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                            Networks 

 Baiquan LU *, Junichi MURATA ** , Kotaro HIRASAWA *** and Hong GUt 

                         (Received June 11, 2004)

Abstract: A new learning method is proposed, which can be free from local minima of error func-

tion by using prior information. Because prior information can describe some features of teach 

function, neural networks also must have the features after learning. For this, learning using the 

prior information must attain two targets: learning of the features of teach function and a good 
approximation accuracy. The proposed method is very promising for solving the generalization 

ability problem of neural networks and avoiding the convergence to local minima. A bound on 

learning rate is also given for stability of the proposed method. The simulation results indicate 

usefulness of the proposed method. 
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 1. Introduction 

 Artificial neural networks(ANNs) have been used 
widely in different applications as very promising 
function approximation tools. However, there are 
two issues. One is fast convergence problem, and 
the other vital question arises from local minima of 
the error. For this latter problem, many attrac-
tive results have been reported recently1)2), such 
as Simulated Annealing algorithm, random search 
algorithm, tunneling algorithm, learning automata 
algorithm and special network structure method. 

 In the paper, we address the above problem from 
other aspect: how to make learning concentrate on 
the area around the global optimum as fast as possi-
ble using local information and global information. 
A steepest-descent learning algorithm stops when 
derivatives of error with respect to weights become 
zero. These give equations in terms of weights. A 
set of solutions to these equations must include the 
global optimum solution. If we use prior informa-
tion to constrain this set of solutions, the set will 
shrink, and if we have sufficient prior information, 
the set will contain the global solutions only. More-
over, because global information can describe glob-
al features of teach function, neural networks also 
must have the characteristics after learning. So neu-
ral networks must do harder task of acquiring the
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features of teach function in addition to attaining 
good numerical approximation. Incorporating prior 
information is, however, very promising for escap-
ing from local minima and improving generalization 
ability. 
  Based on the above, in the paper, a new learning 
method is proposed using various local and glob-
al information. Also, bounds on the learning rate 
are given that assure convergence of learning based 
on discussions on necessary conditions of convergent 
learning. 

 2. Learning Method 

 The error function E for a multi-layered neural 
network that is to approximate a teach function 
f (X) is defined by 

T N 

E(W (k)) _ E E[fj (X (i)) - gj (X (i))]2 , (1) 
i=1 j=1 

where gj(X) is the output of neural network, W(k) 
is the vector of n weights wl, ••• wn at learning it-
eration k, N is the number of output units and T 
is the number of training samples. Note that in the 
sequel E(W (k)) may be also expressed as E(k) or 
E(W) for simplicity. Assume that we already have 
a network structure that can attain perfect approx-
imation, i.e. there exists a weight vector W* such 
that E(W*) = 0. 

 Let us consider a weight updating rule 

                E(k) 8E(k)  
 OW(k + 1)_" c aw(k)1E 0,(2) 

                 0 otherwise,



 where  C  H3E(k)/aw(0112.  Then  we  have,  by 
the mean-value theorem, 

                   1   E (k + 1) = E(k)(1 —A) + —2A2 
   E2 (k) (  a E (k)\ aE (k)  

    C2 au7(k))11()aw (k)'(3) 
where H() is Hessian matrix, e=[ 6_ • • • and 
each satisfies min{Wi(k), Wi(k) — AE(k)/C • 
aE(k)/awi(k)} < < max{Wi(k), Wi(k) — 
A E (k) I C • a E(k) I aWi(k)} . When W approaches 
a solution to a E (k) I aW (k) = 0, but E (k) 0, 
then LW will be infinitely large. Only when W ap-
proaches a global solution W * , LW will converge 
to zero. To examine this, we will give theorem 1 
and theorem 2 based on the following lemma. 
Lemma 1 : There exists a ball centered at the 
global solution W 

B (e) = {W : 11W — W * < E, e > 0},(4) 

such that LW is bounded and continuous inside 
B(€) (for proof see 2)). 
Theorem 1 : Let us consider a ball 

B1(E) {W :11W— Will < E, > 0}, 
centered at a local solution W1 such that 
aE(wivaw = 0, and assume that there exists on-
ly one element W = W* such that E(W) = 0 inside 
B1 n B and that Hessian matrix H() is bounded so 
that there exists a positive constant M satisfying 

  aE(k) ) aW (k)TI IDE(k)     47(k) 

      ( aE(k) 0E(k)  
       aiv(k) ) aw(k)(5)* 

If W E B1, then W can escape from local minimum 
by update rule (2). Moreover if W E B, then W 
will converge to the global solution in B when we 
use a small learning rate A. 
proof. Near a local solution W', from (2), we have 

       E(W)                 LW =AE(W1) +aaEl(4S) (W — W1)   IIA 

where min{Wi 71)1} < < max{wi, w }. If 
IIW — W1I1 is sufficiently small, then E(W1) is 
much greater than either of HaE(w)/aw1111(147 - 
W1)II and IlaE()/aw1111(vv-w1)11, thus 
AE(W1)/v. If W W1, then oo. 
This implies that W can escape from the local so-
lution. 

Near the global solution W * , by (3) and (5), we

have 

 E (k +1) < E(k)(1 — A) + —1 A2 M E2 (k)  

                 2 

       E (k) (1 — A + —1A2 M E (k)) . (6) 
                  2 W can converge to W* if 

          1 2M E (k)   —1 < 1 — A +—
2A• <1(7) 

holds, which gives the condition on the learning 
rate A. The first inequality in (7) is equivalent to 
0 < A < A0, while the second inequality implies that 
A can take on any value if 4ME(k)IC > 1, but A 
must be in (0, A1) U (A2, +oo) if 4ME(k)/C < 1, in 
which Ao and A1 and A2 are as follows, 

 A=A12C=1 — — ME(k)/C  

   o 

   ME(k)'ME(k)/C  
              1+N/1 — ME(k)/C  

     A2=• (8) ME(k)/C 

Since ME(k)/C is bounded inside B(e) by Lemma 
1, if we choose learning rate such that belongs to 

(0, Ao)n((0, A1)u(A2, +00)), then limk,or, E (k) = 0. 
This implies that W can converge to the global so-
lution inside B.0 

 So far we have studied the global minimization 

property of the learning method (2). Now we dis-
cuss a bound on learning rate for stability of the 
learning method. 

If we assume A >1 in (3), we have 

 E2 (k) I  a E (k) )
aW (k) 

         T8E (k)
H> 0.(9)   C2ow (k) 

If the error function decreases as the learning pro-
ceeds, i.e. E (k + 1) — E (k) < 0, then (3) together 
with (9) gives bounds on A as 

     C2   1 < A < 2(10) 

       E(k)(aawE((kk)))T•H(0aawE((kk))  

  We can obtain another set of bounds on the learn-
ing rate. Substituting (5) to (3) yields 

E (k + 1) 
= E (k) (1 — A) 

         1  

             +A2E2 (k)a(E (k) )8417                     TaE (k)  

        2C2ai47(k)                    II(0(k) 
                  1 E2(k) 

     < E (k) E (k) A + M-2A2 C(11) 

and thus



 E(k +1) - E(k) < -E(k)A + M1 A2 E2(k) . (12) 

Therefore, inequality 

                   2  -E(k)A+M1A2ECk) < 0(13) 
is a sufficient condition for decrease in error func-
tion. This inequality gives a bound on A as 

A<2---------(14)      E(k)M. 

 Since E(k + 1) > 0, we have from (11) 

 E(k) - E(k)A + M1A2 E2(k) > 0. (15) 

This quadratic inequality holds for arbitrary value 
of A as far as (5) is satisfied. So, we have 

                   2 

 E2(k) - 4 •• MEc(k) E(k) < 0, (16) 
and therefore 

ME~k)>2.(17) 
This gives a constant bound 4 on the right hand side 
of (14). This implies that A should belong to inter-
val (0,4) for stability of the learning. These bounds 
are constant and thus are good guideline for choice 
of the learning rate before starting the learning. But 
note that this is a necessary condition. 

 We can obtain stricter necessary conditions on A 
for learning convergence. Let us denote E2(k)/C2 • 

(aE(k)/aW(k))T .HO•aE(k)/aW(k) by G(k). By 
(3), we have 

 E(k + 1) 
 =E(k)(1-A)+2a2 •G(k) 
 = E(k - 1)(1 - A)2 + 

   2A2 • G(k - 1)(1 - A) +2A2G(k) 
 = (E(k - 2)((1 - A) +2A2G(k - 2))(1 - A)2 

  +2A2G(k-1)(1-A)+2A2G(K) 
= E(k - 2)((1 - A)3 + A2G(k - 2)(1 - A)2 

   +2A2G(k-1)(1-A)+2A2G(K) 

 = E(1)(1 - A)k +12A2G(1)(1 - A)k-1 

   +2A-G(2)(1 - A)k-2 + • • +2A2G(K)• 
Assume that Gmax=maxi{G(j)} and Gmin =

mini {G(j ) } are bounded except for at a few points 
which are jumping points from a local minima point 
to other points. Then we have 

               k               11-(1-A)k    E(1)(1 -A)+2A2Gmin 
1 - (1 - A) 

< E(k + 1) 

  < E(1)(1 - A)k + 1A2Gmax1-------------- (1 - ~)k•           21 -(1-A) 
                        (18) 

From (18), when 11 - A < 1, E(k) is bounded as 
k --> oo. When E(1) = Gmax/(2A), E(k) is also 
bounded but in this case for any positive value of 
A. Thus we have the following theorem. 
Theorem 2 : Assume that Gmax and Gmin are 
bounded during learning (2) except for at a few 
points which are jumping points from a local min-
ima point to other points. If leaning is convergent, 
then leaning rate A satisfies either of the following: 

1. 11-A <1, 
 2. E(1) = Gmax/(2A). 
 Now we discuss the bounds on A using fixed 

point theorem. Form (3), E(k) can be consid-
ered as self-iterates. By fixed point theorem, if 
18E(k + 1)/0E(k)l < 1, this iteration is convergent. 
Applying this condition to (3), we have 

 1-A + A2 E(2)DE(k)TH()-------aE(k) 1. 
        C2aW (k)31/17(k)<  

                        (19) 
By defining L(k) = E(k)/C2 • (aE(k)/aW (k))T • 
H() • aE(k)/aW(k), the condition is rewritten as 
1 - A + A2L(k) < 1, which is equivalent to 

L(k)A(A - A1) < 0, 
L(k)(A - A2)(A - A3) > 0,(20) 

where A1 = 1/L(k), A2 = (1 - O1/2)/(2L(k)), 
A3 = (1 + O1/2)/(2L(k)) and O = 1 - 8L(k). If 
L(K) < 0, then A1 and A3 are negative value, but 
A2 is positive, so solution to this inequality belongs 
to (0,A2). In the case that L(K) > 0, the solution 
belongs to (0, A2) U (A3, A1) if L(k) < 1/8 or (0, A2) 
if L(k) > 1/8. 

 Finally, let us discuss how to choose a suitable 
learning rate. In (11), let us consider making the 
right hand side equal to 9E(k) (0 < 0 < 1). This is 
equivalent to making E(k + 1) smaller than OE(k) 
which implies convergent learning. Then we have 

 6E(k) = E(k) - E(k)A + M1 A2C,(k) . (21) 
Let us define



           1 E(k)   A = 1 — 4 • (1 — 0)
2M(22) 

 If  E(k)>  0  and  L>  0,  then  the  solution  to  (40)  is 

  1 — V2S, 1 + \TA-    Or(23)  ME(k)/CME(k)IC• 

From (17) and the fact that A > 0, we have 

   1  E(k)M 1 

               > 

 2(1 — 0) C 2' 

or equivalently 

 2(1 — 0)E(k)> M >2E(k)(24)• 

From (23), A that assures convergence can be calcu-
lated for a given large M satisfying (5) and (24). For 
example, first we can select a large M, say M = 100, 
then select 0 by (24) and calculate A by (23). If 
E(k + 1) < 0E(k), M needs no change, but other-
wise M is increased and 0 is selected again by (24) 
until E(k + 1) < 0E(k). 

 3. Learning Method Using Prior Infor-
    mation 

 A learning method using local information and 
global information is reported in 2). Here, we will 
discuss neural network learning methods that in-
corporate different kinds of prior information, i.e. 
transformation of functions, equilibrium points of 
dynamical systems and partial derivatives of func-
tions. 

 3.1 Prior Information Based on Trans-
     formation of Function 

 In this subsection, we will introduce how to use 
prior information based on transformations Fi (.), 
i 1, • • • , m of function to be approximated fi(x). 
If we know transformed values of the target values 
Fi(fi(X)), then we expect our neural network to 
have the same transformed values. Therefore, we 
can define error functions in addition to the regular 
error function (1) as 

 E(W) = E [Fi(fi(X)) -Fi(g1(X))12 . (25) 
            j=1 

Transformation (.) can be a maximum Lyapunov 
exponent operator for chaotic teach functions. Oth-
er possible choices of Fi (•) include fractional dimen-
sion operators, Fourier transform operators, mean-
value operators and wavelet transformation opera-

tors. Also, we can adopt any monotonic function 
as F2 to distort error surface and assist the solution 
to escape from local optima. By minimizing sum 
of these additional error functions E(W) and the 
regular error function E(W) defined by (1), we have 
the update rule 

  W(k + 1) =          {—AG(W) if E0, A(26) 
                  0 otherwise, 

where 

 G(W) =-(E(k)+Erin_iEj(k))  
        II 8(E(k)+Em E2(k))               aw(k) 

•a(E(k)+Eim_i Ei(k))  
aW (k) 

 3.2 Prior Information Based on Equi-
     librium Points of Dynamical Sys-

     tems 
 Suppose identifying a dynamical system y(k + 

1) = f [y (k) , y (k — 1) , • • • , y (k — n) , u(k)] by a neu-
ral network. The network is to approximate func-
tion f. Because for any dynamic system with 
self-equilibrium, y(co)=constant for constant in-

put u(k) 1, by fixed point theorem, we have 
(apay(00)2 < 1. So the neural network also must 
have this characteristic after learning. Here the neu-
ral network with single output is assumed to be 

rn 

g(X) E ao,o(WIT X + 0k).(27) 
k= 1 

If the neural network has this characteristic, then 

     ag\ 
 g1=ay())—1  -(oo 

                  n+1-2 

= E cek • (10(1)(V°0))(E wi,k) — 1 0. 

Then we can define a error function by introducing 

a penalty term with a Lagrange multiplier s as 

E1(W) = E(W) + s • (g+)2,(28) 

where g+ = max{0, g1}. Because g+ = 0 for gl <, 
and g+ gl for gl > 0, derivative of (g+)2 exists 
except for gl = 0, and is equal to 2g±(ag1/aw)W. 
Here let us assume El (W) is a function of continu-
ous time t, then



 dEl aE          w 
+(g+)2 + 2sg+ agl  dt OWaw 

     0E agl •      =(2sg+)W (g+)2. 
   awaw 

If we take W as the following, 

 W =  E + (g+)2  
    Hai2s(g+)-----112 

      aE+ 2s(g+)agl                          (29)    awaw 

then we have 
 dEl ----= —E,(30) 
  dt 

 where  Lagrange  multiplier  s  is  assumed  as  a  =  Eg+  E 
or a = eg+ so that g+ becomes zero as fast as pos-
sible, and € is a small positive number. 

From this, dEl I dt = 0 if and only if E 0. This 
indicates that learning is convergent. Thus, we can 
get a difference equation for learning: 

             AE + a(g)2   AW(k +1) = 
                 aE               + 2s(g+):1947 112 

        (  aE                          (3
1)               +2s(g+)agl) 

        \awaw). 

 3.3 Prior Information Based on Taylor 
     Expansion 

 Prior information in the form of partial deriva-
tives of teach function at origin is treated here. 
We assume f (X) E C°° and define output error 
as AEF(X) = (X) —Emk_i akCp(W/TX +0k) (here 
the bias term Ok is set to 1). Condition AEF(0) = 0 
is equivalent to letting coefficients of each term of 
Taylor expansion of AEF at X = 0 equal to zero, 
then we have 

rn 

f(0, 0) = ak(i0(1), 
k=1 

g (0 " 0) = E ak4i,k(P(i)(1), 
                       k=1 

                           rn 

                2(0'... , 0) = ak.wi2k1-w-(p(i+1)(1), (32)                   -
, 

k=1 

where f(j+1) (0, • • • , 0) is the j-th order partial 
derivative will respect to xi2 after the first partial 
derivative with respect to Xii. Equation (32) can 
be written in a matrix form: 

AiBi = C1(33) 

where

- 1 1 • • • 1 - 

Wil,1 Wil ,2 • " Wil,m1  •
= 

: - • • : 
m1-1 m1-1 m1-1 

           - wz.1,1z.1,2 • • • wz.1,m1 - 
  B1 = a2 • " cerni1T, 

      f(0,•••,0)- 
                cp (1) 2-,k=m1+1 ak 

            f(1)(0,-••,0) v.m       xii  

             co(1)(1) Lk=m1-1-1 CtkWil,k C1=• 

            f(ml-1)(0,•••0)             
,p(rrel—1)(i)L-dk=rn1+1 CqW17,1k _ 

Assuming that inverse of matrix Ai exists for ml = 
m, we have 

B1 = AT1Ci.(34) 

From (34), ak can be expressed by Wji,kl, kl = 
1, 2, • • • , m. 

 To incorporate the constraint (34) in the learning 
algorithm, let us define 

           aak                          (35) 

and expand the error function E(W) in a Taylor 
series in terms of W and a = [al • • am]: 

          n m 

            aE   AE(W, a) =E -----Awi,k                    `—` aW• k 
                i=1 k=1 

           aE  
      +aAak•(36) 

   k=1ak 
If 

Wil,k1 7 Wil,k2,(37) 

is satisfied for a certain i1 where kl k2, k1 = 
1, 2, • • • , m, k2 = 1, 2, • • • , m, then we have 

          n m 
            OE    E(W, a) = E E 

                i=1 k=1uWi'k 
                             rn 

           E E aaaEkTl(k)lj)Awl• +•••                                         W(i, 
                  j=1 k=1 

         n m aE  
    = E E 

              i�il k=1 

                      aE        E(EaE Ti(k) +               aakatvii,k                 k=1j=i 
-AWil,k ± • • •(38) 

According to (2), we have the update rules 
     E  Ea, •= A-------------------+ --------), 

          

1192112 +Zk112UW il,k 
                        (39)



        E  aE   A
wi,k = A(40)             li

g2_4_II a               112.9E 112 awitk                                         wz,k 

 where  i  il,  A  is  the  learning  rate,  i1  is  the  in-
dexing number which satisfies (37), and g22,3 = 
Ej=1(aElaak)T1)„, j). Weights wii,i and Wij 
can be adjusted by (39) and (40). Then, we get 
Aa to update a by using (35). 

 4. Simulations 
 A system identification problem is adopted as an 

example to evaluate the learning methods proposed 
in the paper. The system to be identified is y p(k + 
1) = P[yp(k), y p(k — 1), y p(k — 2), u(k), u(k — 1)], 
where P[xi, x2, x3, X4, X5] = {X1 • x2 • X3 X5(X3 — 
1) + x4}(1 + xi +xi), and u(k) = 1, k= 1, • • • , 100. 
The neural network has five input, 60 hidden and 
one output nodes, and the node function is (1 — 
e)/(1+e-x). Initial values of hidden layer weights 
and output layer weights are generated from unifor-
m distributions over (-0.25, 0.25) and (-0.1, 0.1), 
respectively. Evaluated learning methods are list-
ed in Table 1, where A1 is the proposed learning 
rule that does not use prior information, A2 uses 
transformation-based prior information, A3 incor-
porates Taylor expansion prior information, A4 is 
for dynamical system with equilibrium points and 
A5 is the well-known backpropagation learning rule 
with momentum term. 

  The final error values and required learning it-
erations are listed in Table 2. The results show 
learning rates greater than 1 give better results by 
the method Al. The learning can be improved by 
using prior information, especially when prior infor-
mation based on Taylor expansion or equilibrium 
points is available (A3 or A4), the results are much 
better. The backpropagation with momentum term 
A5 gives much worse result than any of the pro-
posed methods. The results indicate that proposed 
methods are very useful. 

 5. Conclusions 
  In the paper, a learning method is proposed us-

ing prior information to constrain or decrease the 
numbers of local minima points of error function in 
order to speed up learning or obtain a solution of 
global optimum. Also a bound of learning rate for 
learning is given. The effectiveness and applicabili-
ty have been demonstrated by simulations.

Table 1 Learning Methods.

Table 2 Simulation Results.
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