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Electromagnetic Scattering by the Multielements Periodic Grating 

        of Circular Cylinders and the Dielectric Slab 

         Vakhtang JANDIERI* and Kiyotoshi YASUMOTO**

Abstract: An accurate formulation to the problem of electromagnetic scattering by the multielements 

periodic grating of circular cylinders and dielectric slab is presented. The dielectric cylinders are assumed 
to have different radii and geometrical locations per unit cell and the dielectric slab is located apart from 

the periodic grating. Applying the boundary conditions and using the additional theorem for the cylindrical 

functions and the projection method, an infinite system of linear equations for the unknown coefficients of 

the multipole spectra is obtained. This system of equations is solved by the reduction method and the 

analytical expressions for both transmission and reflection coefficients are derived by using the relationship 

between the diffracted spectra and the multipole spectra. The numerical examples demonstrate the multiple 

scattering effects between the cylindrical elements of the grating and the slab boundaries on the frequency 

response in the transmission coefficient. It is shown that the frequency response could be controllable by 

properly adjusting the geometrical parameters of the dielectric slab. 

Keywords: Transmission coefficient, Multielements grating, Dielectric slab, Multipole spectrum, Reduction 

method

 1. Introduction 

   Scattering of electromagnetic waves by artificial 

inhomogeneities such as periodic gratings of cylindri-

cal objects plays an important role in antenna technol-

ogy, radiophysics and optics. Very recently, dielectric 

 or metallic structures') are under a growing attention 

for their promising applications to frequency selective 

or polarization selective devices in microwaves and 

optical waves, narrow-band filters, modern communi-

cation problems for improvement radio-electronic and 

communication systems. Therefore, various analyti-

cal or numerical techniques2)-9' have been developed 

to formulate the electromagnetic wave scattering 

from the periodic structures. 

   The purpose of this paper is to present an accu-

rate formulation for the two-dimensional diffraction 

of electromagnetic waves by the multielements peri-

odic grating of the circular dielectric cylinders and 

the dielectric slab, when it is located apart from the 

grating. Cylinders are assumed to have different radii 
and geometrical locations per unit cell. Such a peri-

odic structure is very attractive to devise a novel 

wavelength and polarization selective components in 

microwave and optical wave regions, because addi-
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tional degrees of freedom for controlling the scattered 

fields are available. In the formulation, firstly, the 

scattered fields are written in terms of the expansion 

into multipole and diffracted spectra. Applying the 

boundary conditions on the surface of the dielectric 

slab, amplitudes of the transmitted and reflected 

waves from the slab are expressed through the ampli-

tudes of the diffracted space harmonic fields from the 

periodic grating of the circular cylinders. Then the 

addition theorem for the cylindrical functions and the 

projection method are used to obtain an infinite sys-

tem of linear equations for the unknown coefficients 

of the multipole spectra. The system of equations is 

solved using the reduction method. Finally, the ampli-

tude of the diffracted space harmonic fields from the 

periodic grating of circular cylinders is calculated 

using the coefficient of the multipole spectra of cylin-

drical waves. The convergence and stability of the 

solutions are numerically tested by analyzing the 

dependence of the transmission coefficient on the 

truncation order of the scattered fields. Numerical 

examples for the transmission coefficient of the fun-

damental space harmonic are presented for the 

dielectric slab and the periodic grating with up to two 

circular dielectric cylinders per unit cell. Transmis-

sion characteristics are substantially influenced by 

the presence of the dielectric slab and various interest-

ing features of the frequency response are demonstrat-

ed, which are not attainable for the multielement



 periodic  grating  without  the  dielectric  slab.")'  13)  It  is 
shown that the location of the resonance peaks could 

be controllable by adjusting the distance between the 

dielectric slab and the periodic grating and the thick-

ness of the slab. The time dependence of the fields is 

assumed to be exp(iwt) and omitted throughout the 

paper. 

 2. Formulation of the problem 

   The geometry of the problem is illustrated in the 

Fig. 1. 

A periodic array of N-parallel circular cylinders per 

unit cell is located in free space with permittivity eo 

and permeability po. The structure is uniform in the 

z-direction and periodic in the y-direction with a 

period d. N cylinders within the unit cell are assumed 
to have different radii and material constants. The 

integers v and p are used to denote the number of the 

cells and the number of the cylinders located within 

the cell, ep,' is the distance between two centers of the 

p-th and p'-th cylinders located in the unit cell. The 
dielectric slab with a thickness r,', permittivity e and 

permeability p is located at a distance h from the 

periodic grating. Assume that E-polarized plane 
wave with unit amplitude is incident on this grating 

from the upper region with an angle 0 relative to the 

positive x-axis. Then the incident wave is given as:

Fig. 1 Cross section of N-element periodic arrays of 

     cylindrical objects and dielectric slab.

Ezinc— exp[ ik(xcos 8 +ysin0)], (a/60/4 . (1) 

   The scattered fields are expressed in terms of the 

expansion into multipole and diffracted spectra in 

different regions as follows: 

N Enc= E E Jar)He)(krvp)exp[ik(vd + 4'pi)sin0 
v=--com=-0.P=1 

irnTva (rvpap)(2) 

= 11Nm(kprvp)exp[ik(vd+ 4i)sin0 

iMIOvia], (Or ap)(3) 

Ez1— E zinc+ Ezse+ E Fpexp(igpy — ihpx), x�— h 
P=-0. 

                           (4) 

Ez2= E CpexP[ ih'p(x + h)] 
p=-. 

Dpexp[ ih'p(x+17)1}exp(igpy), 
(—h-7)Sx�—h)(5) 

 Ez3= c±a Tpexp[igpy+ ihp(x+ h+ 77)], (x h— 71) 
1)=-.0 

                           (6) 

E A'Pexp(igpy+ ihpx), — h�x<— ap 
 Ezsc— 'P oo-(7) 

E AT,exp(igpy— ihpx), x�ap 

where ap is a radius of the p-th cylinder, kp= coV Epp, 

and k'= co." ep are the wave-numbers of the p-th cylin-

der and the dielectric slab, respectively. H,(,:2) is the 

m-th order Hankel function of the second kind and J. 

is Bessel function of the m-th order, X$ and lit') are 

the unknown coefficients of the multipole spectra, gp 

 27rP  =+ ksm 0
, hp=(k2— A)' and h'p=(k'2— g2, AP 

are the amplitudes of the p-th order transmitted and 

reflected waves from the periodic grating of the circu-

lar cylinders. Cp and Dp are the amplitudes of trans-

mitted and reflected waves inside the slab. Tp and Fp 

are the amplitudes of the p-th order transmitted and 

reflected waves from the dielectric slab, respectively. 

The scattered fields must satisfy the following bound-

ary conditions: 

    1 a1                    L,z1—(op ax'                           Ez2.at x= — h (8)   Ezi = Ez2'.0410 aX 

la 13 E
2 E3, zcop axEz2=cop . dx Ez3; at x= — h— 

                           (9) 

            a  Ez1=n1 ...       i''')•z1= •1 a                                 ;          10)
,U.0 arOrv,a 

at rvp= 0�97�27r (10) 

Substituting (4) - (7) into the boundary conditions (8)



and (9) on the surface of the dielectric slab, the 

 unknown coefficients Fp, Bp, Cp and Dp could be 

easily expressed in terms of Ap as follows: 

 Fp = (Ap+ opo) rp 

 Tp=(Ap+ 8p0)7?p 

Cp=(1/2)(A) +Spo)[(1+ai)exp(— ia2) 

+ rp(1— al)exp(ia2)] 

Dp=(1/2)(A) +8po)[(1—ai)exp(—ia2) 

+ rp(1+ai)exp(ia2)](11) 

where 

_ (1— ai)exp( — 2 ia2)sina3  rp (1+aDsina3-2iaicosa3 

exp(— ia2)   71
P= cos a3+(i/2)[(1/ai)+al]sina3 

ai=hpp/h'ppo, a2=hph, a3=h'pi7 (12) 

When the boundary conditions (10) are fulfilled on the 

surface of the p-th cylinder of the zero-th cell (v=0), 

using the addition theorem for cylindrical functions"), 

projection method and the expression for the ampli-
tude of the diffracted p-th order space harmonic given 

by (see Appendix) 

                                 N Ap= -------------1---------------EXkL)Z+m 
      ziID2—(p+Dsin9)2m=--p=i 

    exp(±imcop)exp(—i2d- 1),(13) 

the infinite system of linear equations with respect to 

the unknown coefficient Xn``) is derived as fol- 

lows12),13): 

N o0 

XnP)=a(nµ)+ E E Xm')Qnm(14) 
j=1m=-co 

where 

 an`)= —[inexp(— in9)+ i-nroexp(in tg9)]V('`) 

Qnm=—(1—anm8i;)[Lm-n(kd, ki,k;, 0) 
    +An+m(x&j)] ~n`)(15) 

Vnu)=Jn(ai){Hn(2)(aa)+In(art)[Lo(kd, 0, 0) 
+02n(0)] — 7AP)(ap, a,).In(aa)}-1(16) 

       TTT1  ~n~)(aP, al~)=7CCYµ[~n(a!~)Jn(aP)Z~Jn(ap)Jn(ap) 
                           (17) 

On+m(xpi) 

   —Z-n-mD(1ne) rpexp[i(n+m)cpp]exp(ipxk,)(18) 
          p=D(1+slne) yr•/D2—(p+Dsin9)2' 

 ap=kap, elp=kpap, Zp=^ E``, .1)/D 

                               p 

                            (19)

p+Dsin9  cop=arctg 
2,D=d/A. Lm-nis the (m        1D2—(p+Dsin0) 

— n)-th order Lattice Sums, which is expressed by a 
semi-infinite series of Hankel functions. To overcome 

the difficulty of a very slow convergence of the series, 

we use an integral form5) of the lattice sums, which 

can be accurately and efficiently evaluated using a 

simple scheme of numerical integration. Since the 

terms an and Qnm satisfy a condition of square-law 

convergence on the module as: 

EIanI2<00, ElQnm12<co(20) 
n,m 

(14) could be solved by using the reduction method11 
The solution XA``) obtained for a truncated system of 

linear equations tends to the exact one with increas-

ing the truncation order of the system. The conver-

gence and stability of the solutions to (14) could be 
validated by numerically testing the dependence of the 

transmission coefficient I To1= +Ao)7Io1 and reflec-

tion coefficient IRoI=IFo+Ao 1 of the main space 

harmonic on the truncation order of the system. The 

case of the H-polarized wave can be treated in the 

same manner by employing Hz field as the leading 

field and introducing the following substitutions into 

the results for E-polarized wave: 

Eo—' — Po, €p—' — /~~, 

po— Eo, /1p—) EP,(21) 

 3. Numerical Results 

   The proposed formulation has been used to ana-

lyze the transmission and reflection properties of 

multielements gratings of circular cylinders and 

dielectric slab. Although a substantial number of 

numerical examples could be generated, we discuss 

here the transmission characteristics of the dielectric 

slab and the periodic grating with up to two dielectric 

circular cylinders per unit cell for the frequency range 

0 s d/A51.0 under the normal incidence of plane 

wave, because such a situation is essential to the use 

of periodic arrays as the frequency and polarization 

selective components. The numerical examples in 

what follows were obtained with the errors in the 

energy conservation less than 10-5 by truncating the 

infinite system of linear Eq. (14) at n= ±7. The 

numerical examples in what follows have been calcu-

lated using the non-dimensional parameters: s1= 2a1/ 

d, s2=2a2/d, Err— el/ Eo, Er2=E2/Eo, Q=E12/d, E=E/Eo,



 h=h/d  and 

The transmission coefficient To of the fundamen-

tal space harmonic is shown in Fig. 2 as function of 

normalized wavelength d/A for the TM wave, where 
=0 .2, 0.4, E=2.O, si= 0.6 and €1=2M. For compar-

ison, the transmission coefficient for the one-element 

grating with one dielectric circular cylinder per unit 

cell is also plotted by the dotted line. 

The transmission characteristics are substantial-

Fig. 2 One-element grating with dielectric slab: 
0.2, h=0.4, e=2.0, s1=0.6, el.-2.0, TM wave 

(solid); One-element grating: ij =0, si= 0.6, el= 
2.0, TM wave (dotted).

ly changed due to the multiple scattering effects 

between the cylindrical elements of the periodic grat-

ing and the dielectric slab. There exists only one 

reflection peak for the one-element grating. When the 

dielectric slab is additionally placed apart from the 

periodic grating, the reflection peak splits into two 

peaks and a broad-band resonance profile is obtained. 

Perfect pass-band region can be also observed over a 

wide range of the wavelength 0.95 d/A� 0.95. In case 

of one-element grating the TM wave is completely 

reflected at d/A =0.923, while at the presence of the 

dielectric slab it is completely transmitted at the same 

frequency. To discuss the effect of presence of the 

dielectric slab in more detail, we consider the influ-

ence of the distance between the dielectric slab and 

the periodic grating and the thickness of the slab on 

the frequency response in transmittance. Dependence 

of transmission coefficient To of the fundamental 

space harmonic versus normalized wavelength d/A 

for different thicknesses of the slab is shown in Fig. 3. 

For comparison, the transmission coefficient for the 

one-element grating is also plotted by the dotted line. 

It could be vividly seen that the resonance peaks are 

shifting to the long wavelength region and the pass-

band is broadening with increasing the thickness of 

the dielectric slab. Figure 4 illustrates how the trans-

mission coefficient is influenced by changing the

Fig. 3 One-element grating with dielectric slab: fj= 
0.2, ii=0.4, e1=2.0, TM wave 

(solid); 77=0.25, h=0.4, e=2.0, .31=0.6, e1=2.0, 
TM wave (dashed); 03, ii=0.4, e=2.0, si= 

0.6, ei=2.0, TM wave (dot-dashed); One-
       element grating: 7-7 = 0, si=- 0.6, e1=2.0, TM 

wave (dotted) .

Fig. 4 One-element grating with dielectric slab: Fi= 
0.2, ii=04, ë=2.0, si=0.6, ei=2.0, TM wave 

(solid); i)=0.2, fi=0.55, e=2.0, si=0.6, e1=2.0, 
TM wave (dashed); ij=0.2, h07, e= 2.0, si= 

      0.6, el=2.0, TM wave (dot-dashed); One-
      element grating: Fi=0, el=2.0, TM 

wave (dotted).



 Fig. 5 Two-element grating with dielectric slab: 7-2= 

                                                       0.2,h=0.4,e=2.0,s1=0.6,e1=2.0,s2=0.35,62= 
7.5, TM wave (solid); Two-element grating: 7-2 
=0 , s1=0.6, e1=2.0, s2=0.35, 62=7.5, TM wave 
(dotted).

distance between the dielectric slab and the periodic 

grating of the circular dielectric cylinders with other 

parameters same as those in Fig. 2 and Fig. 3. It is 

shown that the separation distance between the two 

resonance peaks is gradually getting smaller and the 

narrow-band resonance profile is obtained increasing 

the distance between the slab and the periodic grating. 

It could be explained due to the multiple scattering 

effects between the slab and the cylindrical elements 

of the periodic grating. Consequently, from Fig. 3 and 

Fig. 4 it follows that the location of the resonance 

peaks could be controllable the properly adjusting the 

geometrical parameters of the dielectric slab. 

   The multielement periodic grating introduces 

additional degrees of freedom to realize a variety of 

wavelength in transmission and reflection. Eight 

independent parameters si, sz, 61, 62, 6, -e, h and 72 are 

available to adjust the transmission and reflection 

characteristics. As an example, the transmission 

coefficient To of the fundamental space harmonic as 

function of normalized wavelength d/A for the TM 

wave is shown in Fig. 5 and Fig. 6. Symmetrical 

configuration of the grating has been considered, 

where the cylinders per unit cell are placed with an 

equal distance from each other .?=0.5. Figure 5 

vividly illustrates that in comparison to the two-

element grating with two dielectric cylinders per unit 

cell, the presence of the dielectric slab apart from the

Fig. 6 Two-element grating with dielectric slab: 7-2= 
0.2, h=0.4, e=2.0, s1=0.6, e1=2.0, s2=0.35, 62= 
7.5, TM wave (solid); i0.2, h=0.55, E 2.0, si 
=0 .6, e1=2.0, s2=0.35, e2=7.5, TM wave (da-

      shed); i7=0.2, h=0.7, e=2.0, s1=0.6, e1=2.0, s2 
=0 .35, 62=7.5, TM wave (dot-dashed).

grating leads to the appearance of two resonance 

peaks with quite a broad bandwidth at d/A =0.838 and 

d/A = 0.954, respectively. 

The resonance peaks become to be well separated and 

a broad-band resonance profile is obtained. From 

Fig. 6 it follows that the frequency response in trans-

mittance is strongly influenced by the location of the 

dielectric slab with respect to the periodic grating. 

Resonance wavelengths and their relative separation 

could be controlled by adjusting the distance between 

the periodic grating of dielectric circular cylinders 

and the dielectric slab. 

 4. Conclusion 

   An accurate formulation for the two-dimensional 

diffraction of electromagnetic plane waves by 

multielements periodic grating of dielectric circular 

cylinders and the dielectric slab has been proposed. 

The cylinders have been assumed to have different 

radii and geometrical location per unit cell. Applying 

the boundary conditions, the addition theorem for the 

cylindrical functions and the projection method, an 

infinite system of linear equations to determine the 

unknown coefficients of the multipole spectrum was 

derived. The linear equations were solved by the 

reduction method and the convergence and stability of 

the numerical solutions were tested for various



parameters of the grating. Numerical examples of 

the transmission coefficient were presented for the 

dielectric slab and the periodic grating with up to two 

dielectric circular cylinders per unit cell. Various 

interesting features of the frequency response in trans-

mittance were demonstrated, which are not attainable 

for the periodic grating without the dielectric slab. 

The frequency response is significantly affected by 

the multiple scattering between the dielectric slab and 

the cylindrical elements of the periodic grating and 

could be controllable by adjusting the geometrical 

parameters of the dielectric slab.
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               Appendix 

   Using the Floquet theorem, the field scattered 

from the multielements periodic grating may be ex-

pressed in terms of a series of the multipole spectra 

based on the cylindrical waves or a series of the space 

harmonic waves as follows: 

00 0o N 

Ez1= EEE EXe'Hm2'(krvp)exp[ik(vd+41)sin6 
m=—oov=—'p=1 

+ imrpvp], (rvp Z ap) (A. 1) 

Apexp(igpy + ihpx), (x�— a,.) 
Ez1=(A. 2) 

E Ap exp( igpy — ihpx), (x�ap) 

where 

gp=24) +ksinO, hp=,/ k2 (A.3) 

Defining the space harmonic waves propagating in the 

opposite direction with respect to the y axis by: 

Ep =exp( — igpy+ ihpx), Ep =exp( — igpy— ihpx), 

                                (A. 4) 

the following relation is derived: 

Ep0Ez1—Ez1AEp =0 (A. 5) 

where 0 is the two-dimensional Laplace's operator. 

Applying the Green's theorem to Eq. (A. 5) , we 

obtain: 

 f(E; _Ez1 aap )dr 
  =- 1J\Eaaz1—Ez1aap)de(A. 6) 

               eN 

where Ep (p=1, 2.....N) and F are circular and rectan-

gular contours of the radii am and the unit cell respec-
tively; n denotes the coordinate normal to the con-

tours. The calculation of the integral over the con-

tour r yields: 

 Ap 2ihpd~\Ep anzl _Ezl aap)d.E. (A. 7) 
On the other hand, expression of the scattered field 

Ez1 for the p-th cylinder of the zero-th cell (v=0) 

could be written in the form:



 EW = E [Xm``'Hm2'(kr,)+Qm(kd, e)Jm(kr,.)] x 
         m=-. 

 exp(ikep,sin9+imc)(A.  8) 

where 

Qm(kd, 0) 

  = [X P)Lq2m(kd, 0, 0) 

+ E xeL"-m(kd, kepi, 0)]. (A. 9) 
;$u

Substituting Eqs. (A. 4) and (A. 8) into Eq. (A. 7) and 

taking into account the expression of Wronskians for 

the cylindrical functions: 

 Jn(ap)Hn2)(ap)—Jn(ap)Hn(2)(ap)=------72i , (A. 10) 

the relationship (13) between the unknown coefficient 

of the multipole spectrum and the amplitude of the 

diffracted p-th order space harmonic is obtained.


