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β-Encoders: Symbolic Dynamics and Electronic
implementation for AD/DA converters

Tohru Kohda1

Extended Abstract: Almost all signal processing systems need analog
signals to be discretized. Discretization in time and in amplitude are called
sampling and quantization, respectively. These two operations constitute
analog-to-digital (A/D) conversion. The A/D conversion includes pulse-code
modulation (PCM) [1, 2, 3] and Σ −∆ modulation [4, 5, 6, 7, 8]. PCM has
a precision of O(2−L) for L iterations but has a serious problem when it is
implemented in an electronic circuit, e.g., if PCM has a threshold shift, then
the quantization errors do not decay. In contrast, Σ−∆ modulation achieves
a precision that decays like an inverse polynomial in L but has the practical
advantage for analog circuit implementation.
In 2002, Daubechies et al.[15] introduced a new A/D converter using an

amplifier with a factor β and a flaky quantizer with a threshold ν, known as
a β-encoder, and showed that it has exponential accuracy even if it is iter-
ated at each step in the successive approximation of each sample by using an
imprecision quantizer with a quantization error and offset parameter, Fur-
thermore, in a subsequent paper, Daubechies et al.[16] introduced a ”flaky”
version of an imperfect quantizer derfined as

Qflaky
[ν0,ν1]

(z)
def
=





0, if z < ν0,
1, if z ≥ ν1,
0 or 1, if z ∈ [ν0, ν1], ν0 < ν1

(1)

which is a model of a quantizerQν(z) with a varying threshold ν ∈ [ν0, ν1], ν0 <
ν1, defined as

Qν(x)
def
=

�
0, if x < ν,
1, if x ≥ ν

(2)

They made the remarkable observation that ”greedy”(ν = νG = 1) and
”lazy”(ν = νL = (β − 1)−1) expansions, as well as ”cautious”(νG < ν < νL)
expansions2 in the β-encoder with such a flaky quantizer exhibit exponential
accuracy in the bit rate L, and they gave the decoded values as

�xDDGV
L =

L�

i=1

biγ
i, bi ∈ {0, 1}, γ = β−1. (3)

1Professor Emeritus, Kyushu University, E-mail:torukoda81@wind.ocn.ne.jp
2Intermediate expansions[30, 32] between the greedy and lazy expansions[28, 29] are

called ”cautious” by Daubechies[16].

1
12



Furthermore, Daubechies and Yilmätz[17] proposed a β-encoder that is not
only robust to quantizer imperfections but also robust with to the amplifi-
cation factor β, and gave the β-recovery method that relies upon embedding
the value of β in the encoded bit stream for each sample value separately
without measureing its value. This β-encoder is a signinificant achievement
in Nyquist-rate A/D and D/A conversions in the sense that it may become
a good alternative for PCM [9, 10, 11].
In our recent paper[18], we gave comprehensive reviews for A/D conver-

sions including PCM, Σ − ∆ modulation, and β-encoder (see Fig.1 for its
single-loop feedback form) as well as symbolic dynamics. 3 Furthermore, we
gave the fact that β-encoders using a flaky quantizer with the threshold ν
are characterized by the symbolic dynamics of the multi-valued Rényi-Parry
map, defined as[22, 23]

Tβ(x) = βxmod1 (4)

or Parry’s (β, α)-map, defined as[24]

Tβ,α(x) = βx+ αmod 1 (5)

in the middle interval (see Fig.2). Dynamical systems theory[37, 38] tells us
that a sample x is always confined to a subinterval of a contracted interval,
as shown in Fig.3 and so its decoded sample can be defined as [18, 19, 20],

�xKHA
L =

L�

i=1

biγ
i +

γL

2(β − 1)
, bi ∈ {0, 1}, (6)

because the decoded sample is equal to the midpoint of the subinterval. The
decoded sample �xKHA

L also yields the characteristic equation for recovering
β, which improves the quantization error by more than 3dB over the bound
given by Daubechies et al.[16] and Daubechies and Yilmätz[17].4

3Several tutorial papers and textbooks are available (see e.g.[9, 10, 11] for dig-
ital communication, [12, 13, 14] for the basics of dynamical systems theory, and
[22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34] for β-transformation. See a review
paper[18] and the detailed references cited therein for fundamental of quantization for
digital communications and various AD/DA conversions and β-encoder fundamentals.

4Ward[21] has recently proposed new AD/DA algorithms for generating a binary se-
quence {bWard

i }∞i=1
, bWard

i ∈ {−1, 1} for a real-valued y ∈ (−1, 1) using a flaky version of

an imperfect quantizer and gave its decoded value as �yWard
L =

�L

i=1
bWard
i γi. Ward’s flaky

quantizer is also realized exactly by the multi-valued Rényi-Parry map because it is topo-
logical conjugate to Parry’s map:Tβ,α(x) via the conjugacy y = h(x) = 2x − (β − 1)−1.
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In order to show the self-correction property of the amplification factor β
in β-encoder, Daubechies and Yilmätz[17] presented an equation governed by
the sample data bit sequences as follows. Using the β-expansion sequences
{bi}

L
i=1 for x ∈ [0, 1) and {ci}

L
i=1 for y = 1− x, 1 ≤ i ≤ L yields a root of the

algebraic equation of β, defined by

PDY
L (γ) = 1−

L�

i=1

(bi + ci)γ
i. (7)

On the contray, our β-recovering equation with index pL [18, 19, 20] is

PKHA
L (γ, pL) = 1−

L�

i=1

(bi + ci)γ
i − pL

γL+1

1− γ
, pL ∈ {0, 1, 2}, (8)

which is based on an L-bit truncated expansion with index pL, defined as

�xKHA
L (γ, pL) =

L�

i=1

biγ
i + pL ·

γL

2(β − 1)
(9)

The associated quantization error is bounded by

|x− �xKHA
L (γ, pL)| ≤

�
1 + |pL − 1|

2

�
· (β − 1)−1γL (10)

so that the cases where pL = 0, 1, 2 correspond to the leftmost, intermediate,
and rightmost points of the Lth subinterval, respectively; the case where
pL = 0 is equal to Dabechies et al.’s decoded value.
As thoroughly discussed in our recent paper[35], the probabilistic behav-

ior of this flaky quantizer is explained by the deterministic dynamics of a
multi-valued Rényi-Parry map on the middle interval[18, 19, 20] (see Fig.2).
This map is an eventually locally onto map of [ν−1, ν), which is topologically
conjugate to Parry’s (β, α)-map Tβ,α(x) with α = (β− 1)(ν − 1). β-encoders
have a closed subinterval [ν − 1, ν), which includes an attractor[36, 37, 38].
This β-expansion attractor[35] seems to be irregularly oscillatory but per-
forms the β-expansion of each sample stably and precisely (see Fig.3). This
viewpoint allows us to obtain a decoded sample(eq.6 or eq.9), which is equal

The homeomorphism �yWard
L = h(�xKHA

L ), however, does not necessarily imply equivalence
in terms of the quatization errors; in fact, Ward’s algorirthm doubles the maximum quan-
tization error and quadruples its mean square error.
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to the midpoint of the subinteval, and its associated characteristic equation
for recovering β (eq.8), and shows that ν should be set to around the midpoint
of its associated greedy and lazy values. This leads us to design β-encoders
realizing ordinary (see Fig.4) and negative scaled β-maps[20] (see Fig.5) and
observe β-expansion attractors embedded in these β-encoders[35].
Finally, we note that parts of this article draw on our previous work in

[18, 19, 20, 35], which were supported by the Aihara Innovation Mathematical
Modelling Project (Aihara Project), the Japan Society for the Promotion
of Science (JSPS) through the ”Fundamental Program for World-Leading
Innovation R&D on Science and Technology(FIRST Program)”, initiated by
the Counicil for Science and technology Policy (CSTP). The FIRST Program
also supported the β-encoder group to implement these β-encoders in an
LSI (Large-Scale Integrated) circuit and evaluate quantization errors and
their performance in practically realized LSI circuits based on a simple β-
recovery method suited to operation of AD/DA conversions in LSI cicuits,
.[42, 43, 44, 45].

＋＋

Delay

bi +1

ui +1

ui - bi

Z1=x
Zi =0, i >1

xn

-encoder
PCM

A

B

Fig.1. A discrete-time, single-loop feedback system using an amplifier with
an ampflication factor β and a 1-bit quantizer Qβ−1ν with a threshold ν that
realizes PCM when β = 2 and ν = 1; a β-encoder when 1 < β < 2 and ν ∈
[1, (β−1)−1], proposed by Daubechies et al.[15]; and Σ−∆ modulation when
β = 1 and ν = 0. The input is z1 = x ∈ [0, 1), zi = 0, i > 1 for the PCM and
β-encoder, and the input is xn, n ≥ 1 for the Σ−∆ modulation. The initial
conditions are given by u0 = b0 = 0. The output sequence {bi}

L
i=1, bi ∈ {0, 1}

gives the L-bit β-expansion for x, and the averaging sequence {bi}
M
i=1, bi ∈

{0, 1} over i is the output in response to the input sequence {xn}n≥1 for the
Σ − ∆ modulation. The β-encoder provides the greedy, lazy, and cautious
schemes for ν = νG = 1, ν = νL = (β − 1)−1, and νG < ν < νL, respectively.
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Fig.2. The expansion map Cβ,ν(x)
def
= βx−Qβ−1ν(x) realizing the Daubechies

et al.’s flaky quantizer[16] Qflaky
(γνG,γνL)

(z), 1 = νG < ν < νL = (β − 1)−1 5 (b)
renormalizing the interval [ν − 1, ν] into the unit interval [0, 1], which shows
that such an eventually locally onto map is equivalent to the Parry (β, α)-
transformation:Tβ,α(x) = βx + αmod1. The transformation Tβ,α(x) has a
finite (signed) invariant measure ν(E) =

�
E h(x)dx, where h(x) is given by

h(x) =
�

x<Tn
β,α

(1)

β−n −
�

x<Tn
β,α

(0)

β−n.[24, 39]

5Cβ,ν(x) has its eventually locally onto map with the strongly invariant subinterval
C−1

β,ν([0, γν])∩C−1

β,ν([γν, (β− 1)−1]) = [ν− 1, ν]. (Let τ : E → E be a continuous map. Let
F ⊂ E. If τ(F ) ⊂ F , then F is called invariant. If τ(F ) = F , then F is called strongly

invariant. [14]).
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Fig.3. (a) The multi-valued Rényi-Parry map Cβ,ν(x)
def
= βx − Qβ−1ν(x) on

the middle interval [β−1, β−1(β − 1)−1] with its discontinuity x = β−1ν,
which is eventually locally onto [ν − 1, ν), where 1 ≤ ν ≤ (β − 1)−1. An
eventually locally onto map of [ν − 1, ν) with ν = 1 + α/(β − 1) is topo-
logically conjugate to Parry’s (β, α)-transformation Tβ,α(x) via the conju-
gacy ϕ−1(x) = x + α/(β − 1), i.e., ϕ(Cβ,ν(ϕ

−1(x)) = Tβ,α(x) when α =
(β−1)(ν−1). The map Cβ,ν(x) realizes Daubechies et al.’s flaky quantizer[16]

Qflaky
[β−1,β−1(β−1)−1](z). (b) The contraction process by the first 4 binary β-

expansions of the input x using Cβ,ν(x) while the binary digits are ob-
tained. The associated subintervals with a contraction ratio β−1 are given
as [0, (β−1)−1), [0, β−1(β−1)−1), [0, β−2(β−1)−1), [β−3, β−2(β−1)−1). The
input x is always confined to the ith subinterval.

0

-s( -1)

s(1- )

s

s

x-s( -1)

-s( -1)

x

s

S , ,s(x)

x

Fig.4. The scale-adjusted ordinary β-map Sβ,ν,s(x)
def
= βx − s(β − 1)Qγν(x) =�

βx when x ∈ [0, γν),
βx− s(β − 1), when x ∈ γν, s),

with its eventually locally onto map
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[ν − s(β − 1), ν) → [ν − s(β − 1), ν), ν ∈ [s(β − 1), s). Such an eventually
locally onto map with ν = s(α+ β − 1) is topologically conjugate to Tβ,α(x)
via the conjugacy ϕ−1

S (x) = s(β− 1)x+ sα, i.e., ϕS(Sβ,ν,s(x)) = Tβ,α(ϕS(x)).

0 s -s - s

s

s - s - x

s - x

s

s -

s(1- )

R , ,s(x)

x

Fig.5. The scale-adjusted negative β-map

Rβ,ν,s(x)
def
= −βx + s[1 + (β − 1)Qγν(x)] =

�
s− βx when x ∈ [0, γν),
βs− βx, when x ∈ γν, s),

with its eventually locally onto map [s − ν, βs− ν) → [s − ν, βs− ν) when
(β2 − β + 1)/(β + 1)s ≤ ν < (2β − 1)/(β + 1)s. 6 Such an eventually
locally onto map with ν = s[(β − 1)α+ β]/(β +1) is topologically conjugate

to Parry’s transformation with negative slope[20, 40] T−β,α(x)
def
= −βx +

αmod 1, β ≥ 1, 0 ≤ α < 1 via the conjugacy ϕ−1
R (x) = s(β − 1)x + s − ν,

i.e., ϕR(Rβ,ν,s(x)) = T−β,α(ϕR(x)). The transformation T−β,α(x) has a finite
(signed) invariant measure ν(E) =

�
E h(x)dx, where h(x) is given by h(x) =�

x<Tn
−β,α

(1)

(−β)−n −
�

x<Tn
−β,α

(0)

(−β)−n.[41, 18]
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