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Abstract—A β encoder is an Analog-to-Digital (A/D) converter
whose dynamics is governed by (β, α) map. The most important
feature of the β encoder is that it is robust to fluctuation of
the threshold value for quantization as well as the fluctuation
of the value of β. Because of this property, the β encoder can
be implemented with low-precision elements and thus realized
by an extremely small circuit. Hirata et.al proposed a random
number generator using a β encoder followed by a kind of shift
register circuit. They showed that random numbers generated by
such a circuit can pass the National Institute of Standards and
Technology (NIST) Statistical Test Suite. We recently proposed
another method for converting the output sequences from the β
encoder to binary sequences that can be regarded as independent
and identically distributed (i.i.d.) random variables with equal
probability. In the proposed method, we try to find a binary
expansion of an input value x that is recovered from a β encoder’s
output sequence. We verified that binary sequences generated
from a β encoder followed by the proposed method can pass the
NIST Statistical Test Suite. It is shown that the proposed method
is robust to the fluctuation of the value of β.

I. INTRODUCTION

The importance of random number generation becomes
significant because of the development of information and
communication technologies and demand for secure commu-
nications. Pseudo-random numbers are generated by deter-
ministic algorithms with seeds and thus completely the same
numbers are produced if the same seed is used. On the other
hand, there are demands, especially in a security purpose,
for physical random number generator that measures some
physical phenomenon. For example, a secure key distribution
using bit sequences generated by the use of a semiconductor
laser [4] and a random number generator based on a chaotic
map [5] have been proposed. Many randomness tests have been
proposed.

A random number generation method that uses a β encoder
as a source of randomness has been proposed [14], [15]. The β
encoder is an Analog-to-Digital (A/D) converter that is robust
to fluctuation of threshold value of a quantizer [1]. Such a β
encoder does not need high-precision circuit elements and is
implemented by a complementary metal-oxide-semiconductor
(CMOS) circuit that achieves very small area consumption as
well as low power consumption [9]. It can be used at from −20
degree to 80 degree Celsius. We can observe chaos attractors
in β converters [3]. However, outputs from a β encoder have
strong correlations between successive bits. In [14] a random
number generation by calculating the exclusive disjunction
(exclusive or: EXOR) of several delayed bits of β encoder’s
outputs was proposed. When we use β encoders for generating

random numbers, we generate one million bits, while only the
first L bits of β expansion coefficients bi ∈ {0, 1} are used
for expressing approximated input value as x̂ =

∑L
i=1 biβ

−i,
where L is typically less than 20.

A remarkable feature of random number generation using
β encoder is that randomness is guaranteed by chaotic behavior
of the attractors observed in the β encoder [3]. Hence, basi-
cally, thermal noise is not needed for β encoders to generate
random numbers and it can work in an extremely low tem-
perature environment. This is a significant difference between
the proposed method and those random number generation
methods whose randomness is guaranteed by thermal noise.
On the other hand, β encoder is robust to fluctuation of
threshold. This property makes the β encoder work also at
high temperature environment.

After the computer simulation in [14], we performed
experiments of random number generation using hardware β
encoders implemented by CMOS technologies [15]. We found
that more than 10 EXOR operations are needed to make the
generated sequences pass the National Institute of Standards
and Technology (NIST) statical test suite [11].

In this paper, we propose an algorithm in which the
output of β encoder is converted to binary sequences that
can be regarded as independent and identically distributed
(i.i.d.) sequences with equal probability. The algorithm is based
on an idea that using the first n outputs b1, b2, . . . , bn of
a β encoder, we calculate the interval [ln, un] in which the
input value x must exist and then obtain the binary expansion
x̂ =

∑m
j=1 b̃j2

−j where m and b̃j ∈ {0, 1} are selected to
satisfy x̂ ≤ ln and un ≤ x̂+2−m. Though ln and un are real-
valued, we approximate them by fixed-point numbers so that
the proposed method can be realized by CMOS circuit. We
will show that a fixed-point arithmetic with 15 bit precision
is sufficient to make the generated binary sequences pass the
NIST test suite.

Output sequences from the β encoder are passed through
the proposed conversion algorithm. Then, the NIST test suite
is applied to these sequences. The value of β used in the β
encoder is not precisely known beforehand. We performed
numerical experiments of β-ary to binary conversion with
estimated β = 1.6, 1.7, 1.8 and 1.9. It is confirmed that the
proposed algorithm is robust to the estimation error for β.

II. PULSE CODE MODULATION AND β ENCODER

In this section, we briefly review Pulse Code Modulation
(PCM) and β encoder.
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Fig. 1. PCM-based A/D converter

A. Pulse Code Modulation (PCM)

The binary expansion of a real value zi ∈ [0, 1) is given
by

zi =

∞∑
n=1

b̃n2
−n, (1)

where b̃n ∈ {0, 1} is given by

bn = Q 1
2
(xn−1), n = 1, 2, . . . . (2)

where Q 1
2
(x) is a quantizer with a threshold 1

2 , defined by

Q 1
2
(x) =

{
0, (0 ≤ x < 1

2 )
1, ( 12 ≤ x < 1)

, (3)

and xn = B(xn−1) (n = 1, 2, . . .), where B(x) is Bernoulli
shift map defined by

B(x) =

{
2x, (0 ≤ x < 1

2 )
2x− 1, ( 12 ≤ x < 1).

(4)

Here, the initial value x0 = zi is an analog input voltage (See
Fig. 1).

A drawback of PCM is that the quantizer Q(x) may make
a wrong decision if xn is very close to the threshold value
because a slight fluctuation occurs in the threshold voltage.
For example, assume the threshold is changed from 1

2 to some
value ν so that B(x) is replaced by

B′(x) =

{
2x, 0 ≤ x < ν
2x− 1, ν ≤ x < 1

(5)

(See Fig. 2). Then, for 0 < ε < ν− 1
2 , xn diverges as B′( 12 +

ε) = 1 + 2ε, B′(1 + 2ε) = 1 + 4ε, B′(1 + 4ε) = 1 + 8ε
· · · . For avoiding such an un-stability of conversion, 1.5 bit
encoders [6] and digital calibration techniques [7] have been
proposed.

On the other hand, Σ∆ modulators have a good property
that they are robust to fluctuations of threshold values in their
quantizers. However, they have a drawback that oversampling
rate is very high, such as one hundred or one thousand. This
implies that Σ∆ modulation can only be used in narrow-
bandwidth applications. Moreover, the quantization error of
Σ∆ modulation decreases inverse proportionally to the number
of bits in contrast to the exponential accuracy of the PCM. β
encoders have the two good properties, i.e., robustness against
fluctuations of threshold voltages and an exponential accu-
racy [1]. In the next subsection, a scale-adjusted β encoder [15]
is explained.

Fig. 2. A map of PCM-based A/D converter with fluctuation of threshold
value : B′(x)

Fig. 3. Scale-adjusted β-encoder

B. β encoder

Define a scale-adjusted β map for 0 ≤ x ≤ s with a scale
parameter s as (See Fig.3),

Sβ,ν,s(x) =

{
βx, (0 < x < νβ−1)
β(x− s) + s, (νβ−1 < x < s)

. (6)

The ordinary β encoder corresponds to the case s = 1
β−1 . Note

that the domain of the map is [0, s] irrespective of β, while
that of the ordinary β map depends on β. The output of the
scale-adjusted β encoder for the input value zi = x0 is

bn = Qνβ−1(xn−1), (7)

where
xn = Sβ,ν,s(xn−1), n = 1, 2, . . . , (8)

and

Qν(x) =

{
0, (x < ν)
1, (x ≥ ν)

(9)

is a quantization function with threshold ν. Let

ln = s(β − 1)
n∑

i=1

biβ
i (10)

un = ln + sβn. (11)

Then, given the first n outputs, b1, b2, . . . , bn, we know that
x0 must exist in [ln, un].

We hereafter assume s = 1 for simplicity. For almost all
initial value x0, xn generated by Eq. (8) does not fall into
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Fig. 4. A map of β-expansion

some periodic points but stays in some range. Attractors are
observed in dynamics of β encoders. They are referred to as β
expansion attractors [3]. We consider such attractors are used
as sources of randomness for generating sequences of random
numbers.

III. RANDOM NUMBER GENERATION USING β ENCODERS

Bernoulli shift map is an ideal model for fair coin toss-
ing, i.e., a model for generating independent and identically
distributed (i.i.d.) random variables. Thus, a binary expansion
of an arbitrarily chosen input voltage x0 is considered as a
sequence of ideal binary i.i.d. random variables. However, the
dynamics of PCM modulation is unstable because of the issue
mentioned in Section II-A. In this paper, we show a method
that approximately converts a sequence of β expansion coeffi-
cients for an input voltage x0 to a sequence of binary expansion
coefficients for the same initial value [16]. Such a conversion
is referred to as β-ary to binary (β-ary/binary) conversion.
Since β converters can be implemented in very small CMOS
circuits, random number generators using a β encoder should
also be implemented in CMOS circuits. Therefore, we consider
a digital calculation with a finite precision to perform the
proposed β-ary/binary conversion.

A. βD sequences

It is easily verified that the consecutive outputs from a
β encoder have a negative correlation, i.e., 1

L

∑L
i=1 bibi+1

tends to take a negative value. Fig. 5 shows an autocorrelation
function of an output sequences from a β encoder with β = 1.8
and ν = β

2(β−1) = 1.125, where a {0, 1}-valued sequence
is converted to a {−1,+1}-valued sequence, i.e., the graph
shows R(n) = 1

L

∑L
i=1(2bi − 1)(2bi+n − 1). Fig. 5 shows

that the output sequence from the β encoder has a negative
autocorrelation of delay n = 1, which implies that some
additional process is needed to generate sequences whose
distribution is close to that of i.i.d. random variables.

Hirata et.al have proposed [14] the βD sequences that are
generated by taking EXOR of several outputs. Specifically, the
βD sequence is defined as

bD(k) =

Nxor⊕
i=1

b(k − di), k ≥ dNxor (12)

where d1 < d2 < . . . , dNxor , Nxor is the number of bits of
which EXOR is taken.
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Fig. 5. Autocorrelation of β-encoder’s output (L = 10000, 0 ≤ n < 100)

B. β-ary/binary conversion

We recently proposed a method for converting a binary
sequence generated from β encoder to another binary sequence
that is approximately regarded as i.i.d. random variables [16].

Let {bi}ni=0 be a β expansion, determind by Eq.(7), of some
initial value x0 = zi. In the proposed method, we calculate the
interval [ln, un] in which the input value zi exists. Then we
obtain the binary expansion

ẑi =
m∑
j=1

b̃j2
−j (13)

where m and b̃j ∈ {0, 1} are selected to satisfy x̂ ≤ ln and
un ≤ x̂+ 2−m.

If the perfect knowledge of β is available, then we find
an interval [l, u] that includes zi in Method 1, explained
later (See Fig.6). However, the proposed algorithm should
be implemented in digital circuit. Thus, u and l should be
expressed by integers.

In order to make the explanation easy, we suppose u
and l are real-valued for a while. An integer implementation
is explained later. The goal of the proposed method is to
make a generated binary sequence that can pass the NIST
statistical test suite. A binary sequence generated by the
proposed method, denoted by cj , is different from the true
binary expansion b̃i because of two reasons. One is that u and
l are expressed by integer numbers. The other is that there
is a difference between the true β and the β used for the β-
ary/binary conversion.

[ Method 1 ]

1) Initialize: i = j = 1, [l, u] = [0, 1], γ = 1
β

2) Read bi.
If bi = 0, then u is updated to l + (u− l)× γ.
If bi = 1, then l is updated to u− (u− l)× γ.

3) If u < 1
2 , then output cj = 0 and update j = j + 1,

l = 2l, and u = 2u.
If l ≥ 1

2 then output cj = 1 and update j = j + 1,
l = 2l − 1, and u = 2u− 1.
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TABLE I. VOLTAGE PARAMETERS

VDDA VDDD VDD IO Vref+ Vref− Vref CM Ain+ Ain−
A 1.20 1.20 1.20 0.85 0.35 0.60 0.80 0.40
B 1.20 1.20 1.20 0.85 0.35 0.60 0.60 0.60
C 1.40 1.20 1.20 0.95 0.45 0.70 0.70 0.70

Fig. 6. How to update an interval [l, u].

4) If bi is EOF(End Of File), then quit. Otherwise,
update i = i+ 1 and go back to Step 2.

After we obtain the first n outputs from β encoder, the
width of interval [ln, un] is exactly β−n. This fact implies that
the number of outputs from the converter is approximately
m = n log2 β < n. Hence, the proposed converter does not
always generate one output bit per one input bit.

In Method 1, the interval [l, u] may become very small
after some updates. This situation happens if the input value x
subtracted by

∑i
i′=1 bi′2

−i′ exists in [l, u]. Hence this situation
implies that the next output sequence is 0 · · · 01 or 10 · · · 0.
When we express l and u by some integers, this situation
makes approximation error very large. In Method 2 below,
we void such a situation by doubling the size of |u − l|
without making decision cj ∈ {0, 1}. This makes |u−l| always
greater than 1

4 . Method 2 is based on arithmetic codes [10],
but the way to expand the interval is slightly different since
subintervals for expressing 0 and 1 are overlapping each
other. The algorithm of Method 2 is also similar to a 1.5 bit
quantizer [6]. A new parameter k expresses the number of
undecided output bits.

[ Method 2 ]

1) Initialize: i = j = 1, k = 0, [l, u] = [0, 1], and
γ = 1

β
2) The same as Step 2. in Method 1.
3) • If u < 3

4 and l ≥ 1
4 , then update l = 2l −

1
2 , u = 2u− 1

2 , and k = k + 1.
• If u < 1

2 , then output cj = cj+1 = · · · =
cj+k−1 = 1, cj+k = 0. (If k = 0, then output
bj = 0) and update k = 0, l = 2l, u = 2u,
and j = j + k + 1.

• If l ≥ 1
2 , then output bj = bj+1 = · · · =

bj+k−1 = 0, and bj+k = 1 (If k = 0, then
output bj = 1) and update k = 0, l = 2l −
1, u = 2u− 1, and j = j + k + 1.

4) If bi is EOF, then quit. Otherwise, update i = i + 1
and go back to Step 2.

Finally, we give Method 3 which is an integer calculation
version of Method 2. A real number r ∈ [ i

2w , i+1
2w ) is

approximated by i
2w , where w is referred to as a window size.

Real numbers l and u in [0, 1] in Method 2 are replaced by
integers l′ and u′ in {0, 1, . . . , 2w − 1} in Method 3.

[ Method 3 ]

1) Initialize: i = j = 1, k = 0, [l′, u′] = [0, 2w−1], and
γ = ⌊ 2w

β ⌋
2) Read bi.

If bi = 0, then update

u′ = l′ + ⌊ (u
′ − l′) · γ
2w

+
1

2
⌋ (14)

If bi = 1, then update

l′ = u′ − ⌊ (u
′ − l′) · γ
2w

+
1

2
⌋ (15)

3) • If u′ < 3
4 × 2w and l′ ≥ 1

4 × 2w, then update
l′ = 2l′ − 2w−1, u′ = 2u′ − 2w−1, and k =
k + 1.

• If u < 2w

2 , then output bj = bj+1 = · · · =
bj+k−1 = 1, and bj+k = 0 and update k =
0, l′ = 2l′, u′ = 2u′, and j = j + k + 1.

• If l ≥ 2w

2 then output bj = bj+1 = · · · =
bj+k−1 = 0, and bj+k = 1 and update k = 0,
l′ = 2l′−2w, u′ = 2u′−2w, and j = j+k+1.

4) If bi is EOF, then quit. Otherwise, update i = i + 1
and go back to Step 2.

Here, ⌊x⌋ is the largest integer not greater than x. Since the
calculation of Eqs.(14) and (15) are approximation of those of
Method 2, the interval [u, l] is not exact. Note that this algo-
rithm has an internal state that is specified by (u′, l′, k), where
l′ ∈ {0, 1, . . . , 2w−1−1}, u′ ∈ {2w−1, 2w−1+1, . . . , 2w−1},
and k ∈ {0, 1, . . .}.

IV. RESULTS OF EXPERIMENT

Experiments were carried out to show the validity of the
proposed method. San et.al have manufactured CMOS circuits
in which β encoders are embedded [8], [9]. We use the same β
encoder implemented in CMOS circuit as the one used in [15].
The parameter β of the β encoder is designed to 1.83 but its
effective value is slightly fluctuated and not known precisely
beforehand. We generated 125 sequences; the length of each
sequence is 1.05 × 106. Method 3 was applied to the output
sequences from such a β encoder. The window size is w = 20
and β = 1.8 unless otherwise specified.

The NIST test suite [11] was applied to βD sequences [14]
and sequences obtained by β-ary/binary conversions. In a
randomness test for the βD sequence, the delay parameters
in Eq.(12) were d1 = 6, d2 = 6 + 7, . . ., di = di−1 + i + 5
(i ≥ 3) and Nxor = 4, 8, and 16.

There are fifteen tests for the NIST test suite. A result of
each test is expressed by P (Pass) or F (Fail) except for non-
overlapping template matching test for which the number of
templates that passes the test is shown [12].
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β encoders have voltage parameters. Three patterns of
voltage parameters shown in Table I are used, where VDDA,
VDDD, and VDDD IO are drive voltages for analog, digital and
Input/Output (I/O) purposes, Ain+ and Ain− are differential
input voltage which expresses the initial value of an input
voltage for A/D conversion, and Vref+, Vref−, and Vref CM

are reference voltages which are upper limit, lower limit, and
threshold voltage. The last three values are designed to satisfy
Vref CM = 1

2 (Vref− + Vref+).

The difference between Pattern A and Pattern B is that
Ain+ = 0.80 and Ain− = 0.40 for the former and Ain+ =
0.60 and Ain− = 0.60 for the latter. This comparison shows
the effect of input voltage on the randomness of generated
sequences. The difference between Pattern B and Pattern C is
that VDDA = 1.20 for the former and VDDA = 1.40 for the
latter. In general, a CMOS circuit has a range of VDDA that the
circuit can properly work. VDDA for the CMOS-implemented
β encoders is designed to be 1.20, but the circuit is more stable
if VDDA = 1.40.

Tables II and III show results of the NIST test suite for βD

sequences and the sequences obtained by β-ary/binary conver-
sion, respectively. These results show that EXOR operation is
needed for the former sequences to pass the NIST test suite,
but is not needed for the latter sequences. Table IV shows the
effect of window size w on the results of NIST test. It is shown
that w ≥ 15 is required to guarantee the generated sequences
pass the NIST test and that if w = 10 the generated sequences
do not pass most of the tests.

Since the effective value of β is not known beforehand, we
verified the robustness of the proposed method to the mismatch
of the values of β used in the encoder and the β-ary/binary
converter. The value of β is designed to be β = 1.83. Denote
the β used in the β-ary/binary converter by β′. Table.V shows
that the results for β′ = 1.7, 1.8, and 1.9 are almost the same.
However, the result for β′ = 1.6 is very poor. We conclude
that the proposed method can allow a fluctuation of β at most
0.1.

V. CONCLUSION

In this paper, a β-ary/binary conversion method for gener-
ating random numbers using a β encoder, proposed in [16],
has been explained. Experimental results have shown that
sequences obtained by the β-ary/binary conversion can pass
the NIST statistical test suite. The proposed method is im-
plemented by integer calculations. It has been shown that the
necessary window size is 15 and the converter is robust to the
mismatch of β.
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TABLE II. RESULTS OF THE NIST STATISTIAL TEST SUITE FOR βD SEQUENCES

Voltage Pattern

The number of EXORs 1 4 8 16 1 4 8 16 1 4 8 16

Frequency (Monobits) Test F P P P F P P P F P P P

Frequency Test within a Block F F F P F F F P F F P P

Cummulative Sums (Cusum) Test F P P P F P P P F P P P

Runs Test F F F P F F F P F F F P

Test for the Longest Run of Ones in a Block F F P P F F P P F F P P

Binary Matrix Rank Test P P P P P P P P P P P P

Discrete Frourier Transform Test F F F P F F P P F F P P

Non-Overlapping Template Matching Test 0 12 128 157 0 12 135 P 0 19 156 155

Overlapping Template Matching Test F F F P F F F P F F P P

Maurer's "Universal Statistical" Test F F P P F F P P F F P P

Approximate Entropy Test F F F P F F F P F F P P

Random Excursion Test F F P P F F F P F F P P

Random Excursions Variant Test F P P F F P P P F P P P

Serial Test F F P P F F P P F F P P

Linear Complexity Test P P P P P P P P P P P P

β-ary/binary conversion is NOT applied

CBA

TABLE III. RESULTS OF THE NIST STATISTIAL TEST SUITE FOR β-ARY/BINARY CONVERSION

Voltage Pattern

The number of EXORs 1 4 8 16 1 4 8 16 1 4 8 16

Frequency (Monobits) Test P P P P P P P P P P P P

Frequency Test within a Block P P P P P P P P P P P P

Cummulative Sums (Cusum) Test P P P P P P P P P P P P

Runs Test P P P P P P P P P P P P

Test for the Longest Run of Ones in a Block P P P P P P P P P P P P

Binary Matrix Rank Test P P P P P P P P P P P P

Discrete Frourier Transform Test P P P P P P P P P P P F

Non-Overlapping Template Matching Test 157 157 P P 157 P 156 156 P P 157 P

Overlapping Template Matching Test P P P P P P P P P P P P

Maurer's "Universal Statistical" Test P P P P P P P P P P P P

Approximate Entropy Test P P P P P P P P P P P P

Random Excursion Test P P P P P P P P P P P P

Random Excursions Variant Test P P P P P P P P P P P P

Serial Test P P P P P P P P P P P P

Linear Complexity Test P P P P P P P P P P P P

β -ary/binary conversion is applied

A B C

TABLE IV. RESULTS OF THE NIST STATISTIAL TEST SUITE: COMPARISON OF WINDOW SIZE

Voltage Pattern

window size 10 15 20 10 15 20 10 15 20

Frequency (Monobits) Test F P P P P P F P P

Frequency Test within a Block F P P F P P P P P

Cummulative Sums (Cusum) Test F P P P P P F P P

Runs Test F P P F P P F P P

Test for the Longest Run of Ones in a Block P P P P P P P P P

Binary Matrix Rank Test P P P P P P P P P

Discrete Frourier Transform Test P F P P P P P P P

Non-Overlapping Template Matching Test 106 P 157 115 P 157 147 P P

Overlapping Template Matching Test F P P F P P P P P

Maurer's "Universal Statistical" Test P P P P P P P P P

Approximate Entropy Test F P P F P P F P P

Random Excursion Test P F P P P P P P P

Random Excursions Variant Test P P P P P P P P P

Serial Test F P P F P P F P P

Linear Complexity Test P P P P P P P P P

β -ary/binary conversion is applied

A B C
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TABLE V. RESULTS OF THE NIST STATISTIAL TEST SUITE: COMPARISON OF β USED IN THE CONVERTER

Voltage Pattern

β’ 1.6 1.7 1.8 1.9 1.6 1.7 1.8 1.9 1.6 1.7 1.8 1.9

Frequency (Monobits) Test P P P P F P P P P P P P

Frequency Test within a Block P P P P P P P P P P P P

Cummulative Sums (Cusum) Test F P P P P P P P P P P P

Runs Test P P P P P P P P P P P P

Test for the Longest Run of Ones in a Block F P P P P P P P P P P P

Binary Matrix Rank Test P P P P P P P P P P P P

Discrete Frourier Transform Test P P P P P P P P F P P P

Non-Overlapping Template Matching Test 152 P 157 P 147 155 157 P 152 157 P 157

Overlapping Template Matching Test P P P P P P P P P P P P

Maurer's "Universal Statistical" Test P P P P P P P P P P P P

Approximate Entropy Test P P P P P P P P P P P P

Random Excursion Test P P P P P F P P F P P P

Random Excursions Variant Test F P P P P P P P F P P P

Serial Test P P P P P P P P P P P P

Linear Complexity Test P P P P F P P P P P P P

β -ary/binary conversion is applied

A B C
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