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   Abstract: In this paper a modified bias compensation recursive least-squares (MBCRLS) method 
  is proposed to deal with the task of adaptive FIR filtering with noisy input-output data. This 

  method is similar to the BCRLS method which is proposed by authors recently in terms of use 
  of introducing an auxiliary estimator but a different form with that one in BCRLS method. Sev-

   eral modified points both in theoretical discussion and recursive computing aspects in the new 
   MBCRLS method lead to a reduction in computing cost and simple, readable and understandable 

   derivation. Simulation results are conductive to verify the discussions. 

   Keywords: Adaptive filters, Recursive least squares parameter estimation, Noisy FIR system, 
   Bias compensation

 1. Introduction 
 Adaptive finite impulse response (FIR) filtering, 

in which adjustable parameters are used, is widely 
applied in many fields such as control, signal pro-
cessing and system identification1> . Least mean 
squares (LMS) algorithm, which is based on the 
minimum mean squared error (MMSE) criterion, 
and recursive least squares (RLS) algorithm which 
is based on the least squares error criterion, are 
two widely used classes of adaptive filtering algo-
rithms. It is known that if input measurement is 
noise-free, the LMS algorithm or the RLS algorithm 
can provide unbiased filter coefficients2> . However, 
this condition is not satisfied in some practical situ-
ations. When both input and output are corrupted 
by additive noise, the LMS solution and the RLS 
solution are biased. 

 Total least squares (TLS) method is an unbiased 
estimation method when both input and output are 
corrupted by noises. Recently, several TLS-based 
algorithms have been proposed for FIR adaptive 
filtering in this noise environment5)6>7 . More re-
cently, under the assumption that the noise-free in-
put is also a white Gaussian random process in-
dependent of input and output noise, the modified 
LMS (MLMS)8) and the modified RLS (MRLS)9) 
were proposed to give consistent FIR filtering coef-
ficients with both input and output noise.
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 On the other hand, a technique based on the bias 
compensation principle (BCP) proposed by Sagara 
and Wada3> is an efficient solution for bias problem 
reduced in RLS algorithm. The bias compensated 
recursive least squares (BCRLS) algorithm') which 

was derived based on the BCP, was proposed to pro-
vide consistent coefficients for FIR adaptive filter-
ing with both input and output noises. Bias equa-
tion was given to illustrate that the bias reduced 
in RLS solution was caused only by the input noise 
whereas the output noise does not affect the esti-

mate. In order to obtain the estimate of input noise 
variance, an auxiliary estimator was introduced to 
construct the cross-correlation equation of LS error 
and introduced auxiliary estimation error in BCRLS 
method. And with the help of computing the error 
cross-correlation, the estimate of the bias resulted 

from LS solution can be obtained. Then the bias 
of RLS can be compensated to result in a satisfac-
tory parameter estimation for Noisy FIR adaptive 
filtering. 

 In this paper a modified algorithm of BCRLS 

method which can be called by MBCRLS algo-
rithm is given. This new algorithm is similar to 
the BCRLS method in terms of introducing an aux-
iliary estimator but a different form with that one 
in BCRLS method. The new introduced auxiliary 

estimator in MBCRLS is formed by using directly 
the correlation matrix of noisy input data same to 
ones in LS estimator. It is exciting that this leads 
to no additional computing of another correlation 
matrix of noisy input data. Moreover, in aspect of 
estimation of error cross-correlation, a very simple, 

efficient approach is introduced to displace an expa-



tiatory derivation in 4). These modified points both 
in theoretical discussions and recursive computing 
aspects in the new MBCRLS method lead to a re-
duction in computing cost and simple, readable and 
understandable derivation. 

 Computer simulations are carried out in two cases 
that noise-free input signal is white process and col-
ored process and comparison with several other al-
gorithms is also done. Numerical computation in-
dicates that the new MBCRLS algorithm inherits 
all attractive properties of the former BCRLS algo-
rithm and decrease more computation burden than 
the former BCRLS algorithm. 

 2. Problem Statement 
 Consider a noisy FIR filtering problem illustrated 

in Fig. 1. An unknown FIR system H(z) with L-
point impulse response vector h has an input s(k) 
and an output  d(k) x(k) and y(k) are measured 
input and output corrupted by additive noise re-
spectively. Our task is to estimate the parameter of 
H(z) using adaptive FIR filter W (z) from measured 
input x(k) and output y(k). Then the following re-
lationships are given: 

L-1 
H(z-1) = E hiz-i(1) 

z=o 

L-1 

W(z1) wiz_i(2) 
i=o 

   x(k) = s(k) + ni(k)(3) 

   y(k) = d(k) + no(k)(4) 
L-1 

   d(k) = E his(k - i)(5) 
i=o 

L-1 

   r(k) = E wix(k - i)(6) 
i=o 

where input noise ni(k) and output noise no(k) are 
assumed to be zero-mean white noise processes, in-
dependent of input s(k) with variances cr? and a02 
respectively. Let 

h- [h0 h1. • • 4-11T 

y(k) = :y(k)y(k - 1)...y(k - L + 1) F 
x(k) = [x(k) x(k - 1)... x (k - L + 1)1T 

ni(k) =- [ni(k) ni(k - 1) ... rti(k - L + 1) F 
     W = [WO W1 • W L-1]T 

then by equations (3) and (5), equation (4) can be 
written as:

Fig. 1 System block diagram for system identification.

 y(k) = x(k)T h + v(k)(7) 

where 

 v(k) = no(k) — ni(k)T h.(8) 

The error signal e(k) is given by 

 e(k) = y(k) - r(k) 
L-1 

    = y(k) - E wix(k - i) 
i=0 

   = y(k) - x(k)T w .(9) 

Minimization of the cost function Ekiv 1 e(k)2 with 
respect to the impulse response vector w leads to 

LS estimate WLS,N as follows 

         N 

    (\-1N  fb Ls, N =Ex(k)x(k)TE x(k)y(k). (10) 
     k=1/ k=1 

Substituting equation (7) into equation (10), yields 

N fb LS, N = h + PN E x(k)v(k)(11) 
k=1 

where 

                                                                      --1. N\ 

 PN = (E x(k)x(k)T .(12) 
   k=1/ 

Taking the probability limit, we have 

 plim 16,s, N = h + b.(13)   N—co 

Here b is the asymptotic bias of III Ls , N described as



 b =  R-lplim —1 x(k)v(k)(14) N 
k=1 

where 

R=plim 1P-1.(15) N—>oo N 

Based on the assumptions of input and output 
noises and from (3) and (8) equations, we have 

b = -a2R-1h.(16) 

So if the estimate of asymptotic bias b is considered 

as 

bN = —U2NPNhN-1,(17) 

then compensating the bias results in the consistent 

estimate of h as the following: 

hN = 2vLS, N + U2NPNhN-1 •(18) 

WLs and PN can be computed using the recursive 

LS algorithm form as 

'LS,N = WLS,N-1 

+ PN-lx(N)(y(N) - x(N)T N_i) (19) 1 + 
x(N)TPN_lx(N) 

PN-lx(N)x(N)T PN_l      P
N = PN-1—1+ X(N)T PN_iX(N)                         (20) 

 Above discussions indicate that in the case of 
both white input and output noises, the RLS es-
timate is biased, and the bias is caused only by the 
input noise whereas the output noise has no effect. 
If input noise variance ai is known or an estimate &Z 

of it is available, then applying the BCP gives rise 
to the consistent estimate of h. In usually practical 
cases, no prior knowledge about noises can be avail-
able, so the core lies in estimation of input noise 
variance al. 
  In the next section, we will present the solution 

how to obtain the estimate of the input noise vari-

ance al. 

 3. Estimation of input noise variance 

  In order to estimate input noise variance, we pre-

sented the estimation equation of the input noise 

variance Q2 in 4) described as

—2  gN) &
Z =_T ^(21)      Nh 

coN 

where CPN is an introduced auxiliary estimator and 

gN is the error cross-correlation function of LS es-
timation error and the auxiliary estimation error. 
It is clear that the construction of <pN, the compu-

tations of <pN and gN become our research cares. 
In the following we shall discuss these key points 
respectively. 

 3.1 Introduction of Auxiliary Estima-

     tor 
 In the BCRLS algorithm4>, the auxiliary estima-

tor 

  N-1 N  -CON = E x(k — 1)x(k — 1)T E x(k — 1)y(k) 
  k=1k=1 

was introduced to construct the auxiliary estima-

tion error 

  (k) = y(k) - x(k - 1)TcPN 

and the error cross-correlation function 

N 

gN = EE(k)e(k) 
k=1 

where LS error e(k) = y(k) - x(k)T iv Ls,N is or-
thogonal with x(k) shown as 

N E x(k)E(k) = o.(22) 
k=1 

CON can be computed similar to RLS algorithm as 

cpN = Co- N -1 

    +QN-ix(N — 1)(y(N) - x(N -1)TcPN_i)            1 + x(N - 1)TQN-ix(N - 1) 

QN-lx(N - 1)x(N - 1)TQN-1   QN = QN-1 — 1+ x(N 1T                 ()QN_ix(N - 1) 
where 

N-1  QN = E x(k - 1)x(k -1)T)  
k=1 

It is obvious that appearance of another covariance 
matrix of data QN brings certainly more burden 

of computing. However the computation of c°N is



inevitable so computation of QN is needed. As a  re-

sult increase of computation load is also inevitable. 
If CDN is formed by directly using PN not using QN, 
this disadvantage will be removed. 
Now redefine c;c3 Ar as

Comparing two forms of CO' N,, it is obvious that the 

new form uses directly the covariance matrix of data 
PN, so no additional computing of covariance ma-
trix of data occurs. Therefore along with change 
of 43 N, the auxiliary estimation error e(k) and the 
error cross-correlation function gN are renewed re-

spectively as

which also has the useful orthogonal properties de-

scribed as 

E x(k)(k) = o.(26) 
k=1 

Finally the estimate of input noise variance can be 
obtained by equation (21) but the mentioned quan-
tities will be renewed ones. 

 3.2 Recursive Algorithm for gN 
 Firstly define matrix tpN as : 

N E 9(k) [y(k -1) x(k)T]. (27) x(k) 

From equation (23) and (25), we have 

   - - - 

   -1-9N 

N=•(28)    JPN. 0 

By the definition of i.pN, we have 

            y(N)- = ON-1+[y(N - 1) x(N)T]. (29)           x(N) 

Post multiplying (29) by [--1 CthTN-1iT and using 
equation (28) yield

     —1 —gN-1 
1PN 
    PN-1 N-10 

- 

     y(N)            (y(N - 1) - x(N)T f3N_1) . (30) 

Now let s(N) and tN be 

 s(N) = E y(k)x(k)TtN 
k=1 

  tN = (E X(k)X(k)T 1 X(N) 
k=1 

then we have 

    0 s(N)- 
WN(31)      t N _ _ ac(N) 

Post multiplying by (y(N - 1) - x(N)T 
and based on (26),(28), we can obtain 

                         -1 
  1PN 

     _C43N-1+tN(Y(N -1) _x(N)TN-l)  
  — (gAr_1+ (y(N) — s(N))(y(N) — x(N)TY; N_1)) (32) 

Hence the recursive forms of gN and CoN are given 
by 

  gN = gN-1 

   + (y(N) - s(N)) 
• (y(N - 1) - x(N)T N_1)(33) 

(t-.6N = CaN-1 

     tN (y(N - 1) - x(N)T43 N-1) •(34) 

In addition, consider (10) and (12), s(N) and tN 
can be written as 

 s(N) = s,Nx(N) 
   tN = PNx(N). 

So it is seen that 

 y(N) - s(N) = y(N) - s,Nx(N) = s(N). 

Based on the above, the estimate of input noise is 
summarized as follows.



    dN =  PN-1x(N) 
   fN = 1 + x(N)T dN 

    tN = dN/fN 
ep(N) = y(N) - x(N)T wLs,N-1 
WLS,N = WLS,N-1 + tNep(N) 

 er(N) = y(N - 1) - x(N)T SPN-1 
Co'      N = Co' N-1 + tNer(N) 
PN = PN-1 — dNUN/fN 

gNep(N)er(N)/fN 

      N  

     z 
NhN -1‘; 

                                                                                              • Consequently, the consistent estimate of noisy FIR 
filter parameter is obtained by computing 

 hN =16N  + ^TgN  PNhN-1• 
hN-1rithN 

 3.3 Alternative Recursive Algorithm 
     for gN 

 Although the above introduced recursive algo-
rithm for gN is very efficient, the derivation is too 
expatiatory to be hard readable. Here we will 

present a simple, readable derivation to obtain the 
recursive construction for computing 9N. 

According to the orthogonal properties described as 

(22) and (26), gN is also written by: 

gN = E y(k)(y(k - 1) - x(k)T SPN) (35) 
k=1 

   = E y(k - 1)(y(k) - x(k)T wLs,N)• (36) 
k=1 

Define 

cyy(N) = E y(k)y(k - 1), 
k-1 

cxy,l(N) = E x(k)y(k), 
k=1 

cxy,2(N) = x(k)y(k - 1). 
k=1 

so we can obtain the alternative recursive algorithm 
for g(N) as follows.

cyy(N) = cyy(N - 1) + y(k)y(k - 1), 
cxy,l(N) = cxy,l(N - 1) + x(k)y(k), 
cxy,2(N) = cxy,2(N — 1) + x(k)y(k — 1), 

gN = cyy(N) — Cxy, l (N)T CPN, 
or 

gN = cyy(N) — cxy,2(N)TibLS,N. 

 3.4 Relationship between the Two Al-
     gorithms of gN 

 We shall make gN = cyy(N) - cxy,2(N)T?ILS,N 
be a example to explore the relationship between 
the two algorithms for gN. 

gN = cyy(N) — Cxy,2(N)WLS,N 
= cyy(N — 1) + y(N)y(N - 1) 

-wLs,NCxy(N — 1) + x(N)y(N - 1) 

Due to WLS,N = WLS,N-1 + tNep(N), we have 

 gN = gN-1 + y(N)y(N - 1) - CxTy,N_itNep(N) 
—VLS,N-lx(N)y(N - 1) 
-x(N)TtNep(N)y(N - 1) 

    = gN-1 + y(N - 1)ep(N) - Cxy N-ltNep(N) 

+ep(N)y(N - 1)x(N)TtN 

= gN-1 +ep(N) (y(N - 1) f
N 
       —x(N)T PN-1Cxy,N-1 

+y(N - 1)x(N)T dN - y(N - 1)x(N)T dN) 

= gN-1 +ep(N) (y(N - 1) - x(N)T CPN-1) f
N 
    = gN-1 + ep(N)er(N)/fN• 

It is found that the two recursive forms are identical 
substantively. 

 4. Simulation Result 
 The unknown FIR system is characterized by h = 

[-0.3; -0.9; 0.8; -0.7; 0.6]. The input noise and out-
put noise, ni(k) and no(k), are independent white 
Gaussian random variables. The input and output 
signal-to-noise ratios, SNRi = as /a2 and SNRQ = 
as /o-o, are chosen as 5dB and 10dB.Computer sim-
ulations have been carried on in the following two 

cases respectively



 Case  is 
The noise-free input s(k), input noise ni(k) and 
output noise no(k) are independent white Gaussian 

random processes. The variance of s(k) is fixed to 
be unity, and the input and output signal-to-noise 
ratios, SNRi = o-s /o-2 and SNRO = a/o, are 
chosen 5dB and 10dB. 

  Case 2: 

The noise-free input signal s(k) is the AR process 

 s(k) + 0.9s(k - 1) = g(k) 

where g(k) is a zero mean white Gaussian random 

variable. The variances of the input noise and out-

put noise are a? =ao =0.25. 

         Table 1 Simulation result in Case 1. 

      LSMBCRLS True 

       methodmethod Values 

  N 3000 5000 3000 5000 

h0 -0.1939 -0.1863 -0.3042 -0.2969 -0.3 

    h1 -0.5692 -0.5766 -0.8956 -0.8997 -0.9 

   h2 0.5061 0.5138 0.7974 0.8020 0.8 

    h3 -0.4452 -0.4481 -0.7015 -0.6990 -0.7 

    h4 0.3816 0.3855 0.6006 0.6010 0.6 

         Table 2 Simulation result in Case 2. 

      LSMBCRLS True 

       methodmethod Values 

  N 3000 50003000 5000  

h0 0.0183 0.0110 -0.2999 -0.2978 -0.3 

    h1 -0.6355 -0.6321 -0.9028 -0.8980 -0.9 

    h2 0.7246 0.7258 0.8009 0.8021 0.8 

    h3 -0.6774 -0.6812 -0.6970 -0.6988 -0.7 

    h4 0.6001 0.6052 0.5993 0.6016 0.6

Fig. 2 MSE of Four Algorithms in Case 1.

 Comparisons between RLS algorithm and MBC-

RLS algorithm in both cases of input signal are 

shown in Table 1 and Table 2 respectively. Re-
sults in two tables are averages of 50 independent 
trials with data length of 3000 and 5000. Compar-
isons are also made with the MLMS algorithm8>, the 
MRLS algorithm') and the GAO's TLS algorithm') 

in Case 1 and the mean square errors (MSE) of them 
are shown in Fig. 2. The results are averages of 50 
independent trials with a data length of 5000. It is 
shown by simulation results that the new MBCRLS 
algorithm reduce computing time whereas no any 

loss. The new MBCRLS algorithm inherits all mer-
its of the former BCRLS algorithm such as better 
accuracy, no strict assumption, wider application 
and so on. 

 5. Conclusions 

 In this paper, the modified BCRLS algorithm has 
been proposed for adaptive FIR filter parameter es-
timation in the presence of the input and output 
noise. Several modified points both in theoreti-

cal discussion and recursive computing in the new 
MBCRLS method lead to a reduction in comput-
ing cost and simple, readable and understandable 
derivation. Numerical computation indicates that 
the MBCRLS has more attractive property since 

it can decrease more computation burden than the 
former BCRLS algorithm. It also has been shown 
by simulation results that the modified algorithm 
inherits all merits of the former such as better ac-
curacy, no strict assumption, more wide application 

etc. 
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