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Abstract: This paper presents task-oriented reinforcement learning, a modified approach of 

reinforcement-learning to simplify continuing dynamic problems in a more realistic and human-

like way of thinking from the viewpoint of the tasks. In this learning method an agent takes as 

 input the `state of task' instead of 'state of environment' and chooses appropriate action to achieve 

the goal of the corresponding task. The proposed system learns from the viewpoint of tasks that 

enables the system to find and follow a precise policy in a continuing-dynamic environment and 

offers simple implementation for a multiple agents system. 
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 1. Introduction 

 In a reinforcement learning (RL) system an au-
tonomous agent successively improves its policy 
through repeated process of interaction with the en-
vironment without any supervision. The episodic 
problem consists of a series of iterated subsequences, 
such as plays of a game, called `episodes'. This is 
the simplest learning task, where the agent gets the 
opportunity to repeat its trial for the same initial 
conditions, resulting in faster convergence. Most 
real world problems are continuing tasks, or tasks 
consisting of a single ever-lasting episode only, in 
nature with high dynamics and it is hardly possible 
to model in an episodic manner. For such learning 
tasks, the conventional RL agent has to learn from 
a different task situation at each time, which often 
causes failure in convergence. 

This paper presents a new RL scheme called task-
oriented reinforcement learning (TORL)1)'2) to solve 
complex dynamic problems. In this method a sepa-
rate RL is carried out for each logical subtask from 
the viewpoints of the subtask considering the corre-
sponding goal, instead of a single RL for the whole 
problem. The task-oriented learning offers precise 
action selection in the dynamic environment where 
the environment changes with time and can be ap-
plied successfully to both episodic' and continu-
ing tasks2> . The dynamics of a continuing world is
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more complex to an agent. For a usual complex 

problem, some researchers have proposed physical 
division of a large task in a modular form to reduce 

the complexity in learning, where they use a cen-

tral mediator module to select an action among the 

modules3> . Others have proposed multiple agents 

in lieu of a single agent to make a complex learning 

task easier through combining outcomes of multi-

ple agents. But none of them studied the scope 
of reducing complexity by making an agent learn 

from the viewpoint of the task considering only the 

related information needed to attain the goal. The 

proposed task-oriented system learns from the view-

points of the task, which simplifies the learning pro-
cess and enables the agent to choose an action more 

precisely. Beside this, it attempts to combine the 
advantages of both multiple agents and modular RL 

approaches without any central coordinating mech-

anism. 

 In this paper we investigate the performance of 

TORL for a test bed, dynamic tile world. Learning 

is carried out considering two main tasks. The first 

task treats, from the viewpoint of the agent, how it 

moves around the environment, and the second one 

is related to, from the viewpoint of the tile, how 

the tile can be pushed into the hole. The learn-

ing process does not depend on the initial state of 

an agent and the experience of a trial can be effec-

tively applied to the different type of trials. The 

effectiveness of the proposed system is also verified 

for multi-agents. The use of separate lookup tables 

greatly reduces the dimensionality in state spaces 
hence ensures faster learning, and the task oriented 

policy helps in attaining precise policy in a dynamic 
environment.



 Next section describes the basic notion of con-
ventional reinforcement learning and the modified 
task-oriented approach. Section 3 introduces the 
test bed, dynamic tile world, and implementation 
of the task-oriented algorithm. Section 4 contains 
simulation results, and Section 5 contains discus-

sions on the proposed method and obtained results, 
and finally conclusions are drawn in Section 6. 

 2. Task-Oriented Reinforcement Learn 
    ing 

 Reinforcement  learning')  is  a  process  of  trial-and-
error whereby an agent seeks to find the combina-
tion of actions that maximizes the rewards as its 

performance feed back. One of the most commonly 
used reinforcement learning methods is Q-learning. 
This algorithm does not need a model of the en-

vironment and directly computes the approximate 
function of optimal action-value independently of 
the policy followed. The updating rule of Q-learning 
is as follows: 

Q(st, at) 4— Q(st, at) (1) 
+ a[rt + -y maxa Q(st+i, a) — Q(st, at)J, 

where, a is the learning rate, 7 is the discount fac-
tor, rt is the achieved reward at time t, and Q(st, at) 
is the value of action at at state st. 

  The agent uses all perceivable information of the 
environment to constitute the state and tries to 
choose a better action maintaining a balance be-
tween exploration and exploitation according to the 
certain policy. The convergence of the Q-learning is 
proven under the assumption that each state-action 
pair is visited infinitely often. Unfortunately, in 
continuing-dynamic problems an agent has to deal 
with new working situation in the environemnet and 
it is hardly possible to visit all states repeatedly 
within a short interval to meet convergence. 

  The task-oriented approach of RL reduces the 
complexity of such problems by learning from the 
viewpoint of the task considering only related infor-
mation after decomposing the whole problem into 
some logical subtasks according to the types of ac-
tions. For each subtask a separate lookup table 
is used to store Q values, where the correspond-
ing agent uses only the specified information of the 
environment to understand the present condition of 
the task in term of 'task-state', and chooses an ac-
tion. The goal of each subtask may be different 
apparently, but it helps attaining the global goal of 
the system. This method provides one lookup ta-

ble for each subtask, therefore, the same agent may 
deal with all lookup tables') or a separate agent 
can be used for each subtasle) depending on the in-
volvement of the agent. The main objective of this 

method is to simplify the learning process consid-
ering less information related to corresponding task 
only, which ignores the information beyond the task, 
hence less affected by environement dynamics. At 
any environement instance, an agent can proceed 
with its task as it needs only task related informa-

tion, which enables the TORL method work well in 
both episodic and continuous manner. 

 Figure 1 shows a comparative notion of task-
oriented and conventional RL: in a conventional RL 
system, the agent learns to update the policy by 
choosing an action considering the state of the en-

vironment without specific idea on task; in task-
oriented RL, the agent learns to update the pol-
icy by choosing an action considering the state of 
task from the viewpoint of the task. In the task-
oriented system, policies belong to tasks instead of 
agent, which provides an opportunity of sharing a 

policy among the agents handling similar task in 
multiagent systems. Agents' cooperation by updat-
ing common policy makes a system achieving faster 
convergence with minimum memory requirement6).

Fig. 1 Comparative notion of (a) conventional rein-
      forcement learning system, and (b) task-oriented 

       reinforcement learning system.



This mechanism of cooperation by sharing the pol-
icy of same task is introduced in task-oriented mul-
tiagent RL system to boost up its performance. 

 3. The Tile World Test Bed 

 3.1 Domain description 
 A pseudo-realistic tile world of 10 by 10 grids that 

evolves in discrete time steps is considered as our 
test bed for TORL, Fig. 2. Each cell of the world 
may contain an agent, an obstacle, a tile or a hole. 

In this continuing and dynamic environment, a tile 
and a hole appear in random location of the en-
vironment stochastically and disappear after a cer-
tain time interval. Although the shape and obstacle 
structure of the environement are fixed in learning, 

it becomes a dynamic environemnt to an agent due 
to different tile and hole locations at each time. The 
agent is permitted only to push the tile but not to 

pull, and the movement in diagonal directions and 
moving off the environment are considered to be il-
legal. More than one agent, or an agent and the tile 

cannot be in the same cell. The agent's task is to 
discover the tile-hole pair and then fill up the hole 

 by  putting  the  tile  into  it  at  each  trial,  then  another 
tile-hole pair appears in the world at diffrent loca-
tion and the agent has to continue the same process 

forever. 
 The cells just inside the boundary region are re-

stricted only for the agent's movement, and the tile 
is not allowed to be pushed into them. This re-
striction is only to avoid the permanent dead lock 
situation and ensuring the continuity of the envi-
ronment. At each time step the agent has four pos-

sible actions to choose from: pushing the tile if it 
is available or moving in to North, South, East or 
West. Before making any action, the agent searches 
its field of vision of limited depth 2 for the tile, hole, 
other agent, etc. The environment is partially ob-

servable and there is no special marks or coordinate 
to distinguish one cell from another. 

 3.2 Implementation 
 In this dynamic tile world, the agent needs to 

find out the tile and the hole at first, so it moves 

randomly throughout the environment until it finds 
out both. Then the agent needs moving to desired 
location (to a certain side of the tile to push it or 
after pushing once it may need to move to another 
side of the tile to push it again) in the environment, 
and this process continues at each trial until the 
tile is being pushed into the hole. In applying task 

oriented RL, here the whole task is decomposed as

Fig. 2 Tile world.

follows: (a) agent movement throughout the envi-
ronment needed for finding out the tile-hole pair, 
or for moving to any particular location, and (b) 
transition of the tile towards the hole. 

 The first subtasks fully concentrates on the 
agent's movement only. To search the environment 
the agent decides a relative location (sub-goal) ran-
domly and looks for the tile and the hole during its 
trip towards that location. This process is repeated 
several times until the tile-hole pair is found out. 
The agent remembers the location of the tile and 
the hole by relative Cartesian coordinates and up-
dates this value at each transition of state. After 
finding out both or after pushing the tile once the 
agent may need moving to a certain cell (sub-goal) 
beside the tile, which is determined by the Q-value 
of the subtask related to the tile movement. This 
subtask ends when the agent reaches the appropri-
ate cell beside the tile to push it. For this subtasks 
of agent movement the QA-table is proposed. The 
state of QA-table is constituted by the relative di-
rectional information of the sub-goal state and sta-
tus of the neighbor cells. The actions are either to 
move in North, South, East or West. The action 
that makes the agent to reach the target location is

Fig. 3 Typical way of action selection, reward obtaining 

      and updating Q-table by the idle elevator agent.



given a reward of 1 and all other actions receive a 
reward of 0. 

 The other subtask deals with transition of the tile, 
how the agent should handle it. For this subtask a 
separate lookup table, QT-table, is proposed that 
contains the information of the tile itself instead 
of the agent, but the table is availed and updated 
by the agents. The state space of QT-table is con-
stituted by the relative directional information of 
the hole (goal) and the status of the tile's neigh-
bor cells ignoring the presence and activity of the 
agent, and the action space is the indication to the 
agent, in which direction the tile should be pushed. 
The agent acquires the information from it to han-
dle the tile and update it after each transition of 
the tile. Pushing the tile once, if the agent needs 

 to  move  in  another  location  of  the  tile,  it  uses  QA-
table. When the tile is pushed into the hole, which 
is the final goal, it receives a reward 1.0, while all 
other transitions of the tile receive a reward of 0. 
The block diagram of proposed learning system with 
corresponding Q-tables is shown in Fig. 3. 

 In both subtasks, the corresponding goal position 
defined by relative Cartesian coordinate is scaled 
logarithmically in constituting the state. This loga-
rithmic scaling makes the agent to know the goal 
and its surrounding in more details when it is 
nearer, and have a brief idea of goal when it is 
far. The representation of the state using relative 
information of the goal rather than exact location 
makes the system deviate from pure Markov Deci-
sion Process (MDP). The Q-learning system is guar-
anteed to converge for MDPs, but the performance 
degrades for non-Markov tasks. The Q(A)-learning 
is the first line defense against both long-delayed re-
wards and non-Markov tasks4), but it requires huge 
computation to update the Q-table at each time. 
For these reasons, we considered truncated Q(A)- 
learning7) algorithm for all subtasks. 

 The system can be converted into a multiagent 
system simply making the agents follow task ori-
ented policy. Pushing the tile by an agent is directed 
by the policy of tile pushing task, so only the ap-

propriate agent can push it that makes an indirectly 
coordinated multiagent systems. Sharing the infor-
mation of the tile and hole among the agents may 
give additional advantages for multiagent system. 
Since, the task of pushing a tile is common to all 
agent, all agent can use and update corresponding 

policy of the task, which gives faster convergence in 
learning.

 4. Simulation Results 
 Simulations were performed for the above prob-

lem with truncated Q(A) and e-greedy policy with 
decreasing value of E, the learning rate a = 0.1, the 
discount factor 7 = 0.90 and A =0.75. The life time 
of a tile-hole pair is set at 3000 steps. 

 At first we have tested the above problem in an 
episodic way making the agent, tile, and hole at 
the same initial positions in each episode. Figure 
4(a) shows the success rate, percentage of trials 
with achieved goal within the fixed interval, and 
Fig. 4(b) shows the average time required to fin-
ish a trial. For this test one trial is considered as 
an episode. The results show high success rate of 
99.34% with satisfactorily less elapsed time of 155 
steps to finish an episode after only a few thousands 
episodes of learning. This test has been done only 
to indicate its capability to conduct episodic tasks 
as well as continuing tasks. 

 Figure 5 shows the performance of the proposed 
task-oriented RL system in handling the continuing-

Fig. 4 Learning for the episodic task: (a) the percent-
      age of average success, (b) average time steps.



the system with its own lookup table and making 

them to share the lookup table related to tile push-

ing. Figure 7 shows the comparison for 1-agent 

and 2-agent system. The system suited well with 

multi-agent and shows better performance both in 

the success rate and the average time to finish a 

trial. This simplest way to convert the system for 

multiagent in achieving better performance shows 

an additional feature of the proposed method and 

recommending it for multiagent systems. 

 5. Discussions 

 In the proposed TORL method, human effort 

is needed to decompose the task into some sub-

problems, separating related information for each 
task, and to define their relations obtaining the 

global goal. Apart from this additional requirement, 

this method offers a number of advantages, which 

cannot be achieved using monolithic reinforcement 

learning methods for continuous dynamic tasks. 

 First, thinking from the viewpoint of the task

Fig. 5 Learning for the continuous task: (a) the per-
      centage of average success (b) average time steps.

dynamic task. The system learned slowly but ulti-

mately it achieved satisfactory performance. The 

ultimate success rate is more than 94% and the av-

erage time to finish a trial remains within reason-

able limits of about 450 steps. The elapsed time of 

a trial depends on how much obstacles exist in the 

 environment. it is found that for fewer obstacles the 

system shows better performance. The conventional 

RL method cannot solve this dynamic problem since 

the agent has no chance to repeat its trial for same 

situations. 

 Keeping the same difficulty level, the positions of 

the obstacles in the environment are changed once 

in on going learning process. The success level sud-

denly falls from 93% to 70% in Fig. 6, but after 

an interval of time it re-achieved it. This small de-

viation with faster recovering capability shows the 

robustness of the system and capability of applying 

the learned policy for different environment. The 

small deviation would not occur, if it were possible 

to use 90° rotationally symmetry of directions. 

 The performance of a multi-agent system has also 

been investigated, introducing another agent into

Fig. 6 Sudden change in obstacles arrangement: (a) the 

      percentage of average success, (b) average time 
       steps.



Fig. 7 Comparison with single agent and two-agents 
      system: (a) the percentage of average success, 

      (b) average time steps.

leads the agent to choose an action more precisely. 

This feature makes the system robust since the 

agent gets a gist of the task from state informa-

tion, which remains same in all environment condi-

tions. So learning process goes well in a dynamic 

environment, and the agent can restart its trial at 

any instance in the continuous world. In multiagent 

systems agents can share their policy, and no addi-

tional coordinating mechanism is required as only 

the suitable agent handle the task. Second, the task 

decomposition limits the size of state-spaces hence 

ensures less memory and less computation require-

ments, which leads the system achieving faster con-

vergence. 

 This kind of dynamic task cannot be handled

using conventional RL, whereas in TORL method 

agents fulfill the goal of a trial and from that point 

restart for the next trial, and follows the continuing 

process successfully. 

 6. Conclusions 

 A novel method, TORL has been presented here, 

which generalized states representation in terms of 

status of task that simplified the continuous dy-

namic task into an easily learnable problem, re-

duced the size of state-spaces and fast convergence 

were achieved. It provides an indirect coordina-

tion for multiagent systems without any change in 

state size or learning structure but gives remarkable 

performance compared to the single agent systems. 
These promising results reveal the versatility of the 

task-oriented system and it can be extended to de-

sign a complete multi-objective intelligent society of 

autonomous agents. 
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