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1 Introduction
(1) The devil’s staircase is equal to the restriction of function

of probability of tending to +∞ w.r.t. the random

dynamics on R s.t. we take h1(x) = 3x with prob. 1/2

and we take h2(x) = 3x− 2 with prob. 1/2.
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We want to consider complex analogues of the above story.

We consider the following setting.

• Ĉ := C ∪∞ ∼= S2 (Riemann sphere).

• Let s ∈ N.

• Let fi : Ĉ → Ĉ, i = 1, . . . , s+ 1, be rational maps with

deg(fi) ≥ 2.

• Probability parameter space of dimension s:

W :=

{
p⃗ = (p1, p2, . . . , ps) ∈ (0, 1)s |

s∑
i=1

pi < 1

}
.

4

(2) Lebesgue’s singular function Lp with parameter p ∈ (0, 1)

is equal to the restriction of function of probability of

tending to +∞ w.r.t. the random dynamics on R s.t.

we take h1(x) = 2x with prob. p and

we take h2(x) = 2x− 1 with prob. 1− p.

(3) The Takagi function (on [0, 1]) is equal to the function

x �→ 1
2 · ∂Lp(x)

∂p |p=1/2, x ∈ [0, 1].
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• Let

G := {fi1 ◦ · · · ◦ fin | n ∈ N, i1, . . . , in ∈ {1, . . . , s+ 1}}.

This is a semigroup whose semigroup operation is the

functional composition.

This G is called the rational semigroup generated by

{f1, . . . , fs+1}.

• Let

F (G) := {z ∈ Ĉ | ∃ nbd U of z s.t.

{h : U → Ĉ}h∈G is equiconti. on U}.
This is called the Fatou set of G.

• Let J(G) := Ĉ \ F (G). This is called the Julia set of G.

6

• For each p⃗ ∈ W we consider the random dynamical

system on Ĉ such that at every step we choose fi with

probability pi, i.e., a Markov process whose state space is

Ĉ and whose transition probability is given by

p(x,A) :=
s+1∑
i=1

pi1A(fi(z)), z ∈ Ĉ, A ⊂ Ĉ.

• Let C(Ĉ) := {φ : Ĉ → C | φ is conti.} endowed with

sup. norm.

• The transition operator Mp⃗ : C(Ĉ) → C(Ĉ) is given by

Mp⃗(φ)(z) :=
s+1∑
i=1

pi · φ(fi(z)), φ ∈ C(Ĉ), z ∈ Ĉ.

5
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Theorem 1.1 (S, [S11-1, S13-1]). Fix p⃗ ∈ W and let L be

a minimal set of G. For each z ∈ Ĉ, let TL,p⃗(z) ∈ [0, 1] be

the probability of tending to L starting with the initial

value z ∈ Ĉ. Then we have the following.

(1) ∃α > 0 s.t. TL,p⃗ ∈ Cα(Ĉ) := the space of α-Hölder

conti. fcns on Ĉ endowed with α-Hölder norm.

Moreover, Mp⃗(TL,p⃗) = TL,p⃗.

(2) ∃V :nbd of p⃗ in W, ∃α > 0 s.t.

q⃗ �→ TL,q⃗ ∈ Cα(Ĉ) is real-analytic in V .

(3) The set of varying points of TL,p⃗ is equal to J(G), which

is a thin fractal set (e.g. dimH(J(G)) < 2).

TL,p⃗ is a complex analogue of the devil’s staircase or

Lebesgue’s singular functions.
8

Assumptions for G:

• G is hyperbolic, i.e.,

∪h∈G{all critical values of h : Ĉ → Ĉ} ⊂ F (G).

• (f−1
i (J(G))) ∩ (f−1

j (J(G))) = ∅ for all i ̸= j.

• ∃ at least two minimal sets of G.

Here, we say that a non-empty compact set K ⊂ Ĉ is a

minimal set of G if

K = ∪h∈G{h(z)} for each z ∈ K.

7
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• For C ∈ T and z ∈ Ĉ consider
pointwise Hölder exponent of C at z:

Höl(C, z) := sup{β ∈ R | lim sup
y→z,y ̸=z

|C(y)− C(z)|
d(y, z)β

< ∞}.

• By the separation condition in the setting, we have

∀z ∈ J(G), ∃!i(z) ∈ {1, . . . , s+ 1} s.t. fi(z)(z) ∈ J(G).

We define f : J(G) → J(G) by f(z) = fi(z)(z).

• Define potentials

ζ : J(G) → R, ζ(z) := − log ∥f ′
i(z)(z)∥ and

ψ : J(G) → R, ψ(z) := log pi(z).

Theorem 1.3 ([JS14, JS15]). Let C ∈ T \ {0}, z ∈ J(G).

Then
Höl(C, z) = lim inf

n→∞

∑n−1
k=0 ψ ◦ fk(z)∑n−1
k=0 ζ ◦ fk(z)

.
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Complex analogues of the Takagi function

Fix p⃗ ∈ W and let L be a minimal set of G.

Definition 1.2.

For n⃗ = (n1, . . . , ns) ∈ (N ∪ {0})s and z ∈ Ĉ we set

Cn⃗(z) :=
∂|n⃗|TL,(a1,...,as,1−

∑s
i=1 ai)(z)

∂n1a1∂n2a2 · · · ∂nsas
|a⃗=p⃗.

(note: C(1,0,...,0) is a complex analogue of the Takagi

function.)

Also, define the C-vector space

T := span{Cn⃗ | n⃗ ∈ (N ∪ {0})s} ⊂ Cα(Ĉ).

9
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Example 1.6. Let g1(z) = z2 − 1, g2(z) =
z2

4 and

f1 = g1 ◦ g1, f2 := g2 ◦ g2. Let p⃗ = (1/2, 1/2). Then {∞} is

a minimal set of G = {fi1 ◦ · · · ◦ fin | n ∈ N, ∀ij ∈ {1, 2}}.
• The function T∞,p⃗ : Ĉ → [0, 1] of prob. of tending to ∞

is a complex analogue of the devil’ s staircase

(or Lebesgue’s singular functions) and it is called a

devil’s coliseum.

• Also, let C(1)(z) =
∂T∞,(a,1−a)(z)

∂a | a = 1/2.

Then the function C(1) : Ĉ → R is a complex analogue

of the Takagi function.

• Both T∞,p⃗ and C(1) are Hölder continuous on Ĉ and

vary precisely on J(G), which is a thin fractal set (e.g.

dimH J(G) < 2). Multifractal formalism works.
12

Corollary 1.4. Let C ∈ T \ {0}. Then C is continuous on

Ĉ and varies precisely on J(G) (which is a thin fractal set).

In particular, T = ⊕n⃗∈(N∪{0})sCCn⃗ is a direct sum.

Theorem 1.5. (Multifractal formalism) Let C ∈ T \ {0}.
Then the level sets

{z ∈ J(G) | Höl(C, z) = α}, α ∈ R,

satisfy the multifractal formalism.

That is, the Hausdorff dimension function

α �→ dimH({z ∈ J(G) | Höl(C, z) = α})is a real analytic

strictly concave and positive function on a bounded open

interval (α−, α+), except very rare cases.

11
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[BBR99] R. Brück, M. Büger and S. Reitz, Random iterations of

polynomials of the form z2 + cn: Connectedness of Julia sets,

Ergodic Theory Dynam. Systems, 19, (1999), No.5, 1221–1231.

[FS91] J. E. Fornaess and N. Sibony, Random iterations of rational

functions, Ergodic Theory Dynam. Systems, 11(1991), 687–708.

[GQL03] Z. Gong, W. Qiu and Y. Li, Connectedness of Julia sets for

13

56



1998.

[S00] H. Sumi, Skew product maps related to finitely generated

rational semigroups, Nonlinearity, 13, (2000), 995–1019.

[S01] H. Sumi, Dynamics of sub-hyperbolic and semi-hyperbolic

rational semigroups and skew products, Ergodic Theory Dynam.

Systems, (2001), 21, 563–603.

[S05] H. Sumi, Dimensions of Julia sets of expanding rational

semigroups, Kodai Mathematical Journal, Vol. 28, No. 2, 2005,

pp390–422. (See also http://arxiv.org/abs/math.DS/0405522.)

[S06] H. Sumi, Semi-hyperbolic fibered rational maps and rational

semigroups, Ergodic Theory Dynam. Systems, (2006), 26,

893–922.

[S09] H. Sumi, Interaction cohomology of forward or backward

self-similar systems, Adv. Math., 222 (2009), no. 3, 729–781.

[S10-1] H. Sumi, Dynamics of postcritically bounded polynomial

semigroups III: classification of semi-hyperbolic semigroups and

16

[MT83] K. Matsumoto and I. Tsuda, Noise-induced order, J. Statist.

Phys. 31 (1983) 87-106.

[SeSh91] T. Sekiguchi and Y. Shiota, A generalization of

Hata-Yamaguti’s results on the Takagi function, Japan J. Appl.

Math. 8, pp203-219, 1991.

[St12] R. Stankewitz, Density of repelling fixed points in the Julia set

of a rational or entire semigroup, II, Discrete and Continuous

Dynamical Systems Ser. A, 32 (2012), 2583 - 2589.

[SS11] R. Stankewitz and H. Sumi, Dynamical properties and

structure of Julia sets of postcritically bounded polynomial

semigroups, Trans. Amer. Math. Soc., 363 (2011), no. 10,

5293–5319.

[S97] H. Sumi, On dynamics of hyperbolic rational semigroups, J.

Math. Kyoto Univ., Vol. 37, No. 4, 1997, 717-733.

[S98] H. Sumi, On Hausdorff dimension of Julia sets of hyperbolic

rational semigroups, Kodai Math. J., Vol. 21, No. 1, pp. 10-28,

15

57



Math. Soc. (2) 88 (2013) 294–318.

[S14] H. Sumi, Random complex dynamics and devil’s coliseums,

preprint 2014, http://arxiv.org/abs/1104.3640.
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