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Abstract: This paper deals with the problem of estimating the parameters of Hammerstein sys-

tems based on recursive least squares method. Hammerstein systems can be considered as one 

kind of nonlinear systems, it is applied in many fields. Several identification methods of Ham-

merstein systems have been developed. We utilize the recursive algorithm to identify the system 

and the obtained simulation results show the effectiveness of this approach. 
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 1. Introduction 

 Identification of linear system has been a mature 

technique. However, the methods are very diffi-

cult to identify nonlinear system, because there are 

many high order items, cross items and other non-

linear function relationship between inputs and out-

puts. In fact, most sensors and actuators have mul-

tiple nonlinear features, the research on the identifi-

cation of nonlinear system is very attractive. With-

out any priori structural information, nonlinear sys-

tem identification is an intractable task. There are 

some usual ways to identify nonlinear system, such 

as artificial neural network, functional series like as 

Volterra series and Wiener series, block models. Ar-

tificial neural network can approximate any non-

linear characteristics, but many neurons and layers 

will be applied, and it spends long time to learn 

and train. Functional series such as Volterra series 

and Wiener series can describe any nonlinear dy-

namic systems. The kernel functions of these series 

are a series of infinite sum of multiple convolution 

integrals, however, estimating all coefficients of the 

kernel functions is unfeasible. In fact, only coeffi-

cients of finite order kernel functions can be iden-

tified. Usually, the structure of nonlinear system 

can be specified as a certain type, such as Hammer-

stein model, Wiener model and their combinations. 

These kinds of nonlinear models are called block-

oriented models. 

  Hammerstein systems are the most widely ap-

plied nonlinear dynamic models. It assumes that 
a nonlinear system is divided into two parts: the
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static nonlinear part and the dynamic linear part. 

The Hammerstein systems consist of a static memo-

ryless nonlinear block followed by a linear dynamic 

block; Wiener systems have a linear dynamic block 

followed by a static memoryless nonlinear block. 

Many researchers have proposed lots of methods on 

the parametric identification of Hammerstein sys-

tems, these methods include: the iterative methods) 
6)

, the over-parameterization method2), the blind 
method3>, the frequency domain method4), etc. 

 The iterative method is the basic approach of pa-

rameter estimation. All the parameters are divided 

into two subset, the optimal values are found in the 

first set while the second set is fixed. Then the 

first set is fixed to find the optimal values in the 

second set. The estimate results show that it is a 

good algorithm, but its convergence is a problem. 
The over-parameterization method is often applied 

to estimate linear system. For the Hammerstein sys-

tems that the unknown nonlinear block is parame-

terized linearly with unknown parameters. The or-

der of the new linear system will be so large. The 

blind method is based on using the output mea-

surements, once the linear part is obtained by fast 

sampling at the output, identification of the nonlin-

ear part can be carried out in a number of ways3) . 

By means of Fourier transform, the frequency do-

main method makes the nonlinear part expand to a 

series of Fourier function, then the linear part and 

the nonlinear part can be identified. The problem 

of convergence rate of Fourier series is a topic4) . 

 The key problem of the Hammerstein systems 

identification is how to describe the nonlinear block. 

For a static memoryless nonlinear model, if it can be 

represented by a function based on a certain series of 

basic function, for example, Fourier function, spline 

function, wavelet function, or polynomial function,



etc. According to the described function which is 

parameterized in line by unknown parameters, the 

coefficients of the function need to be estimated by 

some identification algorithm. In this paper, we dis-

cuss that parameter identification of Hammerstein 

systems with a recursive method in open loop. 

 This paper is organized as follows: Section 2 in-

troduces the Hammerstein model and problem for-

mulation. A recursive identification algorithm is de-

rived in Section 3. Section 4 provides an illustrative 

example to prove the effectiveness of the algorithm. 

Finally, some conclusions are obtained in Section 5. 

 2. Problem Formulation

Fig. 1 Hammerstein systems.

 Consider the Hammerstein systems shown as 

 Fig.1. The nonlinear block of the systems can be 

represented a polynomial with a known order in the 

input signal as follows 

 x(t) = p1u(t) + p2u2(t) + + piui (t)(1) 

The linear dynamic block can be described as 

A(q1)y(t) = B(q-1)x(t) + v(t).(2) 

Where u(t), y(t) and v(t) are input, output and 
noise, respectively. x(t) denotes an immeasurable 
internal signal and x(t) = f (u), which is the output 
of the nonlinear block and just as the input of the 
linear block G(q'). The q-1- is the pure time de-
lay of the system [q- 1 y (t) = y(t - 1)], A(q1) and 
B(q-1) are scalar polynomials in the shift operator 
q1: 

             • A(q1) = 1+ alq-i ^a2q-2 anq-n, 
B(q1) = 1+ bicl ^b2q-2 bnq-n. 

Parameter identification is to estimate all coeffi-
cients of the nonlinear block f (u) and linear block 
G(q1) by measuring inputs and outputs of the sys-
tem. For some nonzero and finite constant k, any 
pair (k f (u), G (q-1) I k) will produce the same in-
put and output measurements. In other words, any 
identification scheme cannot distinguish between 
(f (u), G(q-1)) and (k f (u), G(q1)/k) 3) There-
fore, in order to obtain an unique estimate, without

loss of generality, either gain of f (u) or G(q1) must 
be fixed3). Where the first coefficient pi of function 
f (u) is defined as one. The Hammerstein model can 
be described as follows 

A(q1)y(t) = B (q-1) f (u(t)) + v(t).(3) 

The output equation shows in the form: 
n m 

 y(t) = -E aiy(t - i) + E E bipiui (t - i) 
i=1i=1 j=1 

+v(t). 

By sampling the available input and output data 
u(t), y(t), the parameters of the Hammerstein sys-
tems ai, bi, pi, can be estimated with the following 
algorithm. 

 3. Identification Algorithm 
 Define the following parameter vector and data 

vector

r := (m + 1)n,

j = 1, 2, ..., m. Then we have 

 y(t) = TT (t)e + v (t) .(8) 

Since v(t) is a white noise with zero mean and fi-
nite variance, we define 0 as the estimated value of 
0, the output prediction value can be described as 
follows



Fig. 2 Parameter estimates (NSR = 10%, A = 0.98). Fig. 3 Parameter estimates (NSR = 50%, A = 0.998).

The quadratic output prediction error criterion

parameters of a and b, a =  [a1 a2 ... are', 
b = [b1 b2 ... bn]T can be directly obtained from 
the first, second element of O, respectively. Let Oj 
be the jth element of O, then Oi = Rib.  There is 
a large amount of redundancy in the estimation of 

parameters of the nonlinear static part. By utilizing 
the average method, the estimates can be found

In order to minimize the error function

We obtain the least-squares estimation  4. Example 

 An example is given to demonstrate the effective-

ness of the recursive algorithm. The nonlinear static 

block is

A recursive identification algorithm of estimating 0 

can be derived as follows

The linear dynamic model is an ARX model

Where we introduce some notation, the symbol I 
stands for an identity matrix of appropriate size; 
A < 1 is called forgetting factor; T is a definition of 
the matrix transpose; the Q(0) is an initialization 
which is a positive real matrix e.g. Q(0) = 106I. 

 According to the parameter p1 = 1, the estimated

 These parameters will be estimated. 20 Monte 

Carlo runs are calculated. For each Monte Carlo 

run, the input and the noise are uniformly distri-



Table 1 The parameter estimates (NSR = 10%, A = 
      0.98). 

 al a2 bi  

      true -1.5000 0.6000 0.7500  

    N=100 -1.4130 0.5327 0.7142  

    N=200 -1.4543 0.5649 0.7308  

    N=500 -1.4812 0.5885 0.7421  

    N=1000 -1.4913 0.5932 0.7428  

    N=2000 -1.4981 0.5994 0.7432  

    N=3000 -1.4986 0.5996 0.7444  

   0 b2P2 P3  

     true 0.4800 0.4000 0.2000  

    N=100 0.4628 0.4376 0.1888  

    N=200 0.4762 0.4225 0.2008  

    N=500 0.4816 0.4096 0.2018  

    N=1000 0.4795 0.4085 0.1988  

    N=2000 0.4783 0.4058 0.2014  

    N=3000 0.4776 0.4042 0.2018

Table 2 The parameter estimates (NSR = 50%, A = 
      0.998). 

  0 ai a2  

      true -1.5000 0.6000 0.7500  

    N=100 -1.4094 0.5311 0.6902  

    N=200 -1.4495 0.5621 0.7168  

    N=500 -1.4788 0.5839 0.7363  

    N=1000 -1.4912 0.5934 0.7351  

    N=2000 -1.5013 0.6032 0.7348  

    N=3000 -1.5003 0.6018 0.7371  

   0 b2 P2 P3  

     true 0.4800 0.4000 0.2000  

    N=100 0.4468 0.4757 0.1476  

    N=200 0.4755 0.4468 0.1904  

    N=500 0.4858 0.4201 0.2002  

    N=1000 0.4796 0.4195 0.1949  

    N=2000 0.4767 0.4136 0.2024  

    N=3000 0.4748 0.4097 0.2038

bution, respectively. The input signal must be a 

persistent excitation signal. Since the white noise is 
a persistent excitation signal5), we select the stan-
dard white noise as input u(t), the disturbance v(t) 
is also a white noise with zero mean and finite vari-
ance (7. The v(t) is independent of input u(t). For 
the input of linear part, that is a three-order poly-
nomial of the input u(t). We apply the recursive 
algorithm to estimate the parameters by means of 
MATLAB in two different noise case. The esti-
mated parameters are shown as Fig.2 and Fig.3. 
Where NSR  is defined as the ratio of noise to signal, 
it is the square root of the ratio of noise and out-
put variances. Since the estimated parameters are 
redundant, by computing with (12), the estimated 
results are filled in Tablel and Table2 with the 
different data length N. From these data, we com-
pute the relative parameter estimation errors 61 and 
82 for the different data length in two noise cases. 
Where 61 and 82 are the errors while NSR  = 10% 
and NSR  = 50%, respectively. Shown as Table3. 

 From Figs.2-4 and Tablesl-3, we can give the 
following remarks: 

 • Rate of convergence of the parameter estima-
   tions is slowly at a high noise case. 

 • The errors of the parameter estimations are 

   getting smaller with the data length increased. 
 • We will select the forgetting factor which is 

   near to one, while estimating the parameters 
   under a high noise condition. 

 In the implementation of the recursive algorithm, 
the parameter estimate fluctuations appear in the

    Table 3 The error of estimated parameter. 

N 61(%) 62(%) N 61(%) 62(%)  
100 6.5097 8.5125 1000 0.8297 1.4416 
200 3.4184 4.5194 2000 0.4932 1.1113 
500 1.4174 1.9247 3000 0.4062 0.9184

early steps and become stable. When the output 

noise is with a big variance, the fluctuation phe-

nomenon is very severe. It will result in a bad esti-

mation of nonlinear block in Hammerstein systems. 

We can select different forgetting factor to obtain 

good parameter estimates. Finally note that there 
is no general proof of convergence for the recursive 

algorithm. The experiment provides good results of 

the parameter estimates. They show the effective-

ness of this approach. 

 5. Conclusion 

  Since nonlinear systems have more and more 

types, such as dead zone, saturation etc, identifi-

cation of nonlinear dynamic systems is a difficult 

problem. Though many identification approaches 
have been proposed, none universal method can be 

applied to estimate nonlinear systems. 

 In this paper, when the nonlinear part of the 

Hammerstein systems can be described as a known-

order polynomial, we utilize the recursive method 

to estimate it. The simulation results indicate 

when the length of the sampled data is to a cer-

tain amount, the identification algorithm has good 

convergence property.



Fig. 4 The nonlinear function: actual (solid) and esti-
      mated (dotted).
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