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  Abstract: This paper solves the problem of estimating lifted state-space models for a class of 
  dual-rate systems in which input sampling period is an integer multiple of output sampling pe-

  riod from the input-output data directly. We first derive the lifted model of this class of dual-rate 
  system to prove that the lifted model can be an indirect model for the original dual-rate system. 

  Then based on the input-output data we estimate the lifted model using N4SID algorithms. 
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 1. Introduction 

 Due to sensors and actuators speed limits, some 

systems input sampling rate is different from out-

put sampling rate. We call such a system a mul-

tirate system. For decades, the study of multi-

rate systems has been very active, including control 

probleml), fault detection and isolation problem') 
and so on. M. Araki and K. Yamato solved the 

problems of state-space description, transfer char-

acteristics, and Nyquist criterion of multivariable 

multirate system') . 

 In fact researchers always study dual-rate systems 

and generalize dual-rate systems into multirate sys-

tem. For most conventional algorithms, they cannot 

be applied to dual-rate systems directly. F. Ding 

and T. Chen derived lifted state-space models for 

dual-rate systems using the lifting technique and 

estimated the lifted model parameters with the hi-

erarchical identification algorithms in their related 

work4) . Although they got good results in their 

work, there are still some problems: 

 • Like F. Ding and T. Chen stated in the con-

   clusion of their work, there still exists the prob-

   lem that under what conditions the paramerer 

   estimation by the hierarchical identification al-

   gorithms is convergent; 
 • The hierarchical identification algorithms still 

   need precise priori information of original dual-

   rate systems to decide the orders of lifted state-

   space models . 

 Comparing with the hierarchical identification al-

gorithms, numerical algorithms for subspace state
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space system identification (N4SID) algorithms') 
can avoid a priori parametrization and can decide 
the order of the model through inspection of the 
dominant singular values of a matrix that is cal-
culated during the identification. As an off-line 
method, N4SID algorithms do not suffer from no 
guaranteed convergence and sensitivity to initial es-
timates. There is no difference between zero and 
non-zero initial states for N4SID algorithms. 

 With lifting technique, we can derive a lifted 
state-space model for a dual-rate system. Under 
most conditions the lifted state-space models have 
to satisfy with causality constraints which means 
the input data in time t must be decided by the 
output data in time t and(/or) before time t. The 
qualification that the output matrices of lifted state-
space models are lower block-triangular matrices en-
sures that lifted stated-space models correspond to 
causality. Although N4SID algorithms have many 
merits, it is difficult to ensure output matrices to 
be lower block-triangular matrices using N4SID al-
gorithms directly. 

 But when the input sampling period is an inte-

ger multiple of the output sampling period the lifted 
state-space model for such a dual-rate system has no 
causality constraints. First we will prove it through 
deriving the lifted state-space model for such a dual-
rate system in this paper. 

 Then we will solve the identification problems 
of lifted state-space models for the special dual-
rate systems. In this paper we assume there is no 
priori information about original dual-rate systems 
and identify the lifted state-space models only from 
input-output data using N4SID algorithms. 

 This paper is organized as follows: The problem 
description can be found in section 2. The lifted 
state-space model is derived in section 3. Section



4 describes the identification problems. Section 5 

presents an illustrative example for the proposed 
algorithms in this paper. Finally conclusions are 

given in section 6. 

 2. Problem Formulation 

 The focus of this paper is dual-rate system with 

disturbance depicted in Fig. 1. As mentioned in 

section 1, in this paper the input of the dual-rate 

system updating period is an integer multiple of the 

output sampling period. 

 v(t) 

u(kTi)V y (t)---------- y(kT2) 
-------- ZOH P(s) C ADC--------...- 

            Fig. 1 A dual-rate system. 

 u(kTi) is the input of the dual-rate system. P(s) 
is continuous linear time-invariant(LTI) process. 
The input u(t) of P(s) is the output of zero-order 
holder ZOH. The output of P(s) is corrupted by 
the noise v(t) and becomes y(t). And then we can 
get the dual-rate system output by an A/D con-
verter ADC. 

 In the paper, we assume P(s) is a linear time-
invariant (LTI) system with the following state-
space representation: 

 f (t) = Aix(t) + Biu(t) (1) 
  y(t) Cix(t) + Diu(t) + v(t) 

where x(t) e Rn is the state vector, u(t) E Rr is 
the input vector, y(t) E Rm is the output vector 
and v(t) E Rm is the noise vector. A1, B1, C1 and 
D1 are matrices of appropriate dimensions. 

  In this paper we need solve two problems: 
 • Derive the lifted state-space model for the 

   dual-rate system described above; 
 • Identify the lifted state-space model from 

   input-output data using N4SID algorithms. 

 3. Lifted State-space Model 
  Basing on the lifting technique, we assume the 

lifted output vector y(kTi) E RmxP and the lifted 
noise vector v(kTi) E RmxP:

/ v(kTi) 
           v(kTi + T2) 

v(kTi)(3) 

v(kTi + (p — 1)7'2) 

 With the lifted output vector and the lifted noise 
vector we can derive a lifted state-space model from 
(1): 

 f x((k + 1)T1) = A2x(kTi) + B2u(kTi)                        (4)  t y(kTi) = C2x(kTi) + D2u(kTi) + v(kTi), 

 In (4), x(kTi) E Rn ,u(kTi) E R', y(kTi) E RmxP 
and v(kTi) E RP. 

 To obtain the mapping relationship from (1) to 
(4) we need first assume a model 

J   1
.  x((k + 1)T2) Amx(kT2) + Bmu(kT2) (5)   y(kT2) = Cix(kT2) + Diu(kT2) + v(kT2) 

 We can calculate Am and Bm in (5) by the fol-
lowing 

Ain _ eA1T2(6) 
           T2 

Bm = eAltdtBi.(7) 

        0 

 We can get the model by discretizing P(s) with 
the sampling period T1 and then the input u(kT2) 
will hold 

u(kTi) u(kTi + T2) (8) 
=- • • • = u(kTi + (p — 1)T2). 

 Replace k in (5) with kp and note that T1 = pT2, 
we have 

 J x(kTi + T2) = Anix(kTi) + Bmu(kTi)                        (9) 
y(kTi) = Cix(kTi) + Diu(kTi) + v(kTi). 

 Hence it is not difficult to get 
x((k + 1)Ti) = x(kTi + PT2) 

          = Afrix(kTi) + Bmu(kTi) (10) 
+Arn-2 Bmu(kTi + T2) 
+ • • • + Brnu(kTi + (p — 1)T2) 

 We also can perform (10) as follows: 
 x((k + 1)T1) = Afnx(kTi) (11) 

            + A;,71Bmu(kTi) 

  Similarly, we have



   y(kTi +  iT2) 
 = Cix(kTi + iT2) + Diu(kTi + iT2) 

 = CiAr,.tx(kTi + iT2) + CiA,;, iBmu(kTi)+ (12) 
CiA1 22Bmu(kTi+T2)+•••+ 
C1AmBmu(kTi + (i - 2)T2)+ 
C1Bmu(kTi + (i - 1)T2) + Diu(kTi + iT2) 

 Based on (2) and (12), we have 

           y(kTi) 
y(kTi + T2) 

 y(kTi) = 

                                                                                  • y(kTi +(p-1)T2)/ 
C'i 

C1 Am 
C1 Amx (kTi + iT2) + 

                        (13) 
\CiAm 1 J 

/D1 
C1Bm+Di 

                      u(kTi) 
C1(A;,, 1+A;,-2...+A +I)Brn+Di 

C1(A ,. 1+A Z 2...+A.m+I)Bm+Di J 

 Finally the mapping relationship from (1) to (4) 
will be 

A2 = Am(14) 

B2=>Am'Bm(15) 
i=1 

Cl 

C1 Am 

C2 = CiAm(16) 

CiAm 1 

Di 1 
C1Bm + D1 

D3 =(17) 

                                                                            • 

           Ep-1a        Cl(ipAm)Bm+D1/ 

 D3 prove that the lifted state-space model for 
such a dual-rate system has no causality constraints. 

 For convenience, we omit Ti in (4)and get 

 f x(k + 1) = A2x(k) + B2u(k) (18) 
y(k) = C2x(k) + D2u(k) + p_(k).

 4. Identification Problems 

 4.1 Fundamental Matrices Definition 

     and Identification Framework 

 N4SID algorithms are based on concepts from 

system theory, linear algebra and statistics. Before 

describing the identification scheme we need denote 

some matrices to introduce. First we build Han-

kel matrices with the lifted model input and output 

data as

 We can build U12_1 and YiI2i_ 1 in the similar 
way. i and j are user-defined index which is large 
enough. i should at least be larger than the max-
imum order of the lifted state-space model. j is 
typically equal to s - 2i + 1 in which s means the 
number of all available data samples. In any case, 
j should be larger than 2i - 1. 

 Then we define the state sequence Xi as 

Xi := (x(i) x(i + 1) ... x(i + j - 1) ), (21) 

where Xi E Rn x j 
 The extended observability matrix Fi is defined

 Then we will define a lower block triangular 

Toeplitz matrix:

We define the matrices Oi and Oi_ 1 as



 Oi = Yi12i-1/ ( U012/-1 )(24)  Youi-i 

                1 U012i-1\ °i-1 =Yi+112i-1/(25) You 1 , 
where A/B = ABT (BBT )t B(*t denotes the 
Moore-Penrose pseudo-inverse of the matrix •). 
The row space of A/B means the projection of the 
row space of A onto the row space of B. 

 With the defined matrices, we can have 

Oi = rixi +Hiuipi_i,(26) 
Oi-1 = ri_ixi+1+Hi_lui+112i_i. (27) 

 We can get the proof of (26) and (27) from the 
related work5). Since they are the linear combina-
tions of the system matrices A2, B2, C2 and D2, the 

projections Oi and 0,i_1 can determine the lifted 
model. So we can start the N4SID identification 
scheme from the projections Oi and Oi_i. 

 In common, the identification framework is de-
scribed as follows. 

 First determine the projections 

/ U01i-1 \ 
  Oi = l2i-1/ Ui12i-1 

3701i-1 /(28) 

           (Uoji-1     = ( LlL?ifV,ui12i-1 
                      YOli-1 

and 

         (uUoli Oi+1 =Yi+1I2i-1/i+112i-1 
3701i(29) 

           (uUoli \ = ( Li1+1 Li2+1 L)/41                         i/L'i+112i-1 • 
KO / 

  Then perform singular value decomposition 

( Lil L3i ) ( UOli-1 ) Yoli_i(30) 

— (u1 u2 ) (Ei °) v, 
        0 0 

and then we have 

ri = u1Eil12.(31) 

  Then estimate the state sequence 

.gi = rti ( Ll L)(uoii_i)(32) 
Youi-1 

and

xj+1=rti_i(L1+1 ) (33) 
YOji 

where means the estimate of • and ri_i denotes 

the matrix Fi without the last m x p rows. 

 Finally, solve the least squares problem to deter-

mine the system matrices 

       _ A2 B2 ) (34) Y
iliC2 D2 Uili 

 4.2 Numerical Algorithms 
 In fact, the identification algorithms can be im-

plemented in a numerically stable and efficient way. 
 To calculate the projection of the row space of 

the input-output data, we do LQ factorization as 

/ Uoli_l 
Uiii 
Ui+112i-1 = 
Youi-1 
Yili 
Yi+112i-1 /(35) 

/L11 0 0 0 0 0 \ Qi 
L21 L22 0 0 0 0Q2 
L31 L32 L33 0 0 0Q3 
L41 L42 L43 L44 0 0Q4 

    L51 L52 L53 L54 L55 0Q5 

  \ L61 L62 L63 L64 L65 L66 / \ Q6 / 

 The oblique projection can be obtained as 
Oi LupLiiCh+ 

        (QQ1N      Lyp( L41 L42 L43 L44)(36) 
                                  '43 

Q4/ 
and we can get L Up and Ly from 

/ LH 0 0 0 \ 
                   L21 L22 0 0 ( L

up Luf Lyp 7. 
                     Li31 .L/33 V 

( )                  \ L41 L42 L43 L44 
    (L51 L52 L53 L54 

      L61 L62 L63 L64 

  We can calculate Oi_1 in the similar way:



 +L11 0Q1 of-1 =  LUP L
21 L22 Q2 

IQ1 \ 
                Q2 (38)       L41 L42 L43 L44 0 )   L+ PL

51 L52 L53 L54 L55Q3                      Q
4 

~Q5/ 
where 

/L110 0 0 0 

L21 L22 0 0 0 

(4-p LUf 14p) L31 L32 L33 0 0(39) 
L41 L42 L43 L44 0 
L51 L52 L53 L54 L55 

  = (L61 L62 L63 L64 L65 )• 

 Then we perform singular value decomposition 
and delete the small singular values 

LuP (L11 0 0 0) + Lvv ( L41 L42 L43 L44 ) 
         Si 0 Vl  = (U1U2) 

0 S2v2(40) 

 Then the order of the lifted state-space model is 
equal to the number of remained singular values. 
The observability matrix ri can be taken to be 

ri=U1S1/2, (41) 
and the state sequence Xi will be 

               Q1 

 Xi = FOf = s112 V1 Q2 (42)         Q3 ) • 
               Q4 

 A shifted state sequence ±i+1 can be obtained as 

Xi+1 = ra-loi-1•(43) 

 With Xi, Xi+l, Ui~i and Y1i we can solve a least 
squares problem to obtain the system matrices: 

  CAB    D 
                         2(44) 

     Xi+1A BXi  = min 
V I i— C D F, 

where 1 1• 11F  denotes the Frobenius-norm of a ma-
trix.

 5. Example 
 An example is given in this section. For the dual-

rate system depicted in Fig. 1, we take the contin-
uous process P(s) as 

    1  

  =P(s)
2s3 + 3s2 + s + 1(45) 

and T1 = 2s, T2 = ls. So the lifted output vector 
and the lifted noise vector will be 

y(kTi) =(46) [y(21]) 
         v(kTi) 

 v(kTi) =(47) 
v(kTi + 1)• 

 The input u(kTi) is a zero mean white signal 

(variance 1) . v(kT2) is a zero mean white noise se-
quence. To show the performance of the N4SID 
method in the presence of considerable noise, the 
N4SID algorithm (i = 15, j = 5000) was imple-
mented for 20 realizations of the measurement noise 
of NSR (noise to signal ratio)=20%. NSR was de-
fined as the ratio of o-v /oy, where Qv and ay are the 
standard deviations of the measurement noise and 
of the noise-free output, respectively.

Fig. 2 Distribution of the singular values of 20 realiza-

        tions.

 We assume there is no priori information of P(s). 

First we need to determine the order of the lifted 
state-space model through finding the number of 
dominant singular values. Figure 2 shows that the 
domain singular values achieved from the repeated 
simulations. From Fig. 2, it is obvious that the 

order of the lifted model is 3. 
 Figure 3 shows the estimated lifted step response 

together with the continuous-time step response.



Fig. 3 The step response of the continuous-time process 

      (solid line) and the estimated lifted step response 
      of 20 realizations (dot).

Fig. 4 Distribution of the poles of 20 realizations.

 As expected, the points of the estimated lifted 

step response sit on that of the continuous-time pro-

cess. The poles of the lifted state-space model of 20 

realizations are presented in Fig. 4. It can be seen 

that the poles do not distribute dispersedly. 

 6. Conclusion 

 In this paper, the lifted state-space model for 

a class of dual-rate system is derived. Then 

the lifted state-space model is identified from the 

input-output data using N4SID algorithms. The 

lifted state-space model can be identified from 

input-output data directly using N4SID algorithms. 

Through inspecting the dominant singular values we 

can still identify the lifted state-space model in the 

case that the noise is colored noise. 
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