
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Effect of Inter-Core Aggregation Scheduler on a
Memory Intensive Benchmark

Yamada, Satoshi
Department of Computer Science and Communication Engineering, Graduate School of Information
Science and Electrical Engineering, Kyushu University : Graduate Student

Kusakabe, Shigeru
Department of Advanced Information Technology, Faculty of Information Science and Electrical
Engineering, Kyushu University

https://doi.org/10.15017/1517959

出版情報：九州大学大学院システム情報科学紀要. 14 (2), pp.47-52, 2009-09-25. 九州大学大学院シス
テム情報科学研究院
バージョン：
権利関係：



九弼大学大学院

システム情報科学紀要

第14巻 第2号 平成21年9月

Research Reports on Information Science and 

Electrical Engineering of Kyushu University 

             Vol.14, No.2, September 2009

Effect of Inter-Core Aggregation Scheduler on a Memory Intensive Benchmark 

              Satoshi YAMADA* and Shigeru KUSAKABE** 

                            (Received June 12, 2009) 

   Abstract: This paper investigates the effect of Inter-Core Aggregation Scheduler  (IAS) with 
   memory program of SysBench. IAS is a kernel-level thread scheduler which executes sibling 

    threads, threads sharing the memory address space, simultaneously on different processing cores 
   (Cores) of a Chip-Multi Processor. IAS is a promising scheduler to reduce the capacity pressure 

   on the shared L2 cache and enhance the performance. Previously, we showed that IAS enhanced 
   the performance in running a Web application benchmark. To clarify the relationship between 
   the characteristic of thread behavior and the effect of IAS, we estimate its effect on memory bench-

   mark, a multi-threaded memory intensive benchmark, by simulating the thread execution of IAS. 
   We show that the effect of IAS approximately follows our estimation and is predictable especially 

   when we cannot expect the positive effect of IAS. We also show that the effect of IAS is related 
   to the size of the data set of memory program and the size of the shared L2 cache. 

   Keywords: Thread scheduling, Multi-threaded application, Parallel execution, Cache misses, 
   Chip Multi-Processing

 1. Introduction 

 This paper investigates the efficiency of Inter-

Core Aggregation Scheduler (IAS) with memory pro-

gram of SysBench9), a memory intensive bench-
mark, with various memory access parameters. IAS 
is a kernel-level thread scheduler which executes sib-
ling threads, threads sharing the memory address 

space, simultaneously on different processing cores 

(Cores) of a Chip-Multi Processor (CMP). IAS is 
a promising scheduler to reduce the capacity pres-
sure on the shared L2 cache and enhance the perfor-
mance by utilizing the locality of reference between 
threads. 

 The memory access latency remains one of the 
major bottlenecks on CMPs as well as in conven-
tional single processors'. In CMP platforms, co-
scheduling of threads running simultaneously on dif-
ferent Cores affects the utilization of caches and its 

performance because CMP has multiple Cores and 
each Core generally shares caches. In major com-
modity platforms, co-scheduling of threads is con-
trolled by a kernel-level thread scheduler of Operat-
ing System. Therefore, it is popular research area to 

propose alternative co-scheduling methods on CMP 
by developing kernel-level thread scheduler""). 

IAS dynamically aggregates sibling threads and 
executes them simultaneously on different Cores 
based on the assumption that sibling threads share 

* Department of Computer Science and Communication 
Engineering, Graduate Student 
** Department of Advanced Information Technology

a certain amount of data set. We expect two effect 
of utilizing the locality of reference between sibling 
threads from IAS. One effect is that IAS increases 
the possibility that co-scheduled threads share their 
data set, thus, decreases the capacity pressure on 

the cache. Another effect is that IAS decreases the 
overhead of context switching by leaving the data on 
the cache, which succeeding threads access. Espe-
cially in x86 architectures, TLB entries are flushed 
in every switch of memory address spaces, therefore 
we can expect re-use of TLB entries by aggregat-

ing sibling threads. IAS may increase the overhead 
caused by the data contention or the data coherence 

problem by promoting threads executed on differ-
ent Cores to access the same working set simultane-
ously. However, according to the previous research 

on the analysis of the performance of CMP, the L2 
cache misses caused by the lack of capacity is the 
most influential5). 

 Previously we implemented IAS based on Com-

pletely Fair Scheduler (CFS) in Linux3). We inves-
tigated the effect of IAS with RUBiS benchmark, 
a Web application benchmark program running 
multi-threaded database server and Web server2). 
IAS reduced the L2 cache misses and page faults 
and enhanced the performance of a Web applica-
tion. In addition, the effect of IAS is influenced by 

the priority bonus which control the strength of the 
aggregation of sibling threads. 

 This paper investigates the effect of IAS with 
memory program, a simple memory intensive bench-
mark, to clarify the relationship between the char-



acteristic of thread behavior and the effect of  IAS. 
For this purpose, we preliminary estimate the effect 
of IAS by simulating the thread execution in CFS 
and IAS, and compare with the real effect. 

 The rest of the paper is organized as follows. Sec-
tion 2. explains IAS. Section 3. explains memory 

program and the estimation of the effect in CFS 
and IAS. Section 4. compares the estimated effect 
and the real effect of IAS. Section 5. introduces sev-
eral related works and clarifies the position of our 

research. Section 6. concludes the paper. 

 2. Inter-Core Aggregation Scheduler 

 We implemented IAS by modifying Completely 
Fair Scheduler (CFS) in Linux 2.6.243). The im-

plementation of IAS is based on Time Aggregation 
Scheduler (TAS) that we have implemented for sin-

gle Core platforms. 
 We explain CFS in Section 2.1, TAS in Section 

2.2, and IAS in Section 2.3. In this paper, we 
only explain the outline of each scheduler with Fig. 

1. Figure 1 represents threads in executed or-
der on dual Core machine. Each circle expresses 
a thread and the patterns inside threads represents 
the memory address spaces. The numbers repre-
sents the Core ID, and threads are executed on ei-
ther Core. Detailed explanation is shown in our 

previous paper3). 

 2.1 Completely Fair Scheduler 
 In scheduling threads, CFS just chooses a thread 

of the highest priority. CFS counts the process time 

of each thread, total CPU time consumed by the 
thread, in nanoseconds and calculates the priority 
as vruntime based on nice value and the process 
time of the thread. When a thread is executed, 
vruntime of the thread is increased according to its 
increased process time. CFS sets higher priority for 

threads with less vruntime to accomplish fair usage 
of CPU between threads which start at the same 
time with the same nice value. The runqueue ex-
ists per Core and an independent scheduler works 
on each Core. CFS does not recognize the memory 
address space of each thread in scheduling. 

 2.2 Overview of Time Aggregation 
     Scheduler 

 TAS aggregates sibling threads and tries to exe-
cute them in sequence on a single Core. The basic 
idea of the implementation of TAS is to dynami-

cally give priority bonus (PB) to the sibling threads 
of the currently executed thread. As we mentioned,

the priority of a thread becomes higher when the 
vruntime of the thread becomes smaller. There-
fore, PB for TAS works to reduce the vruntime of 
the sibling thread. If we set PB higher, we can ex-
pect more aggregations of sibling threads. We can 
interactively change PB with a system call we im-
plement. 

 2.3 Overview of Inter-Core Aggrega-
     tion Scheduler 

 The basic idea of IAS is to let one Core 
(slave) follow the time aggregation of another Core 
(master). We consider a case that master is Core 
0 and slave is Core 1 as we show in Fig. 1. In 
Fig. 1, We run independent TAS per Core first. 
When the scheduler on master finds a chance of 
time aggregation of sibling threads, it sets a pointer, 
ia_mm, to the memory address space of the currently 
executed thread. Otherwise, ia_mm is NULL. Only 
master is able to modify ia_mm and slave only refer 
to iamm. When ia_mm is set to an actual memory 
address space by master, slave looks for the sib-
ling threads sharing the memory address space of 
ia_mm from their own runqueue. If there exists sib-
ling threads, the schedulers consider the threads as 
the candidates for the next threads with the PB for 
IAS. Thus, IAS can execute sibling threads nearly 
simultaneously on different Cores. 

 In this case, we use one ia_mm for dual Core plat-
form. However, we can change the number of ia_mm 
and specify the role of each Core by issuing a sys-
tem call we implement as well as changing the value 
of PB. We consider that tuning IAS by the system 
call above has potential to utilize many-Core proces-
sors having more complex memory hierarchy. The 
investigation of tuning IAS with multiple iamm is 
our future work. 

 3. memory program and the Estimation 
   of the Effect in CFS and IAS 
 This section explains memory program and the 

evaluation method of the effect of IAS. We also esti-
mate the effect of IAS by simulating the execution 
of memory program in CFS and IAS. We explain 
memory program in Section 3.1 and the evaluation 
method in Section 3.2. We show the estimation of 
the effect in each scheduler in Section 3.3. 

 3.1 memory program in SysBench 
 We show the outline of memory program in Fig. 

2. memory program creates a specified number of 
threads and let them repeat accessing a specified



Fig. 1 Outline of CFS, TAS, and  IAS.

amount (block_size) of memory area. Threads of 
a single memory program share the memory address 
space. The access of each thread is expressed as 
arrow in Fig. 2. The memory access is repeated 
until the total access size of every thread exceeds a 
specified size(total_s ize). SysBench provides two 
types of memory access, read, reading a value from 
a specified address, and write, writing a value to 
a specified address, until one thread accesses to a 
specified amount of memory. SysBench also pro-
vides two access modes, seq, the address is incre-
mented sequentially, and rnd, the address is mod-
ified randomly. We can choose if each thread ac-
cesses to the same data set (global) or indepen-
dent data set (local). In case of global mode, the 
size of data set of a memory program is block_size. 
In case of local mode, the size of data set of a 
memory program is the product of block_size and 
the number of threads. 

 3.2 Method of Evaluation 
 To investigate the effect of IAS, we run multi-

ple memory programs simultaneously to let threads 
of different memory address spaces mingled in the 
runqueues and measure the average execution time. 
To make the effect of IAS clear, we modify two parts 
of memory program as follows. 

 1. Let the parent thread to yield CPU after cre-
   ating a thread. 

 2. Let a thread yield CPU after accessing 
   block_size of data. 

 The first modification is to let sibling threads 
dispersed and threads of different memory address 
spaces mingled in the runqueue. By default, the 
parent thread continues to create threads until it 
expires the quantum time and a block of sibling 
threads are queued, therefore, the effect of IAS may 
not be clear. The second modification is to clar-
ify the effect of IAS and block_size. The default 
memory program lets one thread iterate the memory 
access until it expires the quantum time. Therefore, 
a thread accesses the data set from the second iter-

ation is likely to hit the data on the cache loaded 

by the first iteration of the thread. We consider the 

second modification makes the effect of IAS clear to 

utilize the locality of references between threads. 

 We investigate the effect of IAS in both read 

and write and both global and local. In local 

mode, we cannot expect that IAS utilizes the shared 

data set of sibling threads because each thread does 

not share the data set. However, sibling threads 

which yield CPU can be executed before the data set 

loaded on the cache by previous execution is purged 

from the cache by threads of different memory ad-

dress spaces as a result of the aggregation of sibling 

threads. We only measure seq mode and the ef-

fect in rnd mode is future work. We fix total_size 

as 1000GB, the number of threads as 100, and the 

number of memory program as 10. On the other 

hand, we change block_size in from 16KB to 10MB 

in global and from 163B to 100KB in local to in-

vestigate the relation of the effect of IAS and the 

size of the data set'. We set PB as 50 millions 

which is large enough to aggregate more than 99% 

of the sibling threads during the experiments based 

on our preliminary measurements.

Fig. 2 Outline of memory program in SysBench.

 3.3 Estimation of the Effect of IAS 

 We estimate the effect of the simultaneous exe-

cution of multiple memory programs mentioned in 

Section 3.2. To estimate the execution in CFS and



 IAS, we make two assumptions as follows. 
 • Threads of different memory address spaces 

   are always executed simultaneously on different 
   Cores in CFS. 

 • Sibling threads are always executed simultane-

   ously on different Cores in IAS. 
 We consider that the first assumption is accom-

plished by the first modification of memory program 
described in Section 3.2. We consider that the sec-
ond assumption is satisfied by increasing PB. We 
show the comparison of the thread execution in each 
scheduler in Fig. 3. Figure 3 represents the si-

multaneous execution of four memory programs. As 
we show in Fig. 3, CFS executes threads of differ-
ent memory address spaces (Mixed execution). On 
the other hand, IAS simultaneously executes sib-
ling threads except when the switch of the threads 

of different memory address spaces happens. 
  Based on the assumption above, we consider that 

we can estimate the effect of IAS compared to CFS 
by comparing the execution time below: 

 1. Run X memory programs, each of which cre-
   ates one thread, and measure the elapsed time 

   for all threads to access Y bytes 
 2. Create X sibling threads and measure the 

   elapsed time for all threads to access Y bytes 
 The first case simulates thread execution in CFS 

and the second case simulates thread execution in 

IAS. By comparing the execution time of each case, 
we estimate the effect of IAS against CFS on the 
execution time. 

 In case of simulating global mode, the total size 
of the data set is decided by X and block_size in 
case 1. and only by block_size in case 2.To set the 

total block_size as equal to the measurement in 
Section 3.2, we set X as 10. We set Y as 5000GB, 
which is large enough to ignore the difference of 
overhead of creating threads or processes and fo-
cus on the difference of the data set. We change 

block_size from 16KB to 10MB as we do in Sec-
tion 3.2. 

  In case of simulating local mode, the total size 
of the data set is decided by X and block_size 
in both case 1. and 2. as we mentioned in Section 
3.1. We set X as 10 as we do in simulating global 

case. We choose block_size from 163B to 100KB 
to correspond to the total size of data set of the 
measurements in Section 3.2.

Fig. 3 Comparison of executing memory program in each 

       scheduler.

 4. Results of the Estimated Effect and 

   the Real Effect of IAS 

 We execute all the experiments explained in Sec-

tion 3. in the platform shown in Table 1. Intel 

Core 2 Duo is a dual Core processor and each Core 

shares the L2 cache. 

 We show the result in read and write operation 

of global mode in Fig. 4 and Fig. 5 respectively. 

In each figure, we show the estimated and the real 

effect of IAS as a ratio of the execution time between 

CFS. As we can see in Fig. 4, the difference between 

the estimated effect and the real effect is as little as 

a few percent. The effect on both the estimated and 

the real effect on read is at most 10 % of the re-

duction of the execution time, which is not as large 

as the effect in write in Fig. 5. We consider that 

the smaller effect in read comes from data prefetch-

ing of hardware. Data prefetching works efficiently 

with the sequential read of data, which reduces the 

effect of IAS. We see slightly larger effect in smaller 

sizes of block_size in read because the effect of 

prefetching on the total elapsed time is smaller. On 
the other hand, we see the larger reduction of the 

execution time in write especially when the size of 

access data is between 512KB and 4MB. As the esti-

mated effect implies, we see the largest effect when 

the size of access data is 2MB. We consider that 

the largest effect of IAS is related to the L2 cache 

size of the platform. When block_size is smaller, 

the possibility that the previously loaded data set 

is still left in the L2 cache increases in CFS, there-

fore, we do not see the clear effect of IAS. When 

block_size is bigger, even the aggregation of sib-

ling threads purges the data set from the L2 cache, 

therefore, we see that the effect becomes small. 

  We show the result in read and write operation 

of local mode in Fig. 6 and Fig. 7 respectively.



Fig. 4 The estimated and real effect of  IAS against CFS 

      in global and read.

Fig. 5 The estimated and real effect of IAS against CFS 

      in global and write.

We can see the similar effect to global mode in that 

the effect in read is smaller than write and that 

the effect becomes small in increasing block_size 

in both read and write. As we mentioned, the to-

tal size of the data set in one memory program is 

the product of each block_size and the number of 

threads created. In write, we can see the largest 

effect when block_size is 20KB and the size of the 

data set is about 2MB, corresponding to the size 

of L2 cache. We consider that the effect becomes 

smaller in other block_size because of the same 

reason mentioned in global mode. In case of local 

mode, the effect in read is larger than in global 

mode. We consider that the effect of data prefetch is 

smaller because the block_size is smaller in local 

mode, therefore, IAS results in larger effect. 

 To support the effect we show above, we count L2 

cache misses, DTLB misses, and ITLB misses dur-

ing the execution when the total size of the data set 

is 2MB in write and global. We show the result 

in Table 2. We can see the large reduction of each 

event as the execution time. 

 Finally, in most of block_size parameters, the 

real effect of IAS is worse than the estimated effect 

because "Mixed execution" of threads did not al-

ways occur in CFS. However, we can approximately 

estimate the effect of IAS, and especially the cases 

when we cannot expect the positive effect of IAS.

Fig. 6 The estimated and real effect of IAS against CFS 

       in local and read.

Fig. 7 The estimated and real effect of IAS against CFS 

       in local and write.

Table 1 Specification of our experimental platform. 

      Processor Intel Core 2 Duo 
L2 Cache Size / Latency 2 MB / 14 ns 
Memory Size / Latency 1 GB / 149 ns

 5. Related Works 

 The basic idea of our scheduler is similar to that 

of Chen5). Their scheduling idea is to run the 

threads sharing the working set simultaneously on 

different Cores of CMP. They analyze and modify 

applications to select the appropriate thread granu-

larity for the applications and schedule the threads



Table 2 Effect on memory related events when the size of the total data set is 1MB (thousand times). 

          Scheduler L2 cache misses DTLB misses ITLB misses  

      CFS29,50423,386973  

 IAS5,46817,480155

statically. They logically certify the efficiency of 
their scheduling and also demonstrate the effect on 
their simulator. 

 However, in most of the commodity platforms, 

co-scheduling of threads are managed by Operating 
System. Therefore, many kernel-level thread sched-
uler for CMP and SMT have been proposed1)'6)'8). 
One popular approach is to repeat the phases of 
sampling thread information and scheduling based 
on the information. Taking this approach enables 

the kernel to guess the succeeding behavior of the 
threads and appropriate co-scheduling. However, 
the cost of sampling information from each thread 
can be too large as a practical solution, especially 
when the OS is loaded with many threads'. 

 Our scheduler just focuses on the memory ad-

dress space of each thread, therefore, the overhead 
of scheduling is small. The strength and the number 
of the aggregations is tunable through the system 
call we implemented. The drawback of IAS is that 
IAS works only when we execute multi-threaded 

programs. However, we consider that many mod-
ern programs, especially commercial programs, are 

getting multi-threaded. Actually, many programs 
have been multi-threaded as CMP and SMT plat-
forms spread. For example, database servers and 
Web servers, such as MySQL and Apache HTTP 

Server, use multiple sibling threads to handle mul-
tiple client connections efficiently. Besides, many 
languages such as Java, Perl, Ruby, Python, Er-
lang, etc., now support the development of pro-

grams using multiple sibling threads. We also have 
the compiler support to develop programs using sib-
ling threads such as OpenMP, MPI, and Open64. 
Therefore, we expect that we will have more multi-
threaded programs and more chances to apply IAS. 

 6. Conclusion 

  This paper investigates the effect of Inter-Core 
Aggregation Scheduler (IAS) with memory program 
of SysBench. IAS is a kernel-level thread scheduler 
which tries to execute threads sharing the memory 
address space simultaneously on different process-
ing cores of a Chip-Multi Processor. To clarify the 
relationship between the characteristic of thread be-

havior and the effect of IAS, we estimate the effect

of IAS on memory benchmark. We show that the 

real effect of IAS approximately follows our estima-

tion. Our estimation especially effective when we 

judge the cases when we cannot expect the positive 
effect of IAS. We also show that the effect of IAS is 

related to the L2 cache size. 

 Our future work includes the investigation of the 
effect of multiple Inter-Core aggregations by using 

multiple ia_mm on processors with more Cores such 

as Intel i7. We will also investigate the efficiency 

of IAS in more practical benchmarks such as SPEC 

jApp or SPEC WEB. We will also investigate the ef-
ficiency of helper threads which automatically tune 

the priority bonus for IAS. 

              References 

 1) Alexandra Fedorova, et al., Throughput-Oriented 
    Scheduling On Chip Multithreading Systems, Technical 

    Report TR-17-04, Division of Engineering and Applied 
     Sciences, Harvard University, 2004. 

 2) Satoshi Yamada, et al., "Impact of priority bonuses 
    of Inter-Core Aggregation Scheduler on a commodity 

    CMP platform", MMCS, 2009. 
 3) Satoshi Yamada and Shigeru Kusakabe, "Development 

    of a Thread Scheduler for Global Aggregation of Sib-
    ling Threads", Research Reports on Information Sci-
    ence and Electrical Engineering of Kyushu University, 

Vold, No.2, pp.69-74, 2008. 
 4) Naoto Fukumoto, et al., "Effect of Data Prefetching 

    on Chip MultiProcessor", IPSJ SIG Technical Report, 
     2007-ARC-173, pp.19-24, 2007. 

 5) Shimin Chen et al., "Scheduling Threads for Construc-
    tive Cache Sharing on CMPs" Proceedings of the nine-

    teenth annual ACM symposium on Parallel algorithms 
     and architectures, pp. 105-115, 2007. 

 6) Shugo Ogawa, Kei Hiraki, "A Speedup Technique with 
    Scheduler Using Process Execution Information" Vol.46 

    No.SIG 12 (ACS 11), pp. 161-169, 2005 
 7) D. Chandra, Fei Guo, Seongbeom Kim, Yan Solihin, 

    "Predicting Inter -Thread Cache Contention on a Chip 

    Multi-Processor Architecture" Proceedings of the 11th 
    International Symposium on High-Performance Com-

    puter Architecture, pp. 340-351, 2005. 
 8) A. Snavely, et al., "Symbiotic jobscheduling with pri-

     orities for a simultaneous multithreading processor", 
    In Proceedings of the 2002 ACM SIGMETRICS inter-

     national conference on Measurement and modeling of 
     computer systems, pp.66-76, 2002 

 9) "SysBench: a system performance benchmark", 
http://sysbench.sourceforge.net/


