random dynamical
system on C such that at every step we choose f; with
probability p;, i.e., a Markov process whose state space is
C and whose transition probability is given by

s+1
plz,A) =) pila(fi(z),2€C,AcC
1=1

e Let C(C) :={p:C — C| ¢ is conti.} endowed with
sup. norm.
e The transition operator M; : C(C) — C(C) is given by
s+1 . A
My(p)(2) := Y _pi- 9(fi(2)), ¢ €C(C),z€C.
i=1

5

o Let
G::{filo..-ofin ‘nEN,il,...,inE{l,...,s—i—l}}.

This is a semigroup whose semigroup operation is the
functional composition.
This G is called the rational semigroup generated by

{fl)"')fs—i—l}-

o Let
F(G):={zeC|3nbd U of zst.
{h:U — Clpeq is equiconti. on U}.
This is called the Fatou set of G.

e Let J(G) :=C\ F(G). This is called the Julia set of G.

6
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Assumptions for G

e (G is hyperbolic, i.e.,
Unec{all critical values of h: C — C} c F(Q).

o (f71 UGN N(f;1(J(G))) =0 forall i # 5.

e - at least two minimal sets of (.

Here, we say that a non-empty compact set K C Cis a
minimal set of G if

K = Upea{h(z)} for each z € K.

Theorem 1.1 (S, [S11-1, S13-1]). Fixp € W and let L be
a minimal set of G. For each z € C, let Ty, 5(2) € [0,1] be
the probability of tending to L starting with the initial
value z € C. Then we have the following.

A

(1) 3a > 0s.t. Tr, 3 € C¥(C) := the space of a-Holder
conti. fens on C endowed with a-Hélder norm.
I\/loreover, Mﬁ(TL,ﬁ) = TLJ;.

(2) 3V :nbd of p'in W, Ja > 0 s.t.

A

q— Tr.qg € C*(C) is real-analytic in V.
(3) The set of varying points of Ty,  is equal to J(G), which
is a thin fractal set (e.g. dimy(J(G)) < 2).

Ty, 5 is a complex analogue of the devil's staircase or

Lebesgue's singular functions.
8
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Complex analogues of the Takagi function

Fix p € W and let L be a minimal set of G.

Definition 1.2.
For i = (n1,...,ns) € (NU{0})® and z € C we set

8|ﬁ|T a a _ s s z
Coe) o b=t 00(2)

—

O"ta10™ag -+ - 0™sag ‘a:p'

(note: C(1,0,...,0) Is @ complex analogue of the Takagi
function.)
Also, define the C-vector space
T :=span{Cy | 1 € (NU {0})*} c C¥(C).
9

e For C € T and z € C consider
pointwise Holder exponent of C at z:

3 _ : [Cly) — C(2)]

Hol(C, z) == sup{B € R | ;gsyl;pz iy 2)7

e By the separation condition in the setting, we have
Vze J(G), i(z) € {1,...,5+ 1} sit. fiy(2) € J(G).
We define f: J(G) — J(G) by f(z) = fi(z)(2).

e Define potentials
¢ J(G) = R,((2) := —log ][ f],,(2)]| and
v J(G) = R,Y(z) == logpi(z).-

Theorem 1.3 ([JS14, JS15]). Let C € T \ {0}, z € J(G).
Then koo fH(2)

< 00}
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Corollary 1.4. Let C € T \ {0}. Then C is continuous on
C and varies precisely on J(G) (which is a thin fractal set).
In particular, T = ©zenugoy)s CCr is a direct sum.

Theorem 1.5. (Multifractal formalism) Let C € T \ {0}.
Then the level sets

{z € J(G) | HOI(C, z) = a}, a € R,

satisfy the multifractal formalism.

That is, the Hausdorff dimension function

a— dimy({z € J(G) | HOI(C, z) = a})is a real analytic
strictly concave and positive function on a bounded open
interval (a_, oy ), except very rare cases.

11

Example 1.6. Let g1(2) = 22 — 1,92(2) = % and
fi=g10g1, fa:=g20g2. Let = (1/2,1/2). Then {oo} is
a minimal set of G = {f;, 0---o fi | n € N,Vi; € {1,2}}.

e The function Ts, 5 : C — [0, 1] of prob. of tending to oo
is a complex analogue of the devil' s staircase
(or Lebesgue's singular functions) and it is called a
devil’s coliseum.

o Also, let Cyy(z) = 6T°°’(‘5;_“)(Z) la=1/2.

Then the function C(;) : C — R is a complex analogue
of the Takagi function.

e Both T, 5 and C(y) are Holder continuous on C and
vary precisely on J(G), which is a thin fractal set (e.g.

dimy J(G) < 2). Multifr;i(étal formalism works.
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