九州大学学術情報リポジトリ
Kyushu University Institutional Repository

β－Encoder：Symbolic Dynamics and Electronic Implementation for AD／DA Converters

Kohda，Tohru
Kyushu University ：Professor Emeritus
https：／／hdl．handle．net／2324／1520988

出版情報：MI lecture note series．62，pp．12－33，2015－03－10．九州大学マス・フォア・インダストリ研究所
バージョン：
権利関係：

β-Encoders: Symbolic Dynamics and Electronic implementation for AD/DA converters Tohru Kohda ${ }^{1}$

Extended Abstract: Almost all signal processing systems need analog signals to be discretized. Discretization in time and in amplitude are called sampling and quantization, respectively. These two operations constitute analog-to-digital (A / D) conversion. The A / D conversion includes pulse-code modulation (PCM) $[1,2,3]$ and $\Sigma-\Delta$ modulation $[4,5,6,7,8]$. PCM has a precision of $O\left(2^{-L}\right)$ for L iterations but has a serious problem when it is implemented in an electronic circuit, e.g., if PCM has a threshold shift, then the quantization errors do not decay. In contrast, $\Sigma-\Delta$ modulation achieves a precision that decays like an inverse polynomial in L but has the practical advantage for analog circuit implementation.

In 2002, Daubechies et al.[15] introduced a new A/D converter using an amplifier with a factor β and a flaky quantizer with a threshold ν, known as a β-encoder, and showed that it has exponential accuracy even if it is iterated at each step in the successive approximation of each sample by using an imprecision quantizer with a quantization error and offset parameter, Furthermore, in a subsequent paper, Daubechies et al.[16] introduced a "flaky" version of an imperfect quantizer derfined as

$$
Q_{\left[\nu_{0}, \nu_{1}\right]}^{\text {flaky }}(z) \stackrel{\text { def }}{=}\left\{\begin{array}{llr}
0, & \text { if } & z<\nu_{0} \tag{1}\\
1, & \text { if } & z \geq \nu_{1} \\
0 \text { or 1, } & \text { if } z \in\left[\nu_{0}, \nu_{1}\right], \nu_{0}<\nu_{1}
\end{array}\right.
$$

which is a model of a quantizer $Q_{\nu}(z)$ with a varying threshold $\nu \in\left[\nu_{0}, \nu_{1}\right], \nu_{0}<$ ν_{1}, defined as

$$
Q_{\nu}(x) \stackrel{\text { def }}{=} \begin{cases}0, & \text { if } \quad x<\nu \tag{2}\\ 1, & \text { if } \quad x \geq \nu\end{cases}
$$

They made the remarkable observation that "greedy" $\left(\nu=\nu_{\mathrm{G}}=1\right)$ and "lazy" $\left(\nu=\nu_{\mathrm{L}}=(\beta-1)^{-1}\right)$ expansions, as well as "cautious" $\left(\nu_{\mathrm{G}}<\nu<\nu_{\mathrm{L}}\right)$ expansions ${ }^{2}$ in the β-encoder with such a flaky quantizer exhibit exponential accuracy in the bit rate L, and they gave the decoded values as

$$
\begin{equation*}
\widehat{x}_{\mathrm{L}}^{\mathrm{DDGV}}=\sum_{i=1}^{L} b_{i} \gamma^{i}, b_{i} \in\{0,1\}, \gamma=\beta^{-1} \tag{3}
\end{equation*}
$$

[^0]Furthermore, Daubechies and Yilmätz[17] proposed a β-encoder that is not only robust to quantizer imperfections but also robust with to the amplification factor β, and gave the β-recovery method that relies upon embedding the value of β in the encoded bit stream for each sample value separately without measureing its value. This β-encoder is a signinificant achievement in Nyquist-rate A / D and D / A conversions in the sense that it may become a good alternative for $\mathrm{PCM}[9,10,11]$.

In our recent paper[18], we gave comprehensive reviews for A / D conversions including PCM, $\Sigma-\Delta$ modulation, and β-encoder (see Fig. 1 for its single-loop feedback form) as well as symbolic dynamics. ${ }^{3}$ Furthermore, we gave the fact that β-encoders using a flaky quantizer with the threshold ν are characterized by the symbolic dynamics of the multi-valued Rényi-Parry map, defined as [22, 23]

$$
\begin{equation*}
T_{\beta}(x)=\beta x \bmod 1 \tag{4}
\end{equation*}
$$

or Parry's (β, α)-map, defined as[24]

$$
\begin{equation*}
T_{\beta, \alpha}(x)=\beta x+\alpha \bmod 1 \tag{5}
\end{equation*}
$$

in the middle interval (see Fig.2). Dynamical systems theory[37, 38] tells us that a sample x is always confined to a subinterval of a contracted interval, as shown in Fig. 3 and so its decoded sample can be defined as [18, 19, 20],

$$
\begin{equation*}
\widehat{x}_{L}^{\mathrm{KHA}}=\sum_{i=1}^{L} b_{i} \gamma^{i}+\frac{\gamma^{L}}{2(\beta-1)}, b_{i} \in\{0,1\} \tag{6}
\end{equation*}
$$

because the decoded sample is equal to the midpoint of the subinterval. The decoded sample $\widehat{x}_{L}^{\mathrm{KHA}}$ also yields the characteristic equation for recovering β, which improves the quantization error by more than 3 dB over the bound given by Daubechies et al.[16] and Daubechies and Yilmätz[17]. ${ }^{4}$

[^1]In order to show the self-correction property of the amplification factor β in β-encoder, Daubechies and Yilmätz[17] presented an equation governed by the sample data bit sequences as follows. Using the β-expansion sequences $\left\{b_{i}\right\}_{i=1}^{L}$ for $x \in[0,1)$ and $\left\{c_{i}\right\}_{i=1}^{L}$ for $y=1-x, 1 \leq i \leq L$ yields a root of the algebraic equation of β, defined by

$$
\begin{equation*}
P_{L}^{\mathrm{DY}}(\gamma)=1-\sum_{i=1}^{L}\left(b_{i}+c_{i}\right) \gamma^{i} \tag{7}
\end{equation*}
$$

On the contray, our β-recovering equation with index $p_{L}[18,19,20]$ is

$$
\begin{equation*}
P_{L}^{\mathrm{KHA}}\left(\gamma, p_{L}\right)=1-\sum_{i=1}^{L}\left(b_{i}+c_{i}\right) \gamma^{i}-p_{L} \frac{\gamma^{L+1}}{1-\gamma}, p_{L} \in\{0,1,2\} \tag{8}
\end{equation*}
$$

which is based on an L-bit truncated expansion with index p_{L}, defined as

$$
\begin{equation*}
\widehat{x}_{L}^{\mathrm{KHA}}\left(\gamma, p_{L}\right)=\sum_{i=1}^{L} b_{i} \gamma^{i}+p_{L} \cdot \frac{\gamma^{L}}{2(\beta-1)} \tag{9}
\end{equation*}
$$

The associated quantization error is bounded by

$$
\begin{equation*}
\left|x-\widehat{x}_{L}^{\mathrm{KHA}}\left(\gamma, p_{L}\right)\right| \leq\left(\frac{1+\left|p_{L}-1\right|}{2}\right) \cdot(\beta-1)^{-1} \gamma^{L} \tag{10}
\end{equation*}
$$

so that the cases where $p_{L}=0,1,2$ correspond to the leftmost, intermediate, and rightmost points of the L th subinterval, respectively; the case where $p_{L}=0$ is equal to Dabechies et al.'s decoded value.

As thoroughly discussed in our recent paper[35], the probabilistic behavior of this flaky quantizer is explained by the deterministic dynamics of a multi-valued Rényi-Parry map on the middle interval[18, 19, 20] (see Fig.2). This map is an eventually locally onto map of $[\nu-1, \nu)$, which is topologically conjugate to Parry's (β, α)-map $T_{\beta, \alpha}(x)$ with $\alpha=(\beta-1)(\nu-1)$. β-encoders have a closed subinterval $[\nu-1, \nu)$, which includes an attractor $[36,37,38]$. This β-expansion attractor[35] seems to be irregularly oscillatory but performs the β-expansion of each sample stably and precisely (see Fig.3). This viewpoint allows us to obtain a decoded sample(eq. 6 or eq. 9), which is equal
$\left.\overline{\text { The homeomorphism } \widehat{y}_{L}^{\text {Ward }}=h\left(\widehat{x}_{L}^{\mathrm{K}} \mathrm{HA}\right.}\right)$, however, does not necessarily imply equivalence in terms of the quatization errors; in fact, Ward's algorirthm doubles the maximum quantization error and quadruples its mean square error.
to the midpoint of the subinteval, and its associated characteristic equation for recovering β (eq.8), and shows that ν should be set to around the midpoint of its associated greedy and lazy values. This leads us to design β-encoders realizing ordinary (see Fig.4) and negative scaled β-maps $[20]$ (see Fig.5) and observe β-expansion attractors embedded in these β-encoders[35].

Finally, we note that parts of this article draw on our previous work in [18, 19, 20, 35], which were supported by the Aihara Innovation Mathematical Modelling Project (Aihara Project), the Japan Society for the Promotion of Science (JSPS) through the "Fundamental Program for World-Leading Innovation R\&D on Science and Technology(FIRST Program)", initiated by the Counicil for Science and technology Policy (CSTP). The FIRST Program also supported the β-encoder group to implement these β-encoders in an LSI (Large-Scale Integrated) circuit and evaluate quantization errors and their performance in practically realized LSI circuits based on a simple β recovery method suited to operation of $\mathrm{AD} / \mathrm{DA}$ conversions in LSI cicuits, .[42, 43, 44, 45].

Fig.1. A discrete-time, single-loop feedback system using an amplifier with an ampflication factor β and a 1-bit quantizer $Q_{\beta^{-1} \nu}$ with a threshold ν that realizes PCM when $\beta=2$ and $\nu=1$; a β-encoder when $1<\beta<2$ and $\nu \in$ $\left[1,(\beta-1)^{-1}\right]$, proposed by Daubechies et al.[15]; and $\Sigma-\Delta$ modulation when $\beta=1$ and $\nu=0$. The input is $z_{1}=x \in[0,1), z_{i}=0, i>1$ for the PCM and β-encoder, and the input is $x_{n}, n \geq 1$ for the $\Sigma-\Delta$ modulation. The initial conditions are given by $u_{0}=b_{0}=0$. The output sequence $\left\{b_{i}\right\}_{i=1}^{L}, b_{i} \in\{0,1\}$ gives the L-bit β-expansion for x, and the averaging sequence $\left\{b_{i}\right\}_{i=1}^{M}, b_{i} \in$ $\{0,1\}$ over i is the output in response to the input sequence $\left\{x_{n}\right\}_{n \geq 1}$ for the $\Sigma-\Delta$ modulation. The β-encoder provides the greedy, lazy, and cautious schemes for $\nu=\nu_{\mathrm{G}}=1, \nu=\nu_{\mathrm{L}}=(\beta-1)^{-1}$, and $\nu_{\mathrm{G}}<\nu<\nu_{\mathrm{L}}$, respectively.

Fig.2. The expansion map $C_{\beta, \nu}(x) \stackrel{\text { def }}{=} \beta x-Q_{\beta^{-1} \nu}(x)$ realizing the Daubechies et al.'s flaky quantizer[16] $Q_{\left(\gamma \nu_{\mathrm{G}}, \nu_{\nu_{\mathrm{L}}}\right)}^{\text {faky }}(z), 1=\nu_{\mathrm{G}}<\nu<\nu_{\mathrm{L}}=(\beta-1)^{-15}$ renormalizing the interval $[\nu-1, \nu]$ into the unit interval $[0,1]$, which shows that such an eventually locally onto map is equivalent to the Parry (β, α) transformation: $T_{\beta, \alpha}(x)=\beta x+\alpha \bmod 1$. The transformation $T_{\beta, \alpha}(x)$ has a finite (signed) invariant measure $\nu(E)=\int_{\mathrm{E}} h(x) d x$, where $h(x)$ is given by $h(x)=\sum_{x<T_{\beta, \alpha}^{n}(1)} \beta^{-n}-\sum_{x<T_{\beta, \alpha}^{n}(0)} \beta^{-n} \cdot[24,39]$

[^2]

Fig.3. (a) The multi-valued Rényi-Parry map $C_{\beta, \nu}(x) \stackrel{\text { def }}{=} \beta x-Q_{\beta^{-1} \nu}(x)$ on the middle interval $\left[\beta^{-1}, \beta^{-1}(\beta-1)^{-1}\right]$ with its discontinuity $x=\beta^{-1} \nu$, which is eventually locally onto $[\nu-1, \nu)$, where $1 \leq \nu \leq(\beta-1)^{-1}$. An eventually locally onto map of $[\nu-1, \nu)$ with $\nu=1+\alpha /(\beta-1)$ is topologically conjugate to Parry's (β, α)-transformation $T_{\beta, \alpha}(x)$ via the conjugacy $\varphi^{-1}(x)=x+\alpha /(\beta-1)$, i.e., $\varphi\left(C_{\beta, \nu}\left(\varphi^{-1}(x)\right)=T_{\beta, \alpha}(x)\right.$ when $\alpha=$ $(\beta-1)(\nu-1)$. The map $C_{\beta, \nu}(x)$ realizes Daubechies et al.'s flaky quantizer [16] $Q_{\left[\beta^{-1}, \beta^{-1}(\beta-1)^{-1}\right]}^{\text {faky }}(z)$. (b) The contraction process by the first 4 binary β expansions of the input x using $C_{\beta, \nu}(x)$ while the binary digits are obtained. The associated subintervals with a contraction ratio β^{-1} are given as $\left[0,(\beta-1)^{-1}\right),\left[0, \beta^{-1}(\beta-1)^{-1}\right),\left[0, \beta^{-2}(\beta-1)^{-1}\right),\left[\beta^{-3}, \beta^{-2}(\beta-1)^{-1}\right)$. The input x is always confined to the i th subinterval.

Fig.4. The scale-adjusted ordinary β-map $S_{\beta, \nu, s}(x) \stackrel{\text { def }}{=} \beta x-s(\beta-1) Q_{\gamma \nu}(x)=$ $\left\{\begin{array}{ll}\beta x & \text { when } x \in[0, \gamma \nu), \\ \beta x-s(\beta-1), & \text { when } \quad x \in \gamma \nu, s),\end{array}\right.$ with its eventually locally onto map
$[\nu-s(\beta-1), \nu) \rightarrow[\nu-s(\beta-1), \nu), \nu \in[s(\beta-1), s)$. Such an eventually locally onto map with $\nu=s(\alpha+\beta-1)$ is topologically conjugate to $T_{\beta, \alpha}(x)$ via the conjugacy $\varphi_{\mathrm{S}}^{-1}(x)=s(\beta-1) x+s \alpha$, i.e., $\varphi_{S}\left(S_{\beta, \nu, s}(x)\right)=T_{\beta, \alpha}\left(\varphi_{\mathrm{S}}(x)\right)$.

Fig.5. The scale-adjusted negative β-map
$R_{\beta, \nu, s}(x) \stackrel{\text { def }}{=}-\beta x+s\left[1+(\beta-1) Q_{\gamma \nu}(x)\right]=\left\{\begin{array}{lll}s-\beta x & \text { when } & x \in[0, \gamma \nu), \\ \beta s-\beta x, & \text { when } & x \in \gamma \nu, s),\end{array}\right.$
with its eventually locally onto map $[s-\nu, \beta s-\nu) \rightarrow[s-\nu, \beta s-\nu)$ when $\left(\beta^{2}-\beta+1\right) /(\beta+1) s \leq \nu<(2 \beta-1) /(\beta+1) s .^{6} \quad$ Such an eventually locally onto map with $\nu=s[(\beta-1) \alpha+\beta] /(\beta+1)$ is topologically conjugate to Parry's transformation with negative slope $[20,40] T_{-\beta, \alpha}(x) \stackrel{\text { def }}{=}-\beta x+$ $\alpha \bmod 1, \beta \geq 1,0 \leq \alpha<1$ via the conjugacy $\varphi_{\mathrm{R}}^{-1}(x)=s(\beta-1) x+s-\nu$, i.e., $\varphi_{\mathrm{R}}\left(R_{\beta, \nu, s}(x)\right)=T_{-\beta, \alpha}\left(\varphi_{\mathrm{R}}(x)\right)$. The transformation $T_{-\beta, \alpha}(x)$ has a finite (signed) invariant measure $\nu(E)=\int_{\mathrm{E}} h(x) d x$, where $h(x)$ is given by $h(x)=$ $\sum_{x<T_{-\beta, \alpha}^{n}(1)}(-\beta)^{-n}-\sum_{x<T_{-\beta, \alpha}^{n}(0)}(-\beta)^{-n} \cdot[41,18]$

References

[1] Clavier,A.G.,Panter,P.F., and Grieg,D.D," Distortion in a pulse count modulation systems," trans. AIEE,66,989-1005,1947.
[2] B.M.Oliver,J.Pierce, and C.E.Shannon, "The Philosopy of PCM,"Proc. of IRE, 36,1324-1331,1948
[3] Bennett,W.R., "Spectra of quantized signals," Bell. Syst.tech.J.,27, 446472,1948.

[^3][4] H.Inose andY.Yasuda, "A Unity bit coding method by negative feedback, " Proc. IEEE,51,1524-1535,(1963).
[5] Gray,R.M. " Oversampled sigma-delta modulation," IEEE Trans. Commun. 35, 481-489,1987
[6] Lewis,S.H. and Gray,P.R., " A pipelined 5-Msample/s 9-bit analog-todigital converter, " IEEE. Solid-State Circuits, 22, 954-961.
[7] Lin,Y.-M, Kim,B and Gray P.R, "A $13-\mathrm{b} 2.5 \mathrm{MHz}$ self-calibrated pipelined A/D converter in $3 \mu \mathrm{~m}$ CMOS, " IEEE J.Solid State Circuits, 26, 628-636,1991.
[8] Karanicolas,A.-N, Lee,H.S, and Barania,K.L, " A 15-b 1M samples/s Digitally Self-calibrated pipelined ADC" IEEE J.Solid State Circuits, 28, 1207-1215,1993.
[9] Jayant, N.S. and Noll, P. "Digital Communications of WaveformsPrinciples and Applications to Speech and Video," Prentice-Hall, englewood Cliffs, NJ, 1984.
[10] Gray R.M., "Quantization of noise spectra," IEEE Trans. Inf.Th., 36, 1220-1243,1990.
[11] Gray R.M and Neuhoff, D.L., "Quantization," IEEE Trans. Inf.Th., 44, 2325-2383,1998.
[12] Lasota, A and Mackey, M.C., "Chaos, Fractals and Noise," SpringerVerlag,Ny, 1994.
[13] Boyarsky, A. and Góra,P. "Laws of Chaos: Invariant Measures and Dynamical Systems in One Dimension," Birkhäuser, Boston, 1997.
[14] Brucks, H.S. and Bruin, H.," Topics from one-dimensional dynamics," London Mathematical Soiciety Student Texts, vol.62(Cambridge University Pres), 2004.
[15] Daubechies,I.DeVore,R.Gunturuk,C and Vaishampayan,V," Beta Expansions:A new approach to digitally corrected A/D conversion," Proc.IEEE Int.Symp.Circ.Sys.2002, 2, 784-787.
[16] Daubechies, I and Yilmätz,O, " Robust and practical analog-to-digital conversion with exponential precision, " IEEE Trans.Inf.Th. 52, 35333545,2006.
[17] Daubechies,I. DeVore,R,Gunturk, C. and Vashampayan,V, " A/D conversion with imperfect quantizers," IEEE Trans. Inf.Th. 56, 5097-5110, 2006.
[18] T. Kohda ,Y. Horio, Y.Takahashi, and K. Aihara, "Beta Encoders: Symbolic Dynamics and Electronic Implementation ", Int.J. of Bifurcation and Chaos, 22, no.9,, 2012,1230031(55 pages)
[19] S.Hironaka,T.Kohda, and K,Aihara, " Markov chain of binary sequences generated by A/D conversion using β-encoder, " Proc.of IEEE Int. Workshop on Nonlinear Dynamics of Electronic Systems, 261-264, 2007.
[20] S.Hironaka,T.Kohda, and K,Aihara, " Negative β-encoder, "e-print arXiv:0808.2548v2[cs.IT](2008).
[21] Ward,R. " On robustness properties of beta encoders and golden ratio encoders, " IEEE Trans.Inf.Th., 54,4324-4344,2008.
[22] Rényi,A, "Representations for real numbers and their ergodic properties, " Acta. Math. Hungar.,8, 477-493,1957.
[23] Parry,W."On β-expansions of real numbers," Acta Math.Acad.Sci.Hung. 11, 401-416.1960
[24] Parry, W, " Representations for real numbers" Acta Math.Acad. Sci. Hug., 15, 95-105,1964
[25] Takahashi, Y. " Isomorphisms of β-automorphisms to Markov automorphisms ", Osaka J.Math.,10, 175-184,1973.
[26] Ito,S. and Y.Takahashi, " Markov subshifts and realization of β expansions " J.Math. Soc, Japan, 26, 33-55,1974.
[27] Takahashi,Y. " Shift with orbit basis and realization of one-dimensional map," Osaka J.Math. 20,599-629,1983(Correction:21, 637,1985).
[28] Erdös,P.Joó,I,and Komoronik,V. " Characterization of the uniqueness of $1=\sum_{i=1}^{\infty} q^{-n_{i}}$ and related problems, " Bull. Soc. Math. France, 118, 377-390,1990
[29] Erdös,P.Horvath, and Joó,I, " On the uniqueness of the expansions $1=$ $\sum_{i=1}^{\infty} q^{-n_{i}} "$ Acta. Math.Hung., 58, 333-342,1991
[30] Sidorov,N." Arithmetic dynamics," Topics in Dynamics and ergodic Theory, LMS Lecture Notes, 310, 145-189,2002.
[31] Dajani,K and Kraaikamp,C, "Ergodic theory of numbers", The Carus Math,Monogr., vol.29, The Mathematical Association of America, 2002.
[32] Dajani,K and Kraaikamp,C, "From greedy to lazy expansions and their driving dynamics," Expo.Math.,20,316-327,2002.
[33] Dajani,K and Kraaikamp,C, "Random β-expansions," Erg.Th.Dyn. Syst., 23,461-479, 2003.
[34] Sidorov,N." Almost every number has a continum β-expansions," Amer. Math.Monthly, 110, 838-842, 2003.
[35] T. Kohda ,Y.Horio, and Kazuyuki Aihara, " β - Expansion Attractors observed in A/D Converters", AIP Chaos An Interdisciplinary Journal of nonlinear Science, 22,no.4,2012, 047512(18 pages)
[36] Ruelle,D.,"Small random perturabations of dynamical systems and the definition of attractors," Commun. Math.Phys.82, 137-151,1981.
[37] Guckenheimer J. and Holmes, P. "Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, "(Springer-Verlag,New York,1983).
[38] Wiggins,S.," Introduction to Applied Nonlinear Dynamical Systems and Chaos" (Springer-Verlag,New York,1990).
[39] Gelfond,A.O,"On a general property of number systems," Izy.Akad. Nauk. SSSR., 23, 809-814,1959
[40] Ito,S. and Sadahiro, T. "Beta-expansions with negative bases." Integers, 9, 239-259, 2009.
[41] Tsujii, M. and Tanaka, H.," Note on absolutely continuous invariant measure of β-transformations", personal communication, 2011.
[42] H. San, T. Kato, T. Maruyama, K. Aihara and M. Hotta, " Non-Binary Pipeline Analog-to-digital Converter Based on β-Expansion, " IEICE Trans. on Fundamentals of Electronics, Communications and Computer Sciences, E96-A, no. 2, pp. 415-421, Feb. 2013.
[43] R. Suzuki, T. Maruyama, H. San, K. Aihara and M. Hotta, " Robust Cyclic-ADC Architecture Based on β-Expansion, " IEICE Trans. on Electronics, E96-C, no. 4, pp. 553-559, April 2013.
[44] T. Makino, Y. Iwata, Y. Jitsumatsu, M. Hotta, H. San, and K. Aihara. " Rigorous analysis of quantization error of an A / D converter based on β-map ". In Proc. of 2013 IEEE Int. Symp. on Circuits and Systems (ISCAS2013), 369-372, May 2013.
[45] T.Makino, Y.Iwata, K.Shinohara, Y.Jitsumatsu, M.Hotta, H.San, and K.Aihara, "Rigorous Estimates of Quantization error for an A/D Converter Based on a Beta-Map," NOLTA(Nonlinear Theory and Its Applications), IEICE, 6-1,99-111,2015.

Workshop on β-transformation and related topics At IMI, Kyushu University 3/10,2k15

 β-encoders: Symbolic dynamics and

 β-encoders: Symbolic dynamics and Electronic Implementation Electronic Implementation for AD/DA converters

 for AD/DA converters}

Tohru Kohda (Emeritus of Kyushu Univ.), Collaborated with Y.Horio (Tokyo Denki Univ.)

 Y.Takahashi (Emeritus, the Univ. of Tokyo), K.Aihara (the Univ. of Tokyo)
Contents

1) β-encoder for $A / D, D / A$ conversion:
$\boldsymbol{\beta}$-transformations and $(\boldsymbol{\beta}, \boldsymbol{\alpha})$-transformations realize flaky version of quantiser of AD-converter
2) Renyi-Parry map with threshold has its eventually locally onto-map
i) β-encoder using Daubechies et.al.'s quantizer
ii) Scaled β-encoder, iii) Scaled negative β-encoder
3) β-expansion and negative β-expansion attractors observed in A/D converters

Analog-to-Digital (A/D), Digital-to-Analog (D/A) conversion

- A/D D/A conversion are foundation for a variety of applications,
e.g., audio, image and communication etc.
- Accuracy and stability

quantization

D/A conversion
quantize error robust to fluctuation ${ }^{3}$

Conventional methods of A/D, D/A conversion

- PCM has high precision, but doesn't possess stability.
- $\Sigma \Delta$ modulation has stability,
 but its precision is lower than PCM .

high precision, stability

Pulse Code Modulation (PCM)

Bernoulli shift (binary expansion):

$$
\begin{aligned}
B(x) & = \begin{cases}2 x, & x<1 / 2 \\
2 x-1, & x \geq 1 / 2\end{cases} \\
b_{i} & = \begin{cases}0, & B^{i-1}(x)<1 / 2 \\
1, & B^{i-1}(x) \geq 1 / 2\end{cases} \\
x & =\sum_{i=1}^{\infty} b_{i} 2^{-i}
\end{aligned}
$$

Divergence of a value x in PCM

When there is a threshold shift rho>0, A/D converter does not work well because quantisation errors don't decay

$$
0 \leq x-\sum_{i=1}^{\infty} b_{i} 2^{-i}<\frac{\rho}{2}
$$

Background

Hardware implementation

Inose and Yasuda '64:
$\Sigma \Delta$ modulation

- Gray '87:

Oversampled $\Sigma \Delta$ modulation

- Karanicolas '93:

A 15-b 1-Msamples/s Digitally self-Calibrated Pipelined ADC=pipelined PCM with self-correction

Ergodic theory
Renyi '57:f-expansion

- Parry '60,'64: β-expansion, (β, α) expansion

Takahashi '73, Ito \& Takahashi '74, and Takahashi ' 83
Markov automorphism,
Markov shift, orbit basis
Erdoes and Joo '90:
greedy and lazy expansions
Dajani and Kraikaamp '02, and Sidorov'02:
intermediate expansion $=(\beta, \alpha)$ expansion

Hardware implementation

- Unsolved problems from mathematical standpoint

Ergodic theory

Daubechies et.al.,'06 I : analyse
stability of β-encoder: robustness to fluctuations to β of AMP and threshold v of quantiser $\mathbf{Q v}\left({ }^{-}\right)$, exponential accuracy in bit rate L

- Daubechies et.al., '06 II: DA conversion using estimated β without knowing exact β Milestone!

β-transform (Renyi '57,Parry'60)

Multi-valued Renyi-Parry's map realizing

flaky version of an imperfect quantizer

$\gamma=\beta^{-1}$
(a)

Daubechies et.al. 's quantiser(2k6):

$$
Q^{f}{ }_{\left[\nu_{0}, \nu_{1}\right]}(z)=\left\{\begin{array}{lc}
0, & \text { if } z \leq \nu_{0} \\
1, & \text { if } z \geq \nu_{1} \\
0 \text { or } 1 & \text { if } z \in\left(\nu_{0}, \nu_{1}\right)
\end{array}\right.
$$

$$
\text { Parry's }(\beta, \alpha) \text {-map }
$$

$$
T_{\beta, \alpha}(x)=\beta x+\alpha \bmod 1
$$

$$
\beta>1,0 \leq \alpha<1
$$

(b) $\alpha=(\beta-1)(\nu-1)$
multi-valued Renyi-Parry Map and its eventually locally onto-map

Cautious map $C_{\beta, \nu}(x)$

$C_{\beta, \nu}(x)=\beta x-Q_{\beta^{-1}}(x)$
$= \begin{cases}\beta x, & x<\beta^{-1} \nu \\ \beta x-1, & x \geq \beta^{-1} \nu\end{cases}$
$1(: \mathrm{gr}) \leq \nu \leq(\beta-1)^{-1}(: \mathrm{la})$
$Q_{\beta^{-1} \nu}(x)= \begin{cases}0, & x<\beta^{-1} \nu \\ 1, & x \geq \beta^{-1} \nu\end{cases}$
$b_{i}=\left\{\begin{array}{l}0, C_{\beta, \nu}^{i-1}(x)<\beta^{-1} \nu \\ 1, C_{\beta, \nu}^{i-1}(x) \geq \beta^{-1} \nu\end{array}\right.$

$$
\begin{gathered}
x=\sum_{i=1}^{L} b_{i} \gamma^{i}+\gamma^{L} C_{\beta, \nu}^{L}(x) \\
\gamma=\beta^{-1}
\end{gathered}
$$

Negative beta-expansion (2k9)

Its eventually locally onto map is topologically conjugate to Parry $(-\beta, \alpha)$-map: $T_{-\beta, \alpha}(x)=-\beta x+\alpha \bmod 1, \beta>1,0 \leq \alpha<1$

Main result I : β-decoding using interval analysis (2k7)

Theorem 1: The decoded value \tilde{x} given by the interval analysis is defined by

Dust
(but essential)
which gives

$$
0 \leq|x-\tilde{x}| \leq \frac{(\beta-1)^{-1} \gamma^{L}}{2}<\gamma^{L} \leq \underline{\nu \gamma^{L}} \text { when } \beta>3 / 2 \text {. }
$$

3dB improved when $\beta>3 / 2$
cf.) Daubechies et.al.,: $\quad 0 \leq\left|x-\tilde{x}_{\text {Dau }}\right| \leq \nu \gamma^{l}$. IMI, Kyushu Univ. workshoop

$$
\widetilde{x}_{D a u}=\sum_{i=1}^{L} b_{i} \gamma^{i}
$$

Quantization Error

$$
\left(\beta=1.5, s=(\beta-1)^{-1}, L=16\right)
$$

Main result 2: Characteristic equation for β reconstruction ($2 k 7$)

$$
\begin{aligned}
& \text { sequence }\left\{b_{j}\right\}_{j=1}^{L} \text { for } x \text { and sequence }\left\{c_{j}\right\}_{j=1}^{L} \text { for } y=1-x \\
& \tilde{x}=\sum_{j=1}^{L} b_{j} \gamma^{j}+\frac{\gamma^{L+1}}{\frac{\gamma^{2(1-\gamma)}}{\text { Dust term }}}, \tilde{y}=\sum_{j=1}^{L} c_{j} \gamma^{j}+\frac{\gamma^{L+1}}{\frac{2(1-\gamma)}{}},
\end{aligned}
$$

Daubechies et.al.'s idea

Since $\tilde{x}+\tilde{y}=1$, the estimated value of γ is a root of $P(\gamma)$, referred to as characteristic equation of $\gamma_{\text {, }}$ defined by

$$
P(\gamma)=1-\sum_{i=1}^{L}\left(b_{i}+c_{i}\right) \gamma^{i}-\frac{\gamma^{L+1}}{\underline{1-\gamma}}=0 .
$$

Dustterm

$$
\text { cf.) } \quad P_{D a u}(\gamma)=1-\sum_{i=1}^{L}\left(b_{i}+c_{i}\right) \gamma^{i}=0 .
$$

The precision of beta estimation

For $N=32$ and $\beta=1.77777$, the worst precision of the estimation for β when varing x and ν.

β-expansion attractors

Examples of the chaotic attractors obtained from the scale-adjusted β-encoder circuit.
(a) The greedy expansion attractor,
(b) the cautious expansion attractor, and
(c) the lazy expansion attractor.

Negative β-expansion attractors

Examples of the chaotic attractors obtained from the negative β-encoder circuit.
(a) The greedy expansion attractor,
(b) the cautious expansion attractor, and
(c) the lazy expansion attractor.

Implementation of β-encoder in an LSI (Large-Scale Integrated) circuit

- We note that parts of this article draw on our previous work:

1) T. Kohda ,Y. Horio, Y. Takahashi, and K. Aihara,
"Beta Encoders: Symbolic Dynamics and Electronic Implementation ", Int. Journal of Bifurcation and Chaos, 22, no9, 2012,
2) T. Kohda ,Y.Horio, and K. Aihara," β - Expansion Attractors observed in A/D Converters", AIP Chaos,22,no.4,2012,
supported by the Aihara Project, JSPS through FIRST Program.
The FIRST Program also supported the $\boldsymbol{\beta}$ - encoder group to implement β-encoders in an LSI circuit and evaluate quantization errors and their performance in practically realized LSI circuits using a simple β-recovery method suited to operation of AD/DA converters in LSI circuits,
T.Makino, Y.Iwata, K.Shinohara, Y.Jitsumatsu, M.Hotta, H.San, and K.Aihara,
"Rigorous Estimates of Quantization error and Adaptive Decoding Scheme for an A/D Converter Based on a Beta-Map," NOLTA (Nonlinear Theory and Its Applications), IEICE, 6-1,99-111,2015.

[^0]: ${ }^{1}$ Professor Emeritus, Kyushu University, E-mail:torukoda81@wind.ocn.ne.jp
 ${ }^{2}$ Intermediate expansions[30, 32] between the greedy and lazy expansions[28, 29] are called "cautious" by Daubechies[16].

[^1]: ${ }^{3}$ Several tutorial papers and textbooks are available (see e.g.[9, 10, 11] for digital communication, $[12,13,14]$ for the basics of dynamical systems theory, and $[22,23,24,25,26,27,28,29,30,31,32,33,34]$ for β-transformation. See a review paper [18] and the detailed references cited therein for fundamental of quantization for digital communications and various $\mathrm{AD} / \mathrm{DA}$ conversions and β-encoder fundamentals.
 ${ }^{4}$ Ward[21] has recently proposed new $\mathrm{AD} / \mathrm{DA}$ algorithms for generating a binary sequence $\left\{b_{i}^{\text {Ward }}\right\}_{i=1}^{\infty}, b_{i}^{\text {Ward }} \in\{-1,1\}$ for a real-valued $y \in(-1,1)$ using a flaky version of an imperfect quantizer and gave its decoded value as $\widehat{y}_{L}^{\text {Ward }}=\sum_{i=1}^{L} b_{i}^{\text {Ward }} \gamma^{i}$. Ward's flaky quantizer is also realized exactly by the multi-valued Rényi-Parry map because it is topological conjugate to Parry's map: $T_{\beta, \alpha}(x)$ via the conjugacy $y=h(x)=2 x-(\beta-1)^{-1}$.

[^2]: ${ }^{5} C_{\beta, \nu}(x)$ has its eventually locally onto map with the strongly invariant subinterval $C_{\beta, \nu}^{-1}([0, \gamma \nu]) \cap C_{\beta, \nu}^{-1}\left(\left[\gamma \nu,(\beta-1)^{-1}\right]\right)=[\nu-1, \nu]$. (Let $\tau: E \rightarrow E$ be a continuous map. Let $F \subset E$. If $\tau(F) \subset F$, then F is called invariant. If $\tau(F)=F$, then F is called strongly invariant. [14]).

[^3]: ${ }^{6}$ There are three other eventually locally onto maps depending on $\nu .[18,35]$

